1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2023 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief Sparse resource operations on transfer queue tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 #include "tcuImageCompare.hpp"
46 #include "tcuTestContext.hpp"
47 #include "tcuTestLog.hpp"
48 
49 #include <string>
50 #include <vector>
51 
52 using namespace vk;
53 
54 namespace vkt
55 {
56 namespace sparse
57 {
58 namespace
59 {
60 
61 class SparseResourceTransferQueueCase : public TestCase
62 {
63 public:
64     SparseResourceTransferQueueCase(tcu::TestContext &testCtx, const std::string &name, const ImageType imageType,
65                                     const tcu::UVec3 &imageSize, const VkFormat format);
66 
67     TestInstance *createInstance(Context &context) const;
68     virtual void checkSupport(Context &context) const;
69 
70 private:
71     const ImageType m_imageType;
72     const tcu::UVec3 m_imageSize;
73     const VkFormat m_format;
74 };
75 
SparseResourceTransferQueueCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format)76 SparseResourceTransferQueueCase::SparseResourceTransferQueueCase(tcu::TestContext &testCtx, const std::string &name,
77                                                                  const ImageType imageType, const tcu::UVec3 &imageSize,
78                                                                  const VkFormat format)
79 
80     : TestCase(testCtx, name)
81     , m_imageType(imageType)
82     , m_imageSize(imageSize)
83     , m_format(format)
84 {
85 }
86 
checkSupport(Context & context) const87 void SparseResourceTransferQueueCase::checkSupport(Context &context) const
88 {
89     context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
90 
91     if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize))
92         TCU_THROW(NotSupportedError, "Image size not supported for device");
93 
94     if (formatIsR64(m_format))
95     {
96         context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
97 
98         if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
99         {
100             TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
101         }
102     }
103 }
104 
105 class SparseResourceTransferQueueInstance : public SparseResourcesBaseInstance
106 {
107 public:
108     SparseResourceTransferQueueInstance(Context &context, const ImageType imageType, const tcu::UVec3 &imageSize,
109                                         const VkFormat format);
110 
111     tcu::TestStatus iterate(void);
112 
113 private:
114     // Test params
115     const ImageType m_imageType;
116     const tcu::UVec3 m_imageSize;
117     const VkFormat m_format;
118 
119     // Copy
120     Move<VkImage> m_sparseImage;
121     std::vector<DeviceMemorySp> m_deviceMemUniquePtrVec;
122     VkImageCreateInfo m_sparseInfo;
123 };
124 
SparseResourceTransferQueueInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format)125 SparseResourceTransferQueueInstance::SparseResourceTransferQueueInstance(Context &context, const ImageType imageType,
126                                                                          const tcu::UVec3 &imageSize,
127                                                                          const VkFormat format)
128 
129     : SparseResourcesBaseInstance(context, false)
130     , m_imageType(imageType)
131     , m_imageSize(imageSize)
132     , m_format(format)
133     , m_sparseImage()
134     , m_deviceMemUniquePtrVec()
135     , m_sparseInfo()
136 {
137 }
138 
iterate(void)139 tcu::TestStatus SparseResourceTransferQueueInstance::iterate(void)
140 {
141     const InstanceInterface &instance = m_context.getInstanceInterface();
142 
143     {
144         // Create logical device supporting both sparse and compute queues
145         QueueRequirementsVec queueRequirements;
146         queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT | VK_QUEUE_GRAPHICS_BIT, 1u));
147         queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
148 
149         createDeviceSupportingQueues(queueRequirements);
150     }
151 
152     const VkPhysicalDevice physicalDevice  = getPhysicalDevice();
153     const DeviceInterface &deviceInterface = getDeviceInterface();
154     const Queue &universalQueue            = getQueue(VK_QUEUE_SPARSE_BINDING_BIT | VK_QUEUE_GRAPHICS_BIT, 0);
155     const Queue &transferQueue             = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
156 
157     const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format);
158 
159     // Filling sparse image info
160     {
161         m_sparseInfo.sType         = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;                  //VkStructureType sType;
162         m_sparseInfo.pNext         = DE_NULL;                                              //const void* pNext;
163         m_sparseInfo.flags         = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;                   //VkImageCreateFlags flags;
164         m_sparseInfo.imageType     = mapImageType(m_imageType);                            //VkImageType imageType;
165         m_sparseInfo.format        = m_format;                                             //VkFormat format;
166         m_sparseInfo.extent        = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); //VkExtent3D extent;
167         m_sparseInfo.arrayLayers   = getNumLayers(m_imageType, m_imageSize);               //uint32_t arrayLayers;
168         m_sparseInfo.samples       = VK_SAMPLE_COUNT_1_BIT;     //VkSampleCountFlagBits samples;
169         m_sparseInfo.tiling        = VK_IMAGE_TILING_OPTIMAL;   //VkImageTiling tiling;
170         m_sparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //VkImageLayout initialLayout;
171         m_sparseInfo.usage =
172             VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, //VkImageUsageFlags usage;
173             m_sparseInfo.sharingMode       = VK_SHARING_MODE_EXCLUSIVE;        //VkSharingMode sharingMode;
174         m_sparseInfo.queueFamilyIndexCount = 0u;                               //uint32_t queueFamilyIndexCount;
175         m_sparseInfo.pQueueFamilyIndices   = DE_NULL;                          //const uint32_t* pQueueFamilyIndices;
176 
177         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
178         {
179             m_sparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
180         }
181 
182         VkImageFormatProperties imageFormatProperties;
183         if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, m_sparseInfo.format, m_sparseInfo.imageType,
184                                                             m_sparseInfo.tiling, m_sparseInfo.usage, m_sparseInfo.flags,
185                                                             &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
186         {
187             TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations");
188         }
189 
190         m_sparseInfo.mipLevels =
191             getMipmapCount(m_format, formatDescription, imageFormatProperties, m_sparseInfo.extent);
192     }
193 
194     // Creating and binding sparse image
195     m_sparseImage = createImage(deviceInterface, getDevice(), &m_sparseInfo);
196     const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
197     const VkMemoryRequirements imageMemoryRequirements =
198         getImageMemoryRequirements(deviceInterface, getDevice(), *m_sparseImage);
199     if (imageMemoryRequirements.size >
200         getPhysicalDeviceProperties(instance, getPhysicalDevice()).limits.sparseAddressSpaceSize)
201         TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
202 
203     DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
204 
205     {
206         std::vector<VkSparseMemoryBind> sparseMemoryBinds;
207         const uint32_t numSparseBinds =
208             static_cast<uint32_t>(imageMemoryRequirements.size / imageMemoryRequirements.alignment);
209         const uint32_t memoryType =
210             findMatchingMemoryType(instance, getPhysicalDevice(), imageMemoryRequirements, MemoryRequirement::Any);
211 
212         if (memoryType == NO_MATCH_FOUND)
213             return tcu::TestStatus::fail("No matching memory type found");
214 
215         for (uint32_t sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
216         {
217             const VkSparseMemoryBind sparseMemoryBind =
218                 makeSparseMemoryBind(deviceInterface, getDevice(), imageMemoryRequirements.alignment, memoryType,
219                                      imageMemoryRequirements.alignment * sparseBindNdx);
220 
221             m_deviceMemUniquePtrVec.push_back(
222                 makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory),
223                                                      Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
224 
225             sparseMemoryBinds.push_back(sparseMemoryBind);
226         }
227 
228         const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(
229             *m_sparseImage, static_cast<uint32_t>(sparseMemoryBinds.size()), sparseMemoryBinds.data());
230 
231         const VkBindSparseInfo bindSparseInfo = {
232             VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
233             DE_NULL,                            //const void* pNext;
234             0u,                                 //uint32_t waitSemaphoreCount;
235             DE_NULL,                            //const VkSemaphore* pWaitSemaphores;
236             0u,                                 //uint32_t bufferBindCount;
237             DE_NULL,                            //const VkSparseBufferMemoryBindInfo* pBufferBinds;
238             1u,                                 //uint32_t imageOpaqueBindCount;
239             &opaqueBindInfo,                    //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
240             0u,                                 //uint32_t imageBindCount;
241             DE_NULL,                            //const VkSparseImageMemoryBindInfo* pImageBinds;
242             1u,                                 //uint32_t signalSemaphoreCount;
243             &imageMemoryBindSemaphore.get()     //const VkSemaphore* pSignalSemaphores;
244         };
245 
246         // Submit sparse bind commands for execution
247         VK_CHECK(deviceInterface.queueBindSparse(universalQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
248     }
249 
250     // Uploading
251     uint32_t imageSizeInBytes = 0;
252 
253     for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
254         for (uint32_t mipmapNdx = 0; mipmapNdx < m_sparseInfo.mipLevels; ++mipmapNdx)
255             imageSizeInBytes +=
256                 getImageMipLevelSizeInBytes(m_sparseInfo.extent, m_sparseInfo.arrayLayers, formatDescription, planeNdx,
257                                             mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
258 
259     std::vector<VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * m_sparseInfo.mipLevels);
260     {
261         uint32_t bufferOffset = 0;
262         for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
263         {
264             const VkImageAspectFlags aspect =
265                 (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
266 
267             for (uint32_t mipmapNdx = 0; mipmapNdx < m_sparseInfo.mipLevels; ++mipmapNdx)
268             {
269                 bufferImageCopy[planeNdx * m_sparseInfo.mipLevels + mipmapNdx] = {
270                     bufferOffset, // VkDeviceSize bufferOffset;
271                     0u,           // uint32_t bufferRowLength;
272                     0u,           // uint32_t bufferImageHeight;
273                     makeImageSubresourceLayers(aspect, mipmapNdx, 0u,
274                                                m_sparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource;
275                     makeOffset3D(0, 0, 0),                                // VkOffset3D imageOffset;
276                     vk::getPlaneExtent(formatDescription, m_sparseInfo.extent, planeNdx,
277                                        mipmapNdx) // VkExtent3D imageExtent;
278                 };
279                 bufferOffset +=
280                     getImageMipLevelSizeInBytes(m_sparseInfo.extent, m_sparseInfo.arrayLayers, formatDescription,
281                                                 planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
282             }
283         }
284     }
285 
286     // Create command buffer for compute and transfer operations
287     const Unique<VkCommandPool> commandPool(
288         makeCommandPool(deviceInterface, getDevice(), transferQueue.queueFamilyIndex));
289     const Unique<VkCommandBuffer> commandBuffer(
290         allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
291 
292     // Start recording commands
293     beginCommandBuffer(deviceInterface, *commandBuffer);
294 
295     const VkBufferCreateInfo inputBufferCreateInfo =
296         makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
297     const Unique<VkBuffer> inputBuffer(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
298     const de::UniquePtr<Allocation> inputBufferAlloc(
299         bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
300 
301     std::vector<uint8_t> referenceData(imageSizeInBytes);
302     for (uint32_t valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
303     {
304         referenceData[valueNdx] = static_cast<uint8_t>((valueNdx % imageMemoryRequirements.alignment) + 1u);
305     }
306 
307     {
308         deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
309         flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
310 
311         const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier(
312             VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *inputBuffer, 0u, imageSizeInBytes);
313         deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
314                                            0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
315     }
316 
317     {
318         std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
319 
320         for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
321         {
322             const VkImageAspectFlags aspect =
323                 (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
324 
325             imageSparseTransferDstBarriers.push_back(makeImageMemoryBarrier(
326                 0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
327                 *m_sparseImage,
328                 makeImageSubresourceRange(aspect, 0u, m_sparseInfo.mipLevels, 0u, m_sparseInfo.arrayLayers),
329                 universalQueue.queueFamilyIndex != transferQueue.queueFamilyIndex ? universalQueue.queueFamilyIndex :
330                                                                                     VK_QUEUE_FAMILY_IGNORED,
331                 universalQueue.queueFamilyIndex != transferQueue.queueFamilyIndex ? transferQueue.queueFamilyIndex :
332                                                                                     VK_QUEUE_FAMILY_IGNORED));
333         }
334         deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
335                                            VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL,
336                                            static_cast<uint32_t>(imageSparseTransferDstBarriers.size()),
337                                            imageSparseTransferDstBarriers.data());
338     }
339 
340     deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *m_sparseImage,
341                                          VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
342                                          static_cast<uint32_t>(bufferImageCopy.size()), bufferImageCopy.data());
343 
344     const VkBufferCreateInfo outputBufferCreateInfo =
345         makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
346     const Unique<VkBuffer> outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
347     const de::UniquePtr<Allocation> outputBufferAlloc(
348         bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
349     // Reading back from sparse image
350     {
351         std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
352 
353         for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
354         {
355             const VkImageAspectFlags aspect =
356                 (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
357 
358             imageSparseTransferSrcBarriers.push_back(makeImageMemoryBarrier(
359                 VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
360                 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *m_sparseImage,
361                 makeImageSubresourceRange(aspect, 0u, m_sparseInfo.mipLevels, 0u, m_sparseInfo.arrayLayers)));
362         }
363 
364         deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
365                                            VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL,
366                                            static_cast<uint32_t>(imageSparseTransferSrcBarriers.size()),
367                                            imageSparseTransferSrcBarriers.data());
368         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *m_sparseImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
369                                              *outputBuffer, static_cast<uint32_t>(bufferImageCopy.size()),
370                                              bufferImageCopy.data());
371     }
372 
373     {
374         const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier(
375             VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0u, imageSizeInBytes);
376 
377         deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT,
378                                            0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
379     }
380 
381     // End recording commands
382     endCommandBuffer(deviceInterface, *commandBuffer);
383 
384     const VkPipelineStageFlags stageBits[] = {VK_PIPELINE_STAGE_TRANSFER_BIT};
385 
386     // Submit commands for execution and wait for completion
387     submitCommandsAndWait(deviceInterface, getDevice(), transferQueue.queueHandle, *commandBuffer, 1u,
388                           &imageMemoryBindSemaphore.get(), stageBits, 0, DE_NULL);
389 
390     // Retrieve data from buffer to host memory
391     invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
392 
393     // Wait for sparse queue to become idle
394     deviceInterface.queueWaitIdle(universalQueue.queueHandle);
395 
396     const uint8_t *outputData = static_cast<const uint8_t *>(outputBufferAlloc->getHostPtr());
397     bool ignoreLsb6Bits       = areLsb6BitsDontCare(m_sparseInfo.format);
398     bool ignoreLsb4Bits       = areLsb4BitsDontCare(m_sparseInfo.format);
399 
400     for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
401     {
402         for (uint32_t mipmapNdx = 0; mipmapNdx < m_sparseInfo.mipLevels; ++mipmapNdx)
403         {
404             const uint32_t mipLevelSizeInBytes = getImageMipLevelSizeInBytes(
405                 m_sparseInfo.extent, m_sparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
406             const uint32_t bufferOffset =
407                 static_cast<uint32_t>(bufferImageCopy[planeNdx * m_sparseInfo.mipLevels + mipmapNdx].bufferOffset);
408 
409             // Validate results
410             for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++)
411             {
412                 const uint8_t res = *(outputData + bufferOffset + byteNdx);
413                 const uint8_t ref = referenceData[bufferOffset + byteNdx];
414 
415                 uint8_t mask = 0xFF;
416 
417                 if (!(byteNdx & 0x01) && (ignoreLsb6Bits))
418                     mask = 0xC0;
419                 else if (!(byteNdx & 0x01) && (ignoreLsb4Bits))
420                     mask = 0xF0;
421 
422                 if ((res & mask) != (ref & mask))
423                 {
424                     return tcu::TestStatus::fail("Failed");
425                 }
426             }
427         }
428     }
429 
430     return tcu::TestStatus::pass("Passed");
431 }
432 
createInstance(Context & context) const433 TestInstance *SparseResourceTransferQueueCase::createInstance(Context &context) const
434 {
435     return new SparseResourceTransferQueueInstance(context, m_imageType, m_imageSize, m_format);
436 }
437 
438 } // namespace
439 
createTransferQueueTests(tcu::TestContext & testCtx)440 tcu::TestCaseGroup *createTransferQueueTests(tcu::TestContext &testCtx)
441 {
442     const std::vector<TestImageParameters> imageParameters{
443         {IMAGE_TYPE_1D,
444          {tcu::UVec3(512u, 1u, 1u), tcu::UVec3(1024u, 1u, 1u), tcu::UVec3(11u, 1u, 1u)},
445          getTestFormats(IMAGE_TYPE_1D)},
446         {IMAGE_TYPE_1D_ARRAY,
447          {tcu::UVec3(512u, 1u, 64u), tcu::UVec3(1024u, 1u, 8u), tcu::UVec3(11u, 1u, 3u)},
448          getTestFormats(IMAGE_TYPE_1D_ARRAY)},
449         {IMAGE_TYPE_2D,
450          {tcu::UVec3(512u, 256u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u)},
451          getTestFormats(IMAGE_TYPE_2D)},
452         {IMAGE_TYPE_2D_ARRAY,
453          {tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u)},
454          getTestFormats(IMAGE_TYPE_2D_ARRAY)},
455         {IMAGE_TYPE_3D,
456          {tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u)},
457          getTestFormats(IMAGE_TYPE_3D)},
458         {IMAGE_TYPE_CUBE,
459          {tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u)},
460          getTestFormats(IMAGE_TYPE_CUBE)},
461         {IMAGE_TYPE_CUBE_ARRAY,
462          {tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u)},
463          getTestFormats(IMAGE_TYPE_CUBE_ARRAY)}};
464 
465     // Sparse resources on transfer queue operation tests.
466     de::MovePtr<tcu::TestCaseGroup> transferGroup(new tcu::TestCaseGroup(testCtx, "transfer_queue"));
467 
468     for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
469     {
470         const ImageType imageType = imageParameters[imageTypeNdx].imageType;
471         de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(
472             new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
473 
474         for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
475         {
476             VkFormat format               = imageParameters[imageTypeNdx].formats[formatNdx].format;
477             tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format);
478             de::MovePtr<tcu::TestCaseGroup> formatGroup(
479                 new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
480 
481             for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size();
482                  ++imageSizeNdx)
483             {
484                 const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
485 
486                 // skip test for images with odd sizes for some YCbCr formats
487                 if ((imageSize.x() % imageSizeAlignment.x()) != 0)
488                     continue;
489                 if ((imageSize.y() % imageSizeAlignment.y()) != 0)
490                     continue;
491 
492                 std::ostringstream stream;
493                 stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
494 
495                 formatGroup->addChild(
496                     new SparseResourceTransferQueueCase(testCtx, stream.str(), imageType, imageSize, format));
497             }
498             imageTypeGroup->addChild(formatGroup.release());
499         }
500         transferGroup->addChild(imageTypeGroup.release());
501     }
502 
503     return transferGroup.release();
504 }
505 
506 } // namespace sparse
507 } // namespace vkt
508