1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 The Khronos Group Inc.
6  * Copyright (c) 2015 Imagination Technologies Ltd.
7  * Copyright (c) 2023 LunarG, Inc.
8  * Copyright (c) 2023 Nintendo
9  *
10  * Licensed under the Apache License, Version 2.0 (the "License");
11  * you may not use this file except in compliance with the License.
12  * You may obtain a copy of the License at
13  *
14  *      http://www.apache.org/licenses/LICENSE-2.0
15  *
16  * Unless required by applicable law or agreed to in writing, software
17  * distributed under the License is distributed on an "AS IS" BASIS,
18  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19  * See the License for the specific language governing permissions and
20  * limitations under the License.
21  *
22  *//*!
23  * \file
24  * \brief Image sampling case
25  *//*--------------------------------------------------------------------*/
26 
27 #include "vktPipelineImageSamplingInstance.hpp"
28 #include "vktPipelineClearUtil.hpp"
29 #include "vktPipelineReferenceRenderer.hpp"
30 #include "vkBuilderUtil.hpp"
31 #include "vkImageUtil.hpp"
32 #include "vkPrograms.hpp"
33 #include "vkQueryUtil.hpp"
34 #include "vkRefUtil.hpp"
35 #include "vkTypeUtil.hpp"
36 #include "vkCmdUtil.hpp"
37 #include "vkTypeUtil.hpp"
38 #include "vkObjUtil.hpp"
39 #include "tcuTexLookupVerifier.hpp"
40 #include "tcuTextureUtil.hpp"
41 #include "tcuTestLog.hpp"
42 #include "deSTLUtil.hpp"
43 
44 namespace vkt
45 {
46 namespace pipeline
47 {
48 
49 using namespace vk;
50 using de::MovePtr;
51 using de::UniquePtr;
52 
53 namespace
54 {
allocateBuffer(const InstanceInterface & vki,const DeviceInterface & vkd,const VkPhysicalDevice & physDevice,const VkDevice device,const VkBuffer & buffer,const MemoryRequirement requirement,Allocator & allocator,AllocationKind allocationKind)55 de::MovePtr<Allocation> allocateBuffer(const InstanceInterface &vki, const DeviceInterface &vkd,
56                                        const VkPhysicalDevice &physDevice, const VkDevice device,
57                                        const VkBuffer &buffer, const MemoryRequirement requirement,
58                                        Allocator &allocator, AllocationKind allocationKind)
59 {
60     switch (allocationKind)
61     {
62     case ALLOCATION_KIND_SUBALLOCATED:
63     {
64         const VkMemoryRequirements memoryRequirements = getBufferMemoryRequirements(vkd, device, buffer);
65 
66         return allocator.allocate(memoryRequirements, requirement);
67     }
68 
69     case ALLOCATION_KIND_DEDICATED:
70     {
71         return allocateDedicated(vki, vkd, physDevice, device, buffer, requirement);
72     }
73 
74     default:
75     {
76         TCU_THROW(InternalError, "Invalid allocation kind");
77     }
78     }
79 }
80 
allocateImage(const InstanceInterface & vki,const DeviceInterface & vkd,const VkPhysicalDevice & physDevice,const VkDevice device,const VkImage & image,const MemoryRequirement requirement,Allocator & allocator,AllocationKind allocationKind)81 de::MovePtr<Allocation> allocateImage(const InstanceInterface &vki, const DeviceInterface &vkd,
82                                       const VkPhysicalDevice &physDevice, const VkDevice device, const VkImage &image,
83                                       const MemoryRequirement requirement, Allocator &allocator,
84                                       AllocationKind allocationKind)
85 {
86     switch (allocationKind)
87     {
88     case ALLOCATION_KIND_SUBALLOCATED:
89     {
90         const VkMemoryRequirements memoryRequirements = getImageMemoryRequirements(vkd, device, image);
91 
92         return allocator.allocate(memoryRequirements, requirement);
93     }
94 
95     case ALLOCATION_KIND_DEDICATED:
96     {
97         return allocateDedicated(vki, vkd, physDevice, device, image, requirement);
98     }
99 
100     default:
101     {
102         TCU_THROW(InternalError, "Invalid allocation kind");
103     }
104     }
105 }
106 
getCompatibleImageType(VkImageViewType viewType)107 static VkImageType getCompatibleImageType(VkImageViewType viewType)
108 {
109     switch (viewType)
110     {
111     case VK_IMAGE_VIEW_TYPE_1D:
112         return VK_IMAGE_TYPE_1D;
113     case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
114         return VK_IMAGE_TYPE_1D;
115     case VK_IMAGE_VIEW_TYPE_2D:
116         return VK_IMAGE_TYPE_2D;
117     case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
118         return VK_IMAGE_TYPE_2D;
119     case VK_IMAGE_VIEW_TYPE_3D:
120         return VK_IMAGE_TYPE_3D;
121     case VK_IMAGE_VIEW_TYPE_CUBE:
122         return VK_IMAGE_TYPE_2D;
123     case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
124         return VK_IMAGE_TYPE_2D;
125     default:
126         break;
127     }
128 
129     DE_ASSERT(false);
130     return VK_IMAGE_TYPE_1D;
131 }
132 
133 template <typename TcuFormatType>
createTestTexture(const TcuFormatType format,VkImageViewType viewType,const tcu::IVec3 & size,int layerCount)134 static MovePtr<TestTexture> createTestTexture(const TcuFormatType format, VkImageViewType viewType,
135                                               const tcu::IVec3 &size, int layerCount)
136 {
137     MovePtr<TestTexture> texture;
138     const VkImageType imageType = getCompatibleImageType(viewType);
139 
140     switch (imageType)
141     {
142     case VK_IMAGE_TYPE_1D:
143         if (layerCount == 1)
144             texture = MovePtr<TestTexture>(new TestTexture1D(format, size.x()));
145         else
146             texture = MovePtr<TestTexture>(new TestTexture1DArray(format, size.x(), layerCount));
147 
148         break;
149 
150     case VK_IMAGE_TYPE_2D:
151         if (layerCount == 1)
152         {
153             texture = MovePtr<TestTexture>(new TestTexture2D(format, size.x(), size.y()));
154         }
155         else
156         {
157             if (viewType == VK_IMAGE_VIEW_TYPE_CUBE || viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
158             {
159                 if (layerCount == tcu::CUBEFACE_LAST && viewType == VK_IMAGE_VIEW_TYPE_CUBE)
160                 {
161                     texture = MovePtr<TestTexture>(new TestTextureCube(format, size.x()));
162                 }
163                 else
164                 {
165                     DE_ASSERT(layerCount % tcu::CUBEFACE_LAST == 0);
166 
167                     texture = MovePtr<TestTexture>(new TestTextureCubeArray(format, size.x(), layerCount));
168                 }
169             }
170             else
171             {
172                 texture = MovePtr<TestTexture>(new TestTexture2DArray(format, size.x(), size.y(), layerCount));
173             }
174         }
175 
176         break;
177 
178     case VK_IMAGE_TYPE_3D:
179         texture = MovePtr<TestTexture>(new TestTexture3D(format, size.x(), size.y(), size.z()));
180         break;
181 
182     default:
183         DE_ASSERT(false);
184     }
185 
186     return texture;
187 }
188 
189 } // namespace
190 
checkSupportImageSamplingInstance(Context & context,ImageSamplingInstanceParams params)191 void checkSupportImageSamplingInstance(Context &context, ImageSamplingInstanceParams params)
192 {
193 
194     if (de::abs(params.samplerParams.mipLodBias) > context.getDeviceProperties().limits.maxSamplerLodBias)
195         TCU_THROW(NotSupportedError, "Unsupported sampler Lod bias value");
196 
197     if (!isSupportedSamplableFormat(context.getInstanceInterface(), context.getPhysicalDevice(), params.imageFormat))
198         throw tcu::NotSupportedError(std::string("Unsupported format for sampling: ") +
199                                      getFormatName(params.imageFormat));
200 
201     if ((uint32_t)params.imageCount > context.getDeviceProperties().limits.maxColorAttachments)
202         throw tcu::NotSupportedError(std::string("Unsupported render target count: ") +
203                                      de::toString(params.imageCount));
204 
205     if ((params.samplerParams.minFilter == VK_FILTER_LINEAR || params.samplerParams.magFilter == VK_FILTER_LINEAR ||
206          params.samplerParams.mipmapMode == VK_SAMPLER_MIPMAP_MODE_LINEAR) &&
207         !isLinearFilteringSupported(context.getInstanceInterface(), context.getPhysicalDevice(), params.imageFormat,
208                                     VK_IMAGE_TILING_OPTIMAL))
209         throw tcu::NotSupportedError(std::string("Unsupported format for linear filtering: ") +
210                                      getFormatName(params.imageFormat));
211 
212     if (params.separateStencilUsage)
213     {
214         context.requireDeviceFunctionality("VK_EXT_separate_stencil_usage");
215         context.requireInstanceFunctionality("VK_KHR_get_physical_device_properties2");
216 
217         const VkImageStencilUsageCreateInfo stencilUsage = {VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO, DE_NULL,
218                                                             VK_IMAGE_USAGE_TRANSFER_DST_BIT};
219 
220         const VkPhysicalDeviceImageFormatInfo2 formatInfo2 = {
221             VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,        //    VkStructureType            sType
222             params.separateStencilUsage ? &stencilUsage : DE_NULL,        //    const void*                pNext
223             params.imageFormat,                                           //    VkFormat                format
224             getCompatibleImageType(params.imageViewType),                 //    VkImageType                type
225             VK_IMAGE_TILING_OPTIMAL,                                      //    VkImageTiling            tiling
226             VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, //    VkImageUsageFlags        usage
227             (VkImageCreateFlags)0u                                        //    VkImageCreateFlags        flags
228         };
229 
230         VkImageFormatProperties2 extProperties = {
231             VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
232             DE_NULL,
233             {
234                 {
235                     0, // width
236                     0, // height
237                     0, // depth
238                 },
239                 0u, // maxMipLevels
240                 0u, // maxArrayLayers
241                 0,  // sampleCounts
242                 0u, // maxResourceSize
243             },
244         };
245 
246         if ((context.getInstanceInterface().getPhysicalDeviceImageFormatProperties2(
247                  context.getPhysicalDevice(), &formatInfo2, &extProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) ||
248             extProperties.imageFormatProperties.maxExtent.width < (uint32_t)params.imageSize.x() ||
249             extProperties.imageFormatProperties.maxExtent.height < (uint32_t)params.imageSize.y())
250         {
251             TCU_THROW(NotSupportedError, "Image format not supported");
252         }
253     }
254 
255     void const *pNext = params.samplerParams.pNext;
256     while (pNext != DE_NULL)
257     {
258         const VkStructureType nextType = *reinterpret_cast<const VkStructureType *>(pNext);
259         switch (nextType)
260         {
261         case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO:
262         {
263             context.requireDeviceFunctionality("VK_EXT_sampler_filter_minmax");
264 
265             if (!isMinMaxFilteringSupported(context.getInstanceInterface(), context.getPhysicalDevice(),
266                                             params.imageFormat, VK_IMAGE_TILING_OPTIMAL))
267                 throw tcu::NotSupportedError(std::string("Unsupported format for min/max filtering: ") +
268                                              getFormatName(params.imageFormat));
269 
270             pNext = reinterpret_cast<const VkSamplerReductionModeCreateInfo *>(pNext)->pNext;
271             break;
272         }
273         case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO:
274             context.requireDeviceFunctionality("VK_KHR_sampler_ycbcr_conversion");
275 
276             pNext = reinterpret_cast<const VkSamplerYcbcrConversionInfo *>(pNext)->pNext;
277             break;
278         case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT:
279             pNext = reinterpret_cast<const VkSamplerCustomBorderColorCreateInfoEXT *>(pNext)->pNext;
280 
281             if (!context.getCustomBorderColorFeaturesEXT().customBorderColors)
282             {
283                 throw tcu::NotSupportedError("customBorderColors feature is not supported");
284             }
285 
286             break;
287         default:
288             TCU_FAIL("Unrecognized sType in chained sampler create info");
289         }
290     }
291 
292     if (params.samplerParams.addressModeU == VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE ||
293         params.samplerParams.addressModeV == VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE ||
294         params.samplerParams.addressModeW == VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE)
295     {
296         context.requireDeviceFunctionality("VK_KHR_sampler_mirror_clamp_to_edge");
297     }
298 
299     if ((isCompressedFormat(params.imageFormat) || isDepthStencilFormat(params.imageFormat)) &&
300         params.imageViewType == VK_IMAGE_VIEW_TYPE_3D)
301     {
302         // \todo [2016-01-22 pyry] Mandate VK_ERROR_FORMAT_NOT_SUPPORTED
303         try
304         {
305             const VkImageFormatProperties formatProperties = getPhysicalDeviceImageFormatProperties(
306                 context.getInstanceInterface(), context.getPhysicalDevice(), params.imageFormat, VK_IMAGE_TYPE_3D,
307                 VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_SAMPLED_BIT, (VkImageCreateFlags)0);
308 
309             if (formatProperties.maxExtent.width == 0 && formatProperties.maxExtent.height == 0 &&
310                 formatProperties.maxExtent.depth == 0)
311                 TCU_THROW(NotSupportedError, "3D compressed or depth format not supported");
312         }
313         catch (const Error &)
314         {
315             TCU_THROW(NotSupportedError, "3D compressed or depth format not supported");
316         }
317     }
318 
319     if (params.imageViewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
320         context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_IMAGE_CUBE_ARRAY);
321 
322     if (params.allocationKind == ALLOCATION_KIND_DEDICATED)
323         context.requireDeviceFunctionality("VK_KHR_dedicated_allocation");
324 
325 #ifndef CTS_USES_VULKANSC
326     if (context.isDeviceFunctionalitySupported("VK_KHR_portability_subset"))
327     {
328         const auto portabilitySubsetFeatures = context.getPortabilitySubsetFeatures();
329         const auto componentMapping          = params.componentMapping;
330         if (!portabilitySubsetFeatures.imageViewFormatSwizzle &&
331             ((componentMapping.r != VK_COMPONENT_SWIZZLE_IDENTITY) ||
332              (componentMapping.g != VK_COMPONENT_SWIZZLE_IDENTITY) ||
333              (componentMapping.b != VK_COMPONENT_SWIZZLE_IDENTITY) ||
334              (componentMapping.a != VK_COMPONENT_SWIZZLE_IDENTITY)))
335         {
336             TCU_THROW(NotSupportedError,
337                       "VK_KHR_portability_subset: Implementation does not support remapping format components");
338         }
339     }
340 
341     bool formatRgba10x6WithoutYCbCrSampler = context.getRGBA10X6FormatsFeaturesEXT().formatRgba10x6WithoutYCbCrSampler;
342 #else
343     bool formatRgba10x6WithoutYCbCrSampler = VK_FALSE;
344 #endif // CTS_USES_VULKANSC
345 
346     if ((params.imageFormat == VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16) &&
347         (params.subresourceRange.levelCount > 1) && (formatRgba10x6WithoutYCbCrSampler == VK_FALSE))
348     {
349         TCU_THROW(NotSupportedError, "formatRgba10x6WithoutYCbCrSampler not supported");
350     }
351 }
352 
ImageSamplingInstance(Context & context,ImageSamplingInstanceParams params)353 ImageSamplingInstance::ImageSamplingInstance(Context &context, ImageSamplingInstanceParams params)
354     : vkt::TestInstance(context)
355     , m_allocationKind(params.allocationKind)
356     , m_samplingType(params.samplingType)
357     , m_imageViewType(params.imageViewType)
358     , m_imageFormat(params.imageFormat)
359     , m_imageSize(params.imageSize)
360     , m_layerCount(params.layerCount)
361     , m_imageCount(params.imageCount)
362     , m_componentMapping(params.componentMapping)
363     , m_componentMask(true)
364     , m_subresourceRange(params.subresourceRange)
365     , m_samplerParams(params.samplerParams)
366     , m_samplerLod(params.samplerLod)
367     , m_renderSize(params.renderSize)
368     , m_colorFormat(VK_FORMAT_R8G8B8A8_UNORM)
369     , m_vertices(params.vertices)
370     , m_graphicsPipeline(context.getInstanceInterface(), context.getDeviceInterface(), context.getPhysicalDevice(),
371                          context.getDevice(), m_context.getDeviceExtensions(), params.pipelineConstructionType,
372                          params.pipelineCreateFlags)
373     , m_pipelineConstructionType(params.pipelineConstructionType)
374     , m_imageLayout(params.imageLayout)
375 {
376 }
377 
setup()378 void ImageSamplingInstance::setup()
379 {
380     const InstanceInterface &vki      = m_context.getInstanceInterface();
381     const DeviceInterface &vk         = m_context.getDeviceInterface();
382     const VkPhysicalDevice physDevice = m_context.getPhysicalDevice();
383     const VkDevice vkDevice           = m_context.getDevice();
384     const VkQueue queue               = m_context.getUniversalQueue();
385     const uint32_t queueFamilyIndex   = m_context.getUniversalQueueFamilyIndex();
386     SimpleAllocator memAlloc(
387         vk, vkDevice,
388         getPhysicalDeviceMemoryProperties(m_context.getInstanceInterface(), m_context.getPhysicalDevice()));
389     const VkComponentMapping componentMappingRGBA = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G,
390                                                      VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
391 
392     void const *pNext = m_samplerParams.pNext;
393     while (pNext != DE_NULL)
394     {
395         const VkStructureType nextType = *reinterpret_cast<const VkStructureType *>(pNext);
396         switch (nextType)
397         {
398         case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO:
399         {
400             VkPhysicalDeviceSamplerFilterMinmaxProperties physicalDeviceSamplerMinMaxProperties = {
401                 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES, DE_NULL, false, false};
402             VkPhysicalDeviceProperties2 physicalDeviceProperties;
403             physicalDeviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
404             physicalDeviceProperties.pNext = &physicalDeviceSamplerMinMaxProperties;
405 
406             vki.getPhysicalDeviceProperties2(m_context.getPhysicalDevice(), &physicalDeviceProperties);
407 
408             if (physicalDeviceSamplerMinMaxProperties.filterMinmaxImageComponentMapping != VK_TRUE)
409             {
410                 // If filterMinmaxImageComponentMapping is VK_FALSE the component mapping of the image
411                 // view used with min/max filtering must have been created with the r component set to
412                 // VK_COMPONENT_SWIZZLE_IDENTITY. Only the r component of the sampled image value is
413                 // defined and the other component values are undefined
414 
415                 m_componentMask = tcu::BVec4(true, false, false, false);
416 
417                 if (m_componentMapping.r != VK_COMPONENT_SWIZZLE_IDENTITY &&
418                     m_componentMapping.r != VK_COMPONENT_SWIZZLE_R)
419                 {
420                     TCU_THROW(NotSupportedError,
421                               "filterMinmaxImageComponentMapping is not supported (R mapping is not IDENTITY)");
422                 }
423             }
424             pNext = reinterpret_cast<const VkSamplerReductionModeCreateInfo *>(pNext)->pNext;
425         }
426         break;
427         case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO:
428             pNext = reinterpret_cast<const VkSamplerYcbcrConversionInfo *>(pNext)->pNext;
429             break;
430         case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT:
431         {
432             const VkSamplerCustomBorderColorCreateInfoEXT customBorderColorCreateInfo =
433                 *reinterpret_cast<const VkSamplerCustomBorderColorCreateInfoEXT *>(pNext);
434 
435             VkPhysicalDeviceCustomBorderColorFeaturesEXT physicalDeviceCustomBorderColorFeatures = {
436                 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT, DE_NULL, false, false};
437             VkPhysicalDeviceFeatures2 physicalDeviceFeatures;
438             physicalDeviceFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
439             physicalDeviceFeatures.pNext = &physicalDeviceCustomBorderColorFeatures;
440 
441             vki.getPhysicalDeviceFeatures2(m_context.getPhysicalDevice(), &physicalDeviceFeatures);
442 
443             if (physicalDeviceCustomBorderColorFeatures.customBorderColors != VK_TRUE)
444             {
445                 TCU_THROW(NotSupportedError, "customBorderColors are not supported");
446             }
447 
448             if (physicalDeviceCustomBorderColorFeatures.customBorderColorWithoutFormat != VK_TRUE &&
449                 customBorderColorCreateInfo.format == VK_FORMAT_UNDEFINED)
450             {
451                 TCU_THROW(NotSupportedError, "customBorderColorWithoutFormat is not supported");
452             }
453 
454             pNext = reinterpret_cast<const VkSamplerCustomBorderColorCreateInfoEXT *>(pNext)->pNext;
455         }
456         break;
457         default:
458             TCU_FAIL("Unrecognized sType in chained sampler create info");
459         }
460     }
461 
462     // Create texture images, views and samplers
463     {
464         VkImageCreateFlags imageFlags = 0u;
465 
466         if (m_imageViewType == VK_IMAGE_VIEW_TYPE_CUBE || m_imageViewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
467             imageFlags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
468 
469         // Initialize texture data
470         if (isCompressedFormat(m_imageFormat))
471             m_texture =
472                 createTestTexture(mapVkCompressedFormat(m_imageFormat), m_imageViewType, m_imageSize, m_layerCount);
473         else
474             m_texture = createTestTexture(mapVkFormat(m_imageFormat), m_imageViewType, m_imageSize, m_layerCount);
475 
476         const VkImageCreateInfo imageParams = {
477             VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,     // VkStructureType sType;
478             DE_NULL,                                 // const void* pNext;
479             imageFlags,                              // VkImageCreateFlags flags;
480             getCompatibleImageType(m_imageViewType), // VkImageType imageType;
481             m_imageFormat,                           // VkFormat format;
482             {                                        // VkExtent3D extent;
483              (uint32_t)m_imageSize.x(), (uint32_t)m_imageSize.y(), (uint32_t)m_imageSize.z()},
484             (uint32_t)m_texture->getNumLevels(),                          // uint32_t mipLevels;
485             (uint32_t)m_layerCount,                                       // uint32_t arrayLayers;
486             VK_SAMPLE_COUNT_1_BIT,                                        // VkSampleCountFlagBits samples;
487             VK_IMAGE_TILING_OPTIMAL,                                      // VkImageTiling tiling;
488             VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, // VkImageUsageFlags usage;
489             VK_SHARING_MODE_EXCLUSIVE,                                    // VkSharingMode sharingMode;
490             1u,                                                           // uint32_t queueFamilyIndexCount;
491             &queueFamilyIndex,                                            // const uint32_t* pQueueFamilyIndices;
492             VK_IMAGE_LAYOUT_UNDEFINED                                     // VkImageLayout initialLayout;
493         };
494 
495         m_images.resize(m_imageCount);
496         m_imageAllocs.resize(m_imageCount);
497         m_imageViews.resize(m_imageCount);
498 
499         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
500         {
501             m_images[imgNdx] = SharedImagePtr(new UniqueImage(createImage(vk, vkDevice, &imageParams)));
502             m_imageAllocs[imgNdx] =
503                 SharedAllocPtr(new UniqueAlloc(allocateImage(vki, vk, physDevice, vkDevice, **m_images[imgNdx],
504                                                              MemoryRequirement::Any, memAlloc, m_allocationKind)));
505             VK_CHECK(vk.bindImageMemory(vkDevice, **m_images[imgNdx], (*m_imageAllocs[imgNdx])->getMemory(),
506                                         (*m_imageAllocs[imgNdx])->getOffset()));
507 
508             // Upload texture data
509             uploadTestTexture(vk, vkDevice, queue, queueFamilyIndex, memAlloc, *m_texture, **m_images[imgNdx]);
510 
511             // Create image view and sampler
512             const VkImageViewCreateInfo imageViewParams = {
513                 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, // VkStructureType sType;
514                 DE_NULL,                                  // const void* pNext;
515                 0u,                                       // VkImageViewCreateFlags flags;
516                 **m_images[imgNdx],                       // VkImage image;
517                 m_imageViewType,                          // VkImageViewType viewType;
518                 m_imageFormat,                            // VkFormat format;
519                 m_componentMapping,                       // VkComponentMapping components;
520                 m_subresourceRange,                       // VkImageSubresourceRange subresourceRange;
521             };
522 
523             m_imageViews[imgNdx] =
524                 SharedImageViewPtr(new UniqueImageView(createImageView(vk, vkDevice, &imageViewParams)));
525         }
526 
527         m_sampler = createSampler(vk, vkDevice, &m_samplerParams);
528     }
529 
530     // Create descriptor set for image and sampler
531     {
532         DescriptorPoolBuilder descriptorPoolBuilder;
533         if (m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE)
534             descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_SAMPLER, 1u);
535         descriptorPoolBuilder.addType(m_samplingType, m_imageCount);
536         m_descriptorPool = descriptorPoolBuilder.build(
537             vk, vkDevice, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
538             m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ? m_imageCount + 1u : m_imageCount);
539 
540         DescriptorSetLayoutBuilder setLayoutBuilder;
541         if (m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE)
542             setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT);
543         setLayoutBuilder.addArrayBinding(m_samplingType, m_imageCount, VK_SHADER_STAGE_FRAGMENT_BIT);
544         m_descriptorSetLayout = setLayoutBuilder.build(vk, vkDevice);
545 
546         const VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = {
547             VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, // VkStructureType sType;
548             DE_NULL,                                        // const void* pNext;
549             *m_descriptorPool,                              // VkDescriptorPool descriptorPool;
550             1u,                                             // uint32_t setLayoutCount;
551             &m_descriptorSetLayout.get()                    // const VkDescriptorSetLayout* pSetLayouts;
552         };
553 
554         m_descriptorSet = allocateDescriptorSet(vk, vkDevice, &descriptorSetAllocateInfo);
555 
556         const VkSampler sampler = m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ? DE_NULL : *m_sampler;
557         std::vector<VkDescriptorImageInfo> descriptorImageInfo(m_imageCount);
558         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
559         {
560             descriptorImageInfo[imgNdx].sampler   = sampler;                // VkSampler sampler;
561             descriptorImageInfo[imgNdx].imageView = **m_imageViews[imgNdx]; // VkImageView imageView;
562             descriptorImageInfo[imgNdx].imageLayout =
563                 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // VkImageLayout imageLayout;
564         }
565 
566         DescriptorSetUpdateBuilder setUpdateBuilder;
567         if (m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE)
568         {
569             const VkDescriptorImageInfo descriptorSamplerInfo = {
570                 *m_sampler,                              // VkSampler sampler;
571                 DE_NULL,                                 // VkImageView imageView;
572                 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL // VkImageLayout imageLayout;
573             };
574             setUpdateBuilder.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0),
575                                          VK_DESCRIPTOR_TYPE_SAMPLER, &descriptorSamplerInfo);
576         }
577 
578         const uint32_t binding = m_samplingType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ? 1u : 0u;
579         setUpdateBuilder.writeArray(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(binding),
580                                     m_samplingType, m_imageCount, descriptorImageInfo.data());
581         setUpdateBuilder.update(vk, vkDevice);
582     }
583 
584     // Create color images and views
585     {
586         const VkImageCreateInfo colorImageParams = {
587             VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,                                   // VkStructureType sType;
588             DE_NULL,                                                               // const void* pNext;
589             0u,                                                                    // VkImageCreateFlags flags;
590             VK_IMAGE_TYPE_2D,                                                      // VkImageType imageType;
591             m_colorFormat,                                                         // VkFormat format;
592             {(uint32_t)m_renderSize.x(), (uint32_t)m_renderSize.y(), 1u},          // VkExtent3D extent;
593             1u,                                                                    // uint32_t mipLevels;
594             1u,                                                                    // uint32_t arrayLayers;
595             VK_SAMPLE_COUNT_1_BIT,                                                 // VkSampleCountFlagBits samples;
596             VK_IMAGE_TILING_OPTIMAL,                                               // VkImageTiling tiling;
597             VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, // VkImageUsageFlags usage;
598             VK_SHARING_MODE_EXCLUSIVE,                                             // VkSharingMode sharingMode;
599             1u,                                                                    // uint32_t queueFamilyIndexCount;
600             &queueFamilyIndex,        // const uint32_t* pQueueFamilyIndices;
601             VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout;
602         };
603 
604         m_colorImages.resize(m_imageCount);
605         m_colorImageAllocs.resize(m_imageCount);
606         m_colorAttachmentViews.resize(m_imageCount);
607 
608         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
609         {
610             m_colorImages[imgNdx] = SharedImagePtr(new UniqueImage(createImage(vk, vkDevice, &colorImageParams)));
611             m_colorImageAllocs[imgNdx] =
612                 SharedAllocPtr(new UniqueAlloc(allocateImage(vki, vk, physDevice, vkDevice, **m_colorImages[imgNdx],
613                                                              MemoryRequirement::Any, memAlloc, m_allocationKind)));
614             VK_CHECK(vk.bindImageMemory(vkDevice, **m_colorImages[imgNdx], (*m_colorImageAllocs[imgNdx])->getMemory(),
615                                         (*m_colorImageAllocs[imgNdx])->getOffset()));
616 
617             const VkImageViewCreateInfo colorAttachmentViewParams = {
618                 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,   // VkStructureType sType;
619                 DE_NULL,                                    // const void* pNext;
620                 0u,                                         // VkImageViewCreateFlags flags;
621                 **m_colorImages[imgNdx],                    // VkImage image;
622                 VK_IMAGE_VIEW_TYPE_2D,                      // VkImageViewType viewType;
623                 m_colorFormat,                              // VkFormat format;
624                 componentMappingRGBA,                       // VkComponentMapping components;
625                 {VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u} // VkImageSubresourceRange subresourceRange;
626             };
627 
628             m_colorAttachmentViews[imgNdx] =
629                 SharedImageViewPtr(new UniqueImageView(createImageView(vk, vkDevice, &colorAttachmentViewParams)));
630         }
631     }
632 
633     // Create render pass
634     {
635         std::vector<VkAttachmentDescription> colorAttachmentDescriptions(m_imageCount);
636         std::vector<VkAttachmentReference> colorAttachmentReferences(m_imageCount);
637 
638         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
639         {
640             colorAttachmentDescriptions[imgNdx].flags   = 0u;                    // VkAttachmentDescriptionFlags flags;
641             colorAttachmentDescriptions[imgNdx].format  = m_colorFormat;         // VkFormat format;
642             colorAttachmentDescriptions[imgNdx].samples = VK_SAMPLE_COUNT_1_BIT; // VkSampleCountFlagBits samples;
643             colorAttachmentDescriptions[imgNdx].loadOp  = VK_ATTACHMENT_LOAD_OP_CLEAR;  // VkAttachmentLoadOp loadOp;
644             colorAttachmentDescriptions[imgNdx].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // VkAttachmentStoreOp storeOp;
645             colorAttachmentDescriptions[imgNdx].stencilLoadOp =
646                 VK_ATTACHMENT_LOAD_OP_DONT_CARE; // VkAttachmentLoadOp stencilLoadOp;
647             colorAttachmentDescriptions[imgNdx].stencilStoreOp =
648                 VK_ATTACHMENT_STORE_OP_DONT_CARE; // VkAttachmentStoreOp stencilStoreOp;
649             colorAttachmentDescriptions[imgNdx].initialLayout =
650                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // VkImageLayout initialLayout;
651             colorAttachmentDescriptions[imgNdx].finalLayout =
652                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // VkImageLayout finalLayout;
653 
654             colorAttachmentReferences[imgNdx].attachment = (uint32_t)imgNdx; // uint32_t attachment;
655             colorAttachmentReferences[imgNdx].layout =
656                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // VkImageLayout layout;
657         }
658 
659         const VkSubpassDescription subpassDescription = {
660             0u,                              // VkSubpassDescriptionFlags flags;
661             VK_PIPELINE_BIND_POINT_GRAPHICS, // VkPipelineBindPoint pipelineBindPoint;
662             0u,                              // uint32_t inputAttachmentCount;
663             DE_NULL,                         // const VkAttachmentReference* pInputAttachments;
664             (uint32_t)m_imageCount,          // uint32_t colorAttachmentCount;
665             &colorAttachmentReferences[0],   // const VkAttachmentReference* pColorAttachments;
666             DE_NULL,                         // const VkAttachmentReference* pResolveAttachments;
667             DE_NULL,                         // const VkAttachmentReference* pDepthStencilAttachment;
668             0u,                              // uint32_t preserveAttachmentCount;
669             DE_NULL                          // const VkAttachmentReference* pPreserveAttachments;
670         };
671 
672         const VkRenderPassCreateInfo renderPassParams = {
673             VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, // VkStructureType sType;
674             DE_NULL,                                   // const void* pNext;
675             0u,                                        // VkRenderPassCreateFlags flags;
676             (uint32_t)m_imageCount,                    // uint32_t attachmentCount;
677             &colorAttachmentDescriptions[0],           // const VkAttachmentDescription* pAttachments;
678             1u,                                        // uint32_t subpassCount;
679             &subpassDescription,                       // const VkSubpassDescription* pSubpasses;
680             0u,                                        // uint32_t dependencyCount;
681             DE_NULL                                    // const VkSubpassDependency* pDependencies;
682         };
683 
684         m_renderPass = RenderPassWrapper(m_pipelineConstructionType, vk, vkDevice, &renderPassParams);
685     }
686 
687     // Create framebuffer
688     {
689         std::vector<VkImage> images(m_imageCount);
690         std::vector<VkImageView> pAttachments(m_imageCount);
691         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
692         {
693             images[imgNdx]       = m_colorImages[imgNdx]->get();
694             pAttachments[imgNdx] = m_colorAttachmentViews[imgNdx]->get();
695         }
696 
697         const VkFramebufferCreateInfo framebufferParams = {
698             VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, // VkStructureType sType;
699             DE_NULL,                                   // const void* pNext;
700             0u,                                        // VkFramebufferCreateFlags flags;
701             *m_renderPass,                             // VkRenderPass renderPass;
702             (uint32_t)m_imageCount,                    // uint32_t attachmentCount;
703             &pAttachments[0],                          // const VkImageView* pAttachments;
704             (uint32_t)m_renderSize.x(),                // uint32_t width;
705             (uint32_t)m_renderSize.y(),                // uint32_t height;
706             1u                                         // uint32_t layers;
707         };
708 
709         m_renderPass.createFramebuffer(vk, vkDevice, &framebufferParams, images);
710     }
711 
712     // Create pipeline layout
713     {
714 #ifndef CTS_USES_VULKANSC
715         VkPipelineLayoutCreateFlags pipelineLayoutFlags =
716             (!isConstructionTypeLibrary(m_pipelineConstructionType)) ?
717                 0u :
718                 uint32_t(VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT);
719 #else
720         VkPipelineLayoutCreateFlags pipelineLayoutFlags = 0u;
721 #endif // CTS_USES_VULKANSC
722         VkPipelineLayoutCreateInfo pipelineLayoutParams{
723             VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // VkStructureType sType;
724             DE_NULL,                                       // const void* pNext;
725             pipelineLayoutFlags,                           // VkPipelineLayoutCreateFlags flags;
726             0u,                                            // uint32_t setLayoutCount;
727             DE_NULL,                                       // const VkDescriptorSetLayout* pSetLayouts;
728             0u,                                            // uint32_t pushConstantRangeCount;
729             DE_NULL                                        // const VkPushConstantRange* pPushConstantRanges;
730         };
731 
732         m_preRasterizationStatePipelineLayout =
733             PipelineLayoutWrapper(m_pipelineConstructionType, vk, vkDevice, &pipelineLayoutParams);
734         pipelineLayoutParams.setLayoutCount = 1u;
735         pipelineLayoutParams.pSetLayouts    = &m_descriptorSetLayout.get();
736         m_fragmentStatePipelineLayout =
737             PipelineLayoutWrapper(m_pipelineConstructionType, vk, vkDevice, &pipelineLayoutParams);
738     }
739 
740     m_vertexShaderModule   = ShaderWrapper(vk, vkDevice, m_context.getBinaryCollection().get("tex_vert"), 0);
741     m_fragmentShaderModule = ShaderWrapper(vk, vkDevice, m_context.getBinaryCollection().get("tex_frag"), 0);
742 
743     // Create pipeline
744     {
745         const VkVertexInputBindingDescription vertexInputBindingDescription = {
746             0u,                         // uint32_t binding;
747             sizeof(Vertex4Tex4),        // uint32_t strideInBytes;
748             VK_VERTEX_INPUT_RATE_VERTEX // VkVertexInputStepRate inputRate;
749         };
750 
751         const VkVertexInputAttributeDescription vertexInputAttributeDescriptions[2] = {
752             {
753                 0u,                            // uint32_t location;
754                 0u,                            // uint32_t binding;
755                 VK_FORMAT_R32G32B32A32_SFLOAT, // VkFormat format;
756                 0u                             // uint32_t offset;
757             },
758             {
759                 1u,                              // uint32_t location;
760                 0u,                              // uint32_t binding;
761                 VK_FORMAT_R32G32B32A32_SFLOAT,   // VkFormat format;
762                 offsetof(Vertex4Tex4, texCoord), // uint32_t offset;
763             }};
764 
765         const VkPipelineVertexInputStateCreateInfo vertexInputStateParams = {
766             VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType;
767             DE_NULL,                                                   // const void* pNext;
768             0u,                                                        // VkPipelineVertexInputStateCreateFlags flags;
769             1u,                                                        // uint32_t vertexBindingDescriptionCount;
770             &vertexInputBindingDescription,  // const VkVertexInputBindingDescription* pVertexBindingDescriptions;
771             2u,                              // uint32_t vertexAttributeDescriptionCount;
772             vertexInputAttributeDescriptions // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;
773         };
774 
775         const std::vector<VkViewport> viewports{makeViewport(m_renderSize)};
776         const std::vector<VkRect2D> scissors{makeRect2D(m_renderSize)};
777 
778         std::vector<VkPipelineColorBlendAttachmentState> colorBlendAttachmentStates(m_imageCount);
779 
780         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
781         {
782             colorBlendAttachmentStates[imgNdx].blendEnable = false; // VkBool32 blendEnable;
783             colorBlendAttachmentStates[imgNdx].srcColorBlendFactor =
784                 VK_BLEND_FACTOR_ONE; // VkBlendFactor srcColorBlendFactor;
785             colorBlendAttachmentStates[imgNdx].dstColorBlendFactor =
786                 VK_BLEND_FACTOR_ZERO;                                          // VkBlendFactor dstColorBlendFactor;
787             colorBlendAttachmentStates[imgNdx].colorBlendOp = VK_BLEND_OP_ADD; // VkBlendOp colorBlendOp;
788             colorBlendAttachmentStates[imgNdx].srcAlphaBlendFactor =
789                 VK_BLEND_FACTOR_ONE; // VkBlendFactor srcAlphaBlendFactor;
790             colorBlendAttachmentStates[imgNdx].dstAlphaBlendFactor =
791                 VK_BLEND_FACTOR_ZERO;                                          // VkBlendFactor dstAlphaBlendFactor;
792             colorBlendAttachmentStates[imgNdx].alphaBlendOp = VK_BLEND_OP_ADD; // VkBlendOp alphaBlendOp;
793             colorBlendAttachmentStates[imgNdx].colorWriteMask =
794                 VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | // VkColorComponentFlags colorWriteMask;
795                 VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
796         }
797 
798         const VkPipelineColorBlendStateCreateInfo colorBlendStateParams = {
799             VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType;
800             DE_NULL,                                                  // const void* pNext;
801             0u,                                                       // VkPipelineColorBlendStateCreateFlags flags;
802             false,                                                    // VkBool32 logicOpEnable;
803             VK_LOGIC_OP_COPY,                                         // VkLogicOp logicOp;
804             (uint32_t)m_imageCount,                                   // uint32_t attachmentCount;
805             &colorBlendAttachmentStates[0], // const VkPipelineColorBlendAttachmentState* pAttachments;
806             {0.0f, 0.0f, 0.0f, 0.0f}        // float blendConstants[4];
807         };
808 
809         m_graphicsPipeline.setMonolithicPipelineLayout(m_fragmentStatePipelineLayout)
810             .setDefaultDepthStencilState()
811             .setDefaultRasterizationState()
812             .setDefaultMultisampleState()
813             .setupVertexInputState(&vertexInputStateParams)
814             .setupPreRasterizationShaderState(viewports, scissors, m_preRasterizationStatePipelineLayout, *m_renderPass,
815                                               0u, m_vertexShaderModule)
816             .setupFragmentShaderState(m_fragmentStatePipelineLayout, *m_renderPass, 0u, m_fragmentShaderModule)
817             .setupFragmentOutputState(*m_renderPass, 0u, &colorBlendStateParams)
818             .buildPipeline();
819     }
820 
821     // Create vertex buffer
822     {
823         const VkDeviceSize vertexBufferSize         = (VkDeviceSize)(m_vertices.size() * sizeof(Vertex4Tex4));
824         const VkBufferCreateInfo vertexBufferParams = {
825             VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType;
826             DE_NULL,                              // const void* pNext;
827             0u,                                   // VkBufferCreateFlags flags;
828             vertexBufferSize,                     // VkDeviceSize size;
829             VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,    // VkBufferUsageFlags usage;
830             VK_SHARING_MODE_EXCLUSIVE,            // VkSharingMode sharingMode;
831             1u,                                   // uint32_t queueFamilyIndexCount;
832             &queueFamilyIndex                     // const uint32_t* pQueueFamilyIndices;
833         };
834 
835         DE_ASSERT(vertexBufferSize > 0);
836 
837         m_vertexBuffer      = createBuffer(vk, vkDevice, &vertexBufferParams);
838         m_vertexBufferAlloc = allocateBuffer(vki, vk, physDevice, vkDevice, *m_vertexBuffer,
839                                              MemoryRequirement::HostVisible, memAlloc, m_allocationKind);
840         VK_CHECK(vk.bindBufferMemory(vkDevice, *m_vertexBuffer, m_vertexBufferAlloc->getMemory(),
841                                      m_vertexBufferAlloc->getOffset()));
842 
843         // Load vertices into vertex buffer
844         deMemcpy(m_vertexBufferAlloc->getHostPtr(), &m_vertices[0], (size_t)vertexBufferSize);
845         flushAlloc(vk, vkDevice, *m_vertexBufferAlloc);
846     }
847 
848     // Create command pool
849     m_cmdPool = createCommandPool(vk, vkDevice, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex);
850 
851     // Create command buffer
852     {
853         const std::vector<VkClearValue> attachmentClearValues(m_imageCount, defaultClearValue(m_colorFormat));
854 
855         std::vector<VkImageMemoryBarrier> preAttachmentBarriers(m_imageCount);
856 
857         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
858         {
859             preAttachmentBarriers[imgNdx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; // VkStructureType sType;
860             preAttachmentBarriers[imgNdx].pNext = DE_NULL;                                // const void* pNext;
861             preAttachmentBarriers[imgNdx].srcAccessMask = 0u; // VkAccessFlags srcAccessMask;
862             preAttachmentBarriers[imgNdx].dstAccessMask =
863                 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;                            // VkAccessFlags dstAccessMask;
864             preAttachmentBarriers[imgNdx].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; // VkImageLayout oldLayout;
865             preAttachmentBarriers[imgNdx].newLayout =
866                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // VkImageLayout newLayout;
867             preAttachmentBarriers[imgNdx].srcQueueFamilyIndex =
868                 VK_QUEUE_FAMILY_IGNORED; // uint32_t srcQueueFamilyIndex;
869             preAttachmentBarriers[imgNdx].dstQueueFamilyIndex =
870                 VK_QUEUE_FAMILY_IGNORED;                                   // uint32_t dstQueueFamilyIndex;
871             preAttachmentBarriers[imgNdx].image = **m_colorImages[imgNdx]; // VkImage image;
872             preAttachmentBarriers[imgNdx].subresourceRange.aspectMask =
873                 VK_IMAGE_ASPECT_COLOR_BIT; // VkImageSubresourceRange subresourceRange;
874             preAttachmentBarriers[imgNdx].subresourceRange.baseMipLevel   = 0u;
875             preAttachmentBarriers[imgNdx].subresourceRange.levelCount     = 1u;
876             preAttachmentBarriers[imgNdx].subresourceRange.baseArrayLayer = 0u;
877             preAttachmentBarriers[imgNdx].subresourceRange.layerCount     = 1u;
878         }
879 
880         m_cmdBuffer = allocateCommandBuffer(vk, vkDevice, *m_cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
881 
882         beginCommandBuffer(vk, *m_cmdBuffer, 0u);
883 
884         vk.cmdPipelineBarrier(*m_cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
885                               VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, (VkDependencyFlags)0, 0u, DE_NULL, 0u,
886                               DE_NULL, (uint32_t)m_imageCount, &preAttachmentBarriers[0]);
887 
888         m_renderPass.begin(vk, *m_cmdBuffer, makeRect2D(0, 0, m_renderSize.x(), m_renderSize.y()),
889                            (uint32_t)attachmentClearValues.size(), &attachmentClearValues[0]);
890 
891         m_graphicsPipeline.bind(*m_cmdBuffer);
892 
893         m_fragmentStatePipelineLayout.bindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 1,
894                                                          &m_descriptorSet.get(), 0, DE_NULL);
895 
896         const VkDeviceSize vertexBufferOffset = 0;
897         vk.cmdBindVertexBuffers(*m_cmdBuffer, 0, 1, &m_vertexBuffer.get(), &vertexBufferOffset);
898         vk.cmdDraw(*m_cmdBuffer, (uint32_t)m_vertices.size(), 1, 0, 0);
899 
900         m_renderPass.end(vk, *m_cmdBuffer);
901         endCommandBuffer(vk, *m_cmdBuffer);
902     }
903 }
904 
~ImageSamplingInstance(void)905 ImageSamplingInstance::~ImageSamplingInstance(void)
906 {
907 }
908 
iterate(void)909 tcu::TestStatus ImageSamplingInstance::iterate(void)
910 {
911     const DeviceInterface &vk = m_context.getDeviceInterface();
912     const VkDevice vkDevice   = m_context.getDevice();
913     const VkQueue queue       = m_context.getUniversalQueue();
914 
915     setup();
916 
917     submitCommandsAndWait(vk, vkDevice, queue, m_cmdBuffer.get());
918 
919     return verifyImage();
920 }
921 
922 namespace
923 {
924 
isLookupResultValid(const tcu::Texture1DView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)925 bool isLookupResultValid(const tcu::Texture1DView &texture, const tcu::Sampler &sampler,
926                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
927                          const tcu::Vec4 &result)
928 {
929     return tcu::isLookupResultValid(texture, sampler, precision, coords.x(), lodBounds, result);
930 }
931 
isLookupResultValid(const tcu::Texture1DArrayView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)932 bool isLookupResultValid(const tcu::Texture1DArrayView &texture, const tcu::Sampler &sampler,
933                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
934                          const tcu::Vec4 &result)
935 {
936     return tcu::isLookupResultValid(texture, sampler, precision, coords.swizzle(0, 1), lodBounds, result);
937 }
938 
isLookupResultValid(const tcu::Texture2DView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)939 bool isLookupResultValid(const tcu::Texture2DView &texture, const tcu::Sampler &sampler,
940                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
941                          const tcu::Vec4 &result)
942 {
943     return tcu::isLookupResultValid(texture, sampler, precision, coords.swizzle(0, 1), lodBounds, result);
944 }
945 
isLookupResultValid(const tcu::Texture2DArrayView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)946 bool isLookupResultValid(const tcu::Texture2DArrayView &texture, const tcu::Sampler &sampler,
947                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
948                          const tcu::Vec4 &result)
949 {
950     return tcu::isLookupResultValid(texture, sampler, precision, coords.swizzle(0, 1, 2), lodBounds, result);
951 }
952 
isLookupResultValid(const tcu::TextureCubeView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)953 bool isLookupResultValid(const tcu::TextureCubeView &texture, const tcu::Sampler &sampler,
954                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
955                          const tcu::Vec4 &result)
956 {
957     return tcu::isLookupResultValid(texture, sampler, precision, coords.swizzle(0, 1, 2), lodBounds, result);
958 }
959 
isLookupResultValid(const tcu::TextureCubeArrayView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)960 bool isLookupResultValid(const tcu::TextureCubeArrayView &texture, const tcu::Sampler &sampler,
961                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
962                          const tcu::Vec4 &result)
963 {
964     return tcu::isLookupResultValid(texture, sampler, precision, tcu::IVec4(precision.coordBits.x()), coords, lodBounds,
965                                     result);
966 }
967 
isLookupResultValid(const tcu::Texture3DView & texture,const tcu::Sampler & sampler,const tcu::LookupPrecision & precision,const tcu::Vec4 & coords,const tcu::Vec2 & lodBounds,const tcu::Vec4 & result)968 bool isLookupResultValid(const tcu::Texture3DView &texture, const tcu::Sampler &sampler,
969                          const tcu::LookupPrecision &precision, const tcu::Vec4 &coords, const tcu::Vec2 &lodBounds,
970                          const tcu::Vec4 &result)
971 {
972     return tcu::isLookupResultValid(texture, sampler, precision, coords.swizzle(0, 1, 2), lodBounds, result);
973 }
974 
975 template <typename TextureViewType>
validateResultImage(const TextureViewType & texture,const tcu::Sampler & sampler,const tcu::ConstPixelBufferAccess & texCoords,const tcu::Vec2 & lodBounds,const tcu::LookupPrecision & lookupPrecision,const tcu::Vec4 & lookupScale,const tcu::Vec4 & lookupBias,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)976 bool validateResultImage(const TextureViewType &texture, const tcu::Sampler &sampler,
977                          const tcu::ConstPixelBufferAccess &texCoords, const tcu::Vec2 &lodBounds,
978                          const tcu::LookupPrecision &lookupPrecision, const tcu::Vec4 &lookupScale,
979                          const tcu::Vec4 &lookupBias, const tcu::ConstPixelBufferAccess &result,
980                          const tcu::PixelBufferAccess &errorMask)
981 {
982     const int w = result.getWidth();
983     const int h = result.getHeight();
984     bool allOk  = true;
985 
986     for (int y = 0; y < h; ++y)
987     {
988         for (int x = 0; x < w; ++x)
989         {
990             const tcu::Vec4 resultPixel = result.getPixel(x, y);
991             const tcu::Vec4 resultColor = (resultPixel - lookupBias) / lookupScale;
992             const tcu::Vec4 texCoord    = texCoords.getPixel(x, y);
993             const bool pixelOk =
994                 isLookupResultValid(texture, sampler, lookupPrecision, texCoord, lodBounds, resultColor);
995 
996             errorMask.setPixel(tcu::Vec4(pixelOk ? 0.0f : 1.0f, pixelOk ? 1.0f : 0.0f, 0.0f, 1.0f), x, y);
997 
998             if (!pixelOk)
999                 allOk = false;
1000         }
1001     }
1002 
1003     return allOk;
1004 }
1005 
1006 template <typename ScalarType>
getSwizzledComp(const tcu::Vector<ScalarType,4> & vec,vk::VkComponentSwizzle comp,int identityNdx)1007 ScalarType getSwizzledComp(const tcu::Vector<ScalarType, 4> &vec, vk::VkComponentSwizzle comp, int identityNdx)
1008 {
1009     if (comp == vk::VK_COMPONENT_SWIZZLE_IDENTITY)
1010         return vec[identityNdx];
1011     else if (comp == vk::VK_COMPONENT_SWIZZLE_ZERO)
1012         return ScalarType(0);
1013     else if (comp == vk::VK_COMPONENT_SWIZZLE_ONE)
1014         return ScalarType(1);
1015     else
1016         return vec[comp - vk::VK_COMPONENT_SWIZZLE_R];
1017 }
1018 
1019 template <typename ScalarType>
swizzle(const tcu::Vector<ScalarType,4> & vec,const vk::VkComponentMapping & swz)1020 tcu::Vector<ScalarType, 4> swizzle(const tcu::Vector<ScalarType, 4> &vec, const vk::VkComponentMapping &swz)
1021 {
1022     return tcu::Vector<ScalarType, 4>(getSwizzledComp(vec, swz.r, 0), getSwizzledComp(vec, swz.g, 1),
1023                                       getSwizzledComp(vec, swz.b, 2), getSwizzledComp(vec, swz.a, 3));
1024 }
1025 
1026 /*--------------------------------------------------------------------*//*!
1027 * \brief Swizzle scale or bias vector by given mapping
1028 *
1029 * \param vec scale or bias vector
1030 * \param swz swizzle component mapping, may include ZERO, ONE, or IDENTITY
1031 * \param zeroOrOneValue vector value for component swizzled as ZERO or ONE
1032 * \return swizzled vector
1033 *//*--------------------------------------------------------------------*/
swizzleScaleBias(const tcu::Vec4 & vec,const vk::VkComponentMapping & swz,float zeroOrOneValue)1034 tcu::Vec4 swizzleScaleBias(const tcu::Vec4 &vec, const vk::VkComponentMapping &swz, float zeroOrOneValue)
1035 {
1036 
1037     // Remove VK_COMPONENT_SWIZZLE_IDENTITY to avoid addressing channelValues[0]
1038     const vk::VkComponentMapping nonIdentitySwz = {
1039         swz.r == VK_COMPONENT_SWIZZLE_IDENTITY ? VK_COMPONENT_SWIZZLE_R : swz.r,
1040         swz.g == VK_COMPONENT_SWIZZLE_IDENTITY ? VK_COMPONENT_SWIZZLE_G : swz.g,
1041         swz.b == VK_COMPONENT_SWIZZLE_IDENTITY ? VK_COMPONENT_SWIZZLE_B : swz.b,
1042         swz.a == VK_COMPONENT_SWIZZLE_IDENTITY ? VK_COMPONENT_SWIZZLE_A : swz.a};
1043 
1044     const float channelValues[] = {
1045         -1.0f,          // impossible
1046         zeroOrOneValue, // SWIZZLE_ZERO
1047         zeroOrOneValue, // SWIZZLE_ONE
1048         vec.x(),        vec.y(), vec.z(), vec.w(),
1049     };
1050 
1051     return tcu::Vec4(channelValues[nonIdentitySwz.r], channelValues[nonIdentitySwz.g], channelValues[nonIdentitySwz.b],
1052                      channelValues[nonIdentitySwz.a]);
1053 }
1054 
1055 template <typename ScalarType>
swizzleT(const tcu::ConstPixelBufferAccess & src,const tcu::PixelBufferAccess & dst,const vk::VkComponentMapping & swz)1056 void swizzleT(const tcu::ConstPixelBufferAccess &src, const tcu::PixelBufferAccess &dst,
1057               const vk::VkComponentMapping &swz)
1058 {
1059     for (int z = 0; z < dst.getDepth(); ++z)
1060         for (int y = 0; y < dst.getHeight(); ++y)
1061             for (int x = 0; x < dst.getWidth(); ++x)
1062                 dst.setPixel(swizzle(src.getPixelT<ScalarType>(x, y, z), swz), x, y, z);
1063 }
1064 
swizzleFromSRGB(const tcu::ConstPixelBufferAccess & src,const tcu::PixelBufferAccess & dst,const vk::VkComponentMapping & swz)1065 void swizzleFromSRGB(const tcu::ConstPixelBufferAccess &src, const tcu::PixelBufferAccess &dst,
1066                      const vk::VkComponentMapping &swz)
1067 {
1068     for (int z = 0; z < dst.getDepth(); ++z)
1069         for (int y = 0; y < dst.getHeight(); ++y)
1070             for (int x = 0; x < dst.getWidth(); ++x)
1071                 dst.setPixel(swizzle(tcu::sRGBToLinear(src.getPixelT<float>(x, y, z)), swz), x, y, z);
1072 }
1073 
swizzle(const tcu::ConstPixelBufferAccess & src,const tcu::PixelBufferAccess & dst,const vk::VkComponentMapping & swz)1074 void swizzle(const tcu::ConstPixelBufferAccess &src, const tcu::PixelBufferAccess &dst,
1075              const vk::VkComponentMapping &swz)
1076 {
1077     const tcu::TextureChannelClass chnClass = tcu::getTextureChannelClass(dst.getFormat().type);
1078 
1079     DE_ASSERT(src.getWidth() == dst.getWidth() && src.getHeight() == dst.getHeight() &&
1080               src.getDepth() == dst.getDepth());
1081 
1082     if (chnClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER)
1083         swizzleT<int32_t>(src, dst, swz);
1084     else if (chnClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER)
1085         swizzleT<uint32_t>(src, dst, swz);
1086     else if (tcu::isSRGB(src.getFormat()) && !tcu::isSRGB(dst.getFormat()))
1087         swizzleFromSRGB(src, dst, swz);
1088     else
1089         swizzleT<float>(src, dst, swz);
1090 }
1091 
isIdentitySwizzle(const vk::VkComponentMapping & swz)1092 bool isIdentitySwizzle(const vk::VkComponentMapping &swz)
1093 {
1094     return (swz.r == vk::VK_COMPONENT_SWIZZLE_IDENTITY || swz.r == vk::VK_COMPONENT_SWIZZLE_R) &&
1095            (swz.g == vk::VK_COMPONENT_SWIZZLE_IDENTITY || swz.g == vk::VK_COMPONENT_SWIZZLE_G) &&
1096            (swz.b == vk::VK_COMPONENT_SWIZZLE_IDENTITY || swz.b == vk::VK_COMPONENT_SWIZZLE_B) &&
1097            (swz.a == vk::VK_COMPONENT_SWIZZLE_IDENTITY || swz.a == vk::VK_COMPONENT_SWIZZLE_A);
1098 }
1099 
1100 template <typename TextureViewType>
1101 struct TexViewTraits;
1102 
1103 template <>
1104 struct TexViewTraits<tcu::Texture1DView>
1105 {
1106     typedef tcu::Texture1D TextureType;
1107 };
1108 template <>
1109 struct TexViewTraits<tcu::Texture1DArrayView>
1110 {
1111     typedef tcu::Texture1DArray TextureType;
1112 };
1113 template <>
1114 struct TexViewTraits<tcu::Texture2DView>
1115 {
1116     typedef tcu::Texture2D TextureType;
1117 };
1118 template <>
1119 struct TexViewTraits<tcu::Texture2DArrayView>
1120 {
1121     typedef tcu::Texture2DArray TextureType;
1122 };
1123 template <>
1124 struct TexViewTraits<tcu::TextureCubeView>
1125 {
1126     typedef tcu::TextureCube TextureType;
1127 };
1128 template <>
1129 struct TexViewTraits<tcu::TextureCubeArrayView>
1130 {
1131     typedef tcu::TextureCubeArray TextureType;
1132 };
1133 template <>
1134 struct TexViewTraits<tcu::Texture3DView>
1135 {
1136     typedef tcu::Texture3D TextureType;
1137 };
1138 
1139 template <typename TextureViewType>
1140 typename TexViewTraits<TextureViewType>::TextureType *createSkeletonClone(tcu::TextureFormat format,
1141                                                                           const tcu::ConstPixelBufferAccess &level0);
1142 
getSwizzleTargetFormat(tcu::TextureFormat format)1143 tcu::TextureFormat getSwizzleTargetFormat(tcu::TextureFormat format)
1144 {
1145     // Swizzled texture needs to hold all four channels
1146     // \todo [2016-09-21 pyry] We could save some memory by using smaller formats
1147     //                           when possible (for example U8).
1148 
1149     const tcu::TextureChannelClass chnClass = tcu::getTextureChannelClass(format.type);
1150 
1151     if (chnClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER)
1152         return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::SIGNED_INT32);
1153     else if (chnClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER)
1154         return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
1155     else
1156         return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
1157 }
1158 
1159 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1160 tcu::Texture1D *createSkeletonClone<tcu::Texture1DView>(tcu::TextureFormat format,
1161                                                         const tcu::ConstPixelBufferAccess &level0)
1162 {
1163     return new tcu::Texture1D(format, level0.getWidth());
1164 }
1165 
1166 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1167 tcu::Texture1DArray *createSkeletonClone<tcu::Texture1DArrayView>(tcu::TextureFormat format,
1168                                                                   const tcu::ConstPixelBufferAccess &level0)
1169 {
1170     return new tcu::Texture1DArray(format, level0.getWidth(), level0.getHeight());
1171 }
1172 
1173 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1174 tcu::Texture2D *createSkeletonClone<tcu::Texture2DView>(tcu::TextureFormat format,
1175                                                         const tcu::ConstPixelBufferAccess &level0)
1176 {
1177     return new tcu::Texture2D(format, level0.getWidth(), level0.getHeight());
1178 }
1179 
1180 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1181 tcu::Texture2DArray *createSkeletonClone<tcu::Texture2DArrayView>(tcu::TextureFormat format,
1182                                                                   const tcu::ConstPixelBufferAccess &level0)
1183 {
1184     return new tcu::Texture2DArray(format, level0.getWidth(), level0.getHeight(), level0.getDepth());
1185 }
1186 
1187 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1188 tcu::Texture3D *createSkeletonClone<tcu::Texture3DView>(tcu::TextureFormat format,
1189                                                         const tcu::ConstPixelBufferAccess &level0)
1190 {
1191     return new tcu::Texture3D(format, level0.getWidth(), level0.getHeight(), level0.getDepth());
1192 }
1193 
1194 template <>
createSkeletonClone(tcu::TextureFormat format,const tcu::ConstPixelBufferAccess & level0)1195 tcu::TextureCubeArray *createSkeletonClone<tcu::TextureCubeArrayView>(tcu::TextureFormat format,
1196                                                                       const tcu::ConstPixelBufferAccess &level0)
1197 {
1198     return new tcu::TextureCubeArray(format, level0.getWidth(), level0.getDepth());
1199 }
1200 
1201 template <typename TextureViewType>
createSwizzledCopy(const TextureViewType & texture,const vk::VkComponentMapping & swz)1202 MovePtr<typename TexViewTraits<TextureViewType>::TextureType> createSwizzledCopy(const TextureViewType &texture,
1203                                                                                  const vk::VkComponentMapping &swz)
1204 {
1205     MovePtr<typename TexViewTraits<TextureViewType>::TextureType> copy(createSkeletonClone<TextureViewType>(
1206         getSwizzleTargetFormat(texture.getLevel(0).getFormat()), texture.getLevel(0)));
1207 
1208     for (int levelNdx = 0; levelNdx < texture.getNumLevels(); ++levelNdx)
1209     {
1210         copy->allocLevel(levelNdx);
1211         swizzle(texture.getLevel(levelNdx), copy->getLevel(levelNdx), swz);
1212     }
1213 
1214     return copy;
1215 }
1216 
1217 template <>
createSwizzledCopy(const tcu::TextureCubeView & texture,const vk::VkComponentMapping & swz)1218 MovePtr<tcu::TextureCube> createSwizzledCopy(const tcu::TextureCubeView &texture, const vk::VkComponentMapping &swz)
1219 {
1220     MovePtr<tcu::TextureCube> copy(new tcu::TextureCube(
1221         getSwizzleTargetFormat(texture.getLevelFace(0, tcu::CUBEFACE_NEGATIVE_X).getFormat()), texture.getSize()));
1222 
1223     for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1224     {
1225         for (int levelNdx = 0; levelNdx < texture.getNumLevels(); ++levelNdx)
1226         {
1227             copy->allocLevel((tcu::CubeFace)faceNdx, levelNdx);
1228             swizzle(texture.getLevelFace(levelNdx, (tcu::CubeFace)faceNdx),
1229                     copy->getLevelFace(levelNdx, (tcu::CubeFace)faceNdx), swz);
1230         }
1231     }
1232 
1233     return copy;
1234 }
1235 
1236 template <typename TextureViewType>
validateResultImage(const TextureViewType & texture,const tcu::Sampler & sampler,const vk::VkComponentMapping & swz,const tcu::ConstPixelBufferAccess & texCoords,const tcu::Vec2 & lodBounds,const tcu::LookupPrecision & lookupPrecision,const tcu::Vec4 & lookupScale,const tcu::Vec4 & lookupBias,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1237 bool validateResultImage(const TextureViewType &texture, const tcu::Sampler &sampler, const vk::VkComponentMapping &swz,
1238                          const tcu::ConstPixelBufferAccess &texCoords, const tcu::Vec2 &lodBounds,
1239                          const tcu::LookupPrecision &lookupPrecision, const tcu::Vec4 &lookupScale,
1240                          const tcu::Vec4 &lookupBias, const tcu::ConstPixelBufferAccess &result,
1241                          const tcu::PixelBufferAccess &errorMask)
1242 {
1243     if (isIdentitySwizzle(swz))
1244         return validateResultImage(texture, sampler, texCoords, lodBounds, lookupPrecision, lookupScale, lookupBias,
1245                                    result, errorMask);
1246     else
1247     {
1248         // There is (currently) no way to handle swizzling inside validation loop
1249         // and thus we need to pre-swizzle the texture.
1250         UniquePtr<typename TexViewTraits<TextureViewType>::TextureType> swizzledTex(createSwizzledCopy(texture, swz));
1251 
1252         return validateResultImage(*swizzledTex, sampler, texCoords, lodBounds, lookupPrecision,
1253                                    swizzleScaleBias(lookupScale, swz, 1.0f), swizzleScaleBias(lookupBias, swz, 0.0f),
1254                                    result, errorMask);
1255     }
1256 }
1257 
resolveSubresourceRange(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource)1258 vk::VkImageSubresourceRange resolveSubresourceRange(const TestTexture &testTexture,
1259                                                     const vk::VkImageSubresourceRange &subresource)
1260 {
1261     vk::VkImageSubresourceRange resolved = subresource;
1262 
1263     if (subresource.levelCount == VK_REMAINING_MIP_LEVELS)
1264         resolved.levelCount = testTexture.getNumLevels() - subresource.baseMipLevel;
1265 
1266     if (subresource.layerCount == VK_REMAINING_ARRAY_LAYERS)
1267         resolved.layerCount = testTexture.getArraySize() - subresource.baseArrayLayer;
1268 
1269     return resolved;
1270 }
1271 
getTexture1DView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1272 MovePtr<tcu::Texture1DView> getTexture1DView(const TestTexture &testTexture,
1273                                              const vk::VkImageSubresourceRange &subresource,
1274                                              std::vector<tcu::ConstPixelBufferAccess> &levels)
1275 {
1276     DE_ASSERT(subresource.layerCount == 1);
1277 
1278     levels.resize(subresource.levelCount);
1279 
1280     for (int levelNdx = 0; levelNdx < (int)levels.size(); ++levelNdx)
1281     {
1282         const tcu::ConstPixelBufferAccess &srcLevel =
1283             testTexture.getLevel((int)subresource.baseMipLevel + levelNdx, subresource.baseArrayLayer);
1284 
1285         levels[levelNdx] = tcu::getSubregion(srcLevel, 0, 0, 0, srcLevel.getWidth(), 1, 1);
1286     }
1287 
1288     return MovePtr<tcu::Texture1DView>(new tcu::Texture1DView((int)levels.size(), &levels[0]));
1289 }
1290 
getTexture1DArrayView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1291 MovePtr<tcu::Texture1DArrayView> getTexture1DArrayView(const TestTexture &testTexture,
1292                                                        const vk::VkImageSubresourceRange &subresource,
1293                                                        std::vector<tcu::ConstPixelBufferAccess> &levels)
1294 {
1295     const TestTexture1D *tex1D           = dynamic_cast<const TestTexture1D *>(&testTexture);
1296     const TestTexture1DArray *tex1DArray = dynamic_cast<const TestTexture1DArray *>(&testTexture);
1297 
1298     DE_ASSERT(!!tex1D != !!tex1DArray);
1299     DE_ASSERT(tex1DArray || subresource.baseArrayLayer == 0);
1300 
1301     levels.resize(subresource.levelCount);
1302 
1303     for (int levelNdx = 0; levelNdx < (int)levels.size(); ++levelNdx)
1304     {
1305         const tcu::ConstPixelBufferAccess &srcLevel =
1306             tex1D ? tex1D->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx) :
1307                     tex1DArray->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx);
1308 
1309         levels[levelNdx] = tcu::getSubregion(srcLevel, 0, (int)subresource.baseArrayLayer, 0, srcLevel.getWidth(),
1310                                              (int)subresource.layerCount, 1);
1311     }
1312 
1313     return MovePtr<tcu::Texture1DArrayView>(new tcu::Texture1DArrayView((int)levels.size(), &levels[0]));
1314 }
1315 
getTexture2DView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1316 MovePtr<tcu::Texture2DView> getTexture2DView(const TestTexture &testTexture,
1317                                              const vk::VkImageSubresourceRange &subresource,
1318                                              std::vector<tcu::ConstPixelBufferAccess> &levels)
1319 {
1320     const TestTexture2D *tex2D           = dynamic_cast<const TestTexture2D *>(&testTexture);
1321     const TestTexture2DArray *tex2DArray = dynamic_cast<const TestTexture2DArray *>(&testTexture);
1322 
1323     DE_ASSERT(subresource.layerCount == 1);
1324     DE_ASSERT(!!tex2D != !!tex2DArray);
1325     DE_ASSERT(tex2DArray || subresource.baseArrayLayer == 0);
1326 
1327     levels.resize(subresource.levelCount);
1328 
1329     for (int levelNdx = 0; levelNdx < (int)levels.size(); ++levelNdx)
1330     {
1331         const tcu::ConstPixelBufferAccess &srcLevel =
1332             tex2D ? tex2D->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx) :
1333                     tex2DArray->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx);
1334 
1335         levels[levelNdx] = tcu::getSubregion(srcLevel, 0, 0, (int)subresource.baseArrayLayer, srcLevel.getWidth(),
1336                                              srcLevel.getHeight(), 1);
1337     }
1338 
1339     return MovePtr<tcu::Texture2DView>(new tcu::Texture2DView((int)levels.size(), &levels[0]));
1340 }
1341 
getTexture2DArrayView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1342 MovePtr<tcu::Texture2DArrayView> getTexture2DArrayView(const TestTexture &testTexture,
1343                                                        const vk::VkImageSubresourceRange &subresource,
1344                                                        std::vector<tcu::ConstPixelBufferAccess> &levels)
1345 {
1346     const TestTexture2D *tex2D           = dynamic_cast<const TestTexture2D *>(&testTexture);
1347     const TestTexture2DArray *tex2DArray = dynamic_cast<const TestTexture2DArray *>(&testTexture);
1348 
1349     DE_ASSERT(!!tex2D != !!tex2DArray);
1350     DE_ASSERT(tex2DArray || subresource.baseArrayLayer == 0);
1351 
1352     levels.resize(subresource.levelCount);
1353 
1354     for (int levelNdx = 0; levelNdx < (int)levels.size(); ++levelNdx)
1355     {
1356         const tcu::ConstPixelBufferAccess &srcLevel =
1357             tex2D ? tex2D->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx) :
1358                     tex2DArray->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx);
1359 
1360         levels[levelNdx] = tcu::getSubregion(srcLevel, 0, 0, (int)subresource.baseArrayLayer, srcLevel.getWidth(),
1361                                              srcLevel.getHeight(), (int)subresource.layerCount);
1362     }
1363 
1364     return MovePtr<tcu::Texture2DArrayView>(new tcu::Texture2DArrayView((int)levels.size(), &levels[0]));
1365 }
1366 
getTextureCubeView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1367 MovePtr<tcu::TextureCubeView> getTextureCubeView(const TestTexture &testTexture,
1368                                                  const vk::VkImageSubresourceRange &subresource,
1369                                                  std::vector<tcu::ConstPixelBufferAccess> &levels)
1370 {
1371     const static tcu::CubeFace s_faceMap[tcu::CUBEFACE_LAST] = {tcu::CUBEFACE_POSITIVE_X, tcu::CUBEFACE_NEGATIVE_X,
1372                                                                 tcu::CUBEFACE_POSITIVE_Y, tcu::CUBEFACE_NEGATIVE_Y,
1373                                                                 tcu::CUBEFACE_POSITIVE_Z, tcu::CUBEFACE_NEGATIVE_Z};
1374 
1375     const TestTextureCube *texCube           = dynamic_cast<const TestTextureCube *>(&testTexture);
1376     const TestTextureCubeArray *texCubeArray = dynamic_cast<const TestTextureCubeArray *>(&testTexture);
1377 
1378     DE_ASSERT(!!texCube != !!texCubeArray);
1379     DE_ASSERT(subresource.layerCount == 6);
1380     DE_ASSERT(texCubeArray || subresource.baseArrayLayer == 0);
1381 
1382     levels.resize(subresource.levelCount * tcu::CUBEFACE_LAST);
1383 
1384     for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1385     {
1386         for (int levelNdx = 0; levelNdx < (int)subresource.levelCount; ++levelNdx)
1387         {
1388             const tcu::ConstPixelBufferAccess &srcLevel =
1389                 texCubeArray ? texCubeArray->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx) :
1390                                texCube->getTexture().getLevelFace(levelNdx, s_faceMap[faceNdx]);
1391 
1392             levels[faceNdx * subresource.levelCount + levelNdx] =
1393                 tcu::getSubregion(srcLevel, 0, 0, (int)subresource.baseArrayLayer + (texCubeArray ? faceNdx : 0),
1394                                   srcLevel.getWidth(), srcLevel.getHeight(), 1);
1395         }
1396     }
1397 
1398     {
1399         const tcu::ConstPixelBufferAccess *reordered[tcu::CUBEFACE_LAST];
1400 
1401         for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1402             reordered[s_faceMap[faceNdx]] = &levels[faceNdx * subresource.levelCount];
1403 
1404         return MovePtr<tcu::TextureCubeView>(new tcu::TextureCubeView((int)subresource.levelCount, reordered));
1405     }
1406 }
1407 
getTextureCubeArrayView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1408 MovePtr<tcu::TextureCubeArrayView> getTextureCubeArrayView(const TestTexture &testTexture,
1409                                                            const vk::VkImageSubresourceRange &subresource,
1410                                                            std::vector<tcu::ConstPixelBufferAccess> &levels)
1411 {
1412     const TestTextureCubeArray *texCubeArray = dynamic_cast<const TestTextureCubeArray *>(&testTexture);
1413 
1414     DE_ASSERT(texCubeArray);
1415     DE_ASSERT(subresource.layerCount % 6 == 0);
1416 
1417     levels.resize(subresource.levelCount);
1418 
1419     for (int levelNdx = 0; levelNdx < (int)subresource.levelCount; ++levelNdx)
1420     {
1421         const tcu::ConstPixelBufferAccess &srcLevel =
1422             texCubeArray->getTexture().getLevel((int)subresource.baseMipLevel + levelNdx);
1423 
1424         levels[levelNdx] = tcu::getSubregion(srcLevel, 0, 0, (int)subresource.baseArrayLayer, srcLevel.getWidth(),
1425                                              srcLevel.getHeight(), (int)subresource.layerCount);
1426     }
1427 
1428     return MovePtr<tcu::TextureCubeArrayView>(new tcu::TextureCubeArrayView((int)levels.size(), &levels[0]));
1429 }
1430 
getTexture3DView(const TestTexture & testTexture,const vk::VkImageSubresourceRange & subresource,std::vector<tcu::ConstPixelBufferAccess> & levels)1431 MovePtr<tcu::Texture3DView> getTexture3DView(const TestTexture &testTexture,
1432                                              const vk::VkImageSubresourceRange &subresource,
1433                                              std::vector<tcu::ConstPixelBufferAccess> &levels)
1434 {
1435     DE_ASSERT(subresource.baseArrayLayer == 0 && subresource.layerCount == 1);
1436 
1437     levels.resize(subresource.levelCount);
1438 
1439     for (int levelNdx = 0; levelNdx < (int)levels.size(); ++levelNdx)
1440         levels[levelNdx] = testTexture.getLevel((int)subresource.baseMipLevel + levelNdx, subresource.baseArrayLayer);
1441 
1442     return MovePtr<tcu::Texture3DView>(new tcu::Texture3DView((int)levels.size(), &levels[0]));
1443 }
1444 
validateResultImage(const TestTexture & texture,const VkImageViewType imageViewType,const VkImageSubresourceRange & subresource,const tcu::Sampler & sampler,const vk::VkComponentMapping & componentMapping,const tcu::ConstPixelBufferAccess & coordAccess,const tcu::Vec2 & lodBounds,const tcu::LookupPrecision & lookupPrecision,const tcu::Vec4 & lookupScale,const tcu::Vec4 & lookupBias,const tcu::ConstPixelBufferAccess & resultAccess,const tcu::PixelBufferAccess & errorAccess)1445 bool validateResultImage(const TestTexture &texture, const VkImageViewType imageViewType,
1446                          const VkImageSubresourceRange &subresource, const tcu::Sampler &sampler,
1447                          const vk::VkComponentMapping &componentMapping, const tcu::ConstPixelBufferAccess &coordAccess,
1448                          const tcu::Vec2 &lodBounds, const tcu::LookupPrecision &lookupPrecision,
1449                          const tcu::Vec4 &lookupScale, const tcu::Vec4 &lookupBias,
1450                          const tcu::ConstPixelBufferAccess &resultAccess, const tcu::PixelBufferAccess &errorAccess)
1451 {
1452     std::vector<tcu::ConstPixelBufferAccess> levels;
1453 
1454     switch (imageViewType)
1455     {
1456     case VK_IMAGE_VIEW_TYPE_1D:
1457     {
1458         UniquePtr<tcu::Texture1DView> texView(getTexture1DView(texture, subresource, levels));
1459 
1460         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1461                                    lookupScale, lookupBias, resultAccess, errorAccess);
1462     }
1463 
1464     case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
1465     {
1466         UniquePtr<tcu::Texture1DArrayView> texView(getTexture1DArrayView(texture, subresource, levels));
1467 
1468         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1469                                    lookupScale, lookupBias, resultAccess, errorAccess);
1470     }
1471 
1472     case VK_IMAGE_VIEW_TYPE_2D:
1473     {
1474         UniquePtr<tcu::Texture2DView> texView(getTexture2DView(texture, subresource, levels));
1475 
1476         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1477                                    lookupScale, lookupBias, resultAccess, errorAccess);
1478     }
1479 
1480     case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
1481     {
1482         UniquePtr<tcu::Texture2DArrayView> texView(getTexture2DArrayView(texture, subresource, levels));
1483 
1484         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1485                                    lookupScale, lookupBias, resultAccess, errorAccess);
1486     }
1487 
1488     case VK_IMAGE_VIEW_TYPE_CUBE:
1489     {
1490         UniquePtr<tcu::TextureCubeView> texView(getTextureCubeView(texture, subresource, levels));
1491 
1492         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1493                                    lookupScale, lookupBias, resultAccess, errorAccess);
1494     }
1495 
1496     case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
1497     {
1498         UniquePtr<tcu::TextureCubeArrayView> texView(getTextureCubeArrayView(texture, subresource, levels));
1499 
1500         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1501                                    lookupScale, lookupBias, resultAccess, errorAccess);
1502     }
1503 
1504     case VK_IMAGE_VIEW_TYPE_3D:
1505     {
1506         UniquePtr<tcu::Texture3DView> texView(getTexture3DView(texture, subresource, levels));
1507 
1508         return validateResultImage(*texView, sampler, componentMapping, coordAccess, lodBounds, lookupPrecision,
1509                                    lookupScale, lookupBias, resultAccess, errorAccess);
1510     }
1511 
1512     default:
1513         DE_ASSERT(false);
1514         return false;
1515     }
1516 }
1517 
1518 } // namespace
1519 
verifyImage(void)1520 tcu::TestStatus ImageSamplingInstance::verifyImage(void)
1521 {
1522     const VkPhysicalDeviceLimits &limits = m_context.getDeviceProperties().limits;
1523     // \note Color buffer is used to capture coordinates - not sampled texture values
1524     const tcu::TextureFormat colorFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
1525     const tcu::TextureFormat depthStencilFormat; // Undefined depth/stencil format.
1526     const CoordinateCaptureProgram coordCaptureProgram;
1527     const rr::Program rrProgram = coordCaptureProgram.getReferenceProgram();
1528     ReferenceRenderer refRenderer(m_renderSize.x(), m_renderSize.y(), 1, colorFormat, depthStencilFormat, &rrProgram);
1529     const bool useStencilAspect = (m_subresourceRange.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT);
1530 
1531     bool compareOkAll = true;
1532 
1533     tcu::Vec4 lookupScale(1.0f);
1534     tcu::Vec4 lookupBias(0.0f);
1535 
1536     getLookupScaleBias(m_imageFormat, lookupScale, lookupBias, useStencilAspect);
1537 
1538     // Render out coordinates
1539     {
1540         const rr::RenderState renderState(refRenderer.getViewportState(),
1541                                           m_context.getDeviceProperties().limits.subPixelPrecisionBits);
1542         refRenderer.draw(renderState, rr::PRIMITIVETYPE_TRIANGLES, m_vertices);
1543     }
1544 
1545     // Verify results
1546     {
1547         const tcu::Sampler sampler = mapVkSampler(m_samplerParams);
1548         const float referenceLod =
1549             de::clamp(m_samplerParams.mipLodBias + m_samplerLod, m_samplerParams.minLod, m_samplerParams.maxLod);
1550         const float lodError = 1.0f / static_cast<float>((1u << limits.mipmapPrecisionBits) - 1u);
1551         const tcu::Vec2 lodBounds(referenceLod - lodError, referenceLod + lodError);
1552         const vk::VkImageSubresourceRange subresource = resolveSubresourceRange(*m_texture, m_subresourceRange);
1553 
1554         const tcu::ConstPixelBufferAccess coordAccess = refRenderer.getAccess();
1555         tcu::TextureLevel errorMask(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
1556                                     (int)m_renderSize.x(), (int)m_renderSize.y());
1557         const tcu::PixelBufferAccess errorAccess = errorMask.getAccess();
1558 
1559         const bool isNearestOnly =
1560             (m_samplerParams.minFilter == VK_FILTER_NEAREST && m_samplerParams.magFilter == VK_FILTER_NEAREST);
1561 
1562         tcu::LookupPrecision lookupPrecision;
1563 
1564         // Set precision requirements - very low for these tests as
1565         // the point of the test is not to validate accuracy.
1566         lookupPrecision.coordBits = tcu::IVec3(17, 17, 17);
1567         lookupPrecision.uvwBits   = tcu::IVec3(5, 5, 5);
1568         lookupPrecision.colorMask = m_componentMask;
1569         lookupPrecision.colorThreshold =
1570             tcu::computeFixedPointThreshold(max((tcu::IVec4(8, 8, 8, 8) - (isNearestOnly ? 1 : 2)), tcu::IVec4(0))) /
1571             swizzleScaleBias(lookupScale, m_componentMapping, 1.0f);
1572 
1573         if (m_imageFormat == VK_FORMAT_BC5_UNORM_BLOCK || m_imageFormat == VK_FORMAT_BC5_SNORM_BLOCK)
1574             lookupPrecision.colorThreshold = tcu::Vec4(0.06f, 0.06f, 0.06f, 0.06f);
1575         if (tcu::isSRGB(m_texture->getTextureFormat()))
1576             lookupPrecision.colorThreshold += tcu::Vec4(4.f / 255.f);
1577 
1578         de::MovePtr<TestTexture> textureCopy;
1579         TestTexture *texture = DE_NULL;
1580 
1581         if (isCombinedDepthStencilType(m_texture->getTextureFormat().type))
1582         {
1583             // Verification loop does not support reading from combined depth stencil texture levels.
1584             // Get rid of stencil component.
1585 
1586             tcu::TextureFormat::ChannelOrder channelOrder = tcu::TextureFormat::CHANNELORDER_LAST;
1587             tcu::TextureFormat::ChannelType channelType   = tcu::TextureFormat::CHANNELTYPE_LAST;
1588 
1589             if (subresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)
1590             {
1591                 channelOrder = tcu::TextureFormat::S;
1592                 channelType  = tcu::TextureFormat::UNSIGNED_INT8;
1593             }
1594             else
1595             {
1596                 channelOrder = tcu::TextureFormat::D;
1597 
1598                 switch (m_texture->getTextureFormat().type)
1599                 {
1600                 case tcu::TextureFormat::UNSIGNED_INT_16_8_8:
1601                     channelType = tcu::TextureFormat::UNORM_INT16;
1602                     break;
1603                 case tcu::TextureFormat::UNSIGNED_INT_24_8:
1604                 case tcu::TextureFormat::UNSIGNED_INT_24_8_REV:
1605                     channelType = tcu::TextureFormat::UNORM_INT24;
1606                     break;
1607                 case tcu::TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
1608                     channelType = tcu::TextureFormat::FLOAT;
1609                     break;
1610                 default:
1611                     DE_FATAL("Unhandled texture format type in switch");
1612                 }
1613             }
1614 
1615             textureCopy = m_texture->copy(tcu::TextureFormat(channelOrder, channelType));
1616             texture     = textureCopy.get();
1617         }
1618         else
1619         {
1620             texture = m_texture.get();
1621         }
1622 
1623         for (int imgNdx = 0; imgNdx < m_imageCount; ++imgNdx)
1624         {
1625             // Read back result image
1626             UniquePtr<tcu::TextureLevel> result(readColorAttachment(
1627                 m_context.getDeviceInterface(), m_context.getDevice(), m_context.getUniversalQueue(),
1628                 m_context.getUniversalQueueFamilyIndex(), m_context.getDefaultAllocator(), **m_colorImages[imgNdx],
1629                 m_colorFormat, m_renderSize));
1630             const tcu::ConstPixelBufferAccess resultAccess = result->getAccess();
1631             bool compareOk =
1632                 validateResultImage(*texture, m_imageViewType, subresource, sampler, m_componentMapping, coordAccess,
1633                                     lodBounds, lookupPrecision, lookupScale, lookupBias, resultAccess, errorAccess);
1634             if (!compareOk)
1635                 m_context.getTestContext().getLog() << tcu::TestLog::Image("Result", "Result Image", resultAccess)
1636                                                     << tcu::TestLog::Image("ErrorMask", "Error Mask", errorAccess);
1637 
1638             compareOkAll = compareOkAll && compareOk;
1639         }
1640     }
1641 
1642     if (compareOkAll)
1643         return tcu::TestStatus::pass("Result image matches reference");
1644     else
1645         return tcu::TestStatus::fail("Image mismatch");
1646 }
1647 
1648 } // namespace pipeline
1649 } // namespace vkt
1650