xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/arm_gemm/gemm_hybrid_quantized_inline.hpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2019,2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #pragma once
25 
26 #include <assert.h>
27 
28 #include <algorithm>
29 
30 #include "arm_gemm.hpp"
31 #include "ndrange.hpp"
32 #include "utils.hpp"
33 
34 #include "mergeresults.hpp"
35 #include "transform.hpp"
36 
37 #ifdef CYCLE_PROFILING
38 #include "profiler.hpp"
39 #endif
40 
41 namespace arm_gemm {
42 
43 // Implementation of the GemmCommon abstract class.
44 template<typename strategy, typename To, typename Tr>
45 class GemmHybridQuantizedInline : public GemmCommon<To, Tr> {
46     typedef typename strategy::operand_type Toi;
47     typedef typename strategy::result_type Tri;
48 
49     /* const properties set by constructor */
50     const CPUInfo * const _ci;
51 
52     const unsigned int _Msize;
53     const unsigned int _Nsize;
54     const unsigned int _Ksize;
55 
56     const unsigned int _nbatches;
57     const unsigned int _nmulti;
58 
59     /* Blocking info */
60     const unsigned int _k_block;
61     const unsigned int _n_block;
62     const unsigned int _Mround;
63 
64     /* Pretransposed buffer. */
65     const Toi *_B_transposed=nullptr;
66 
67     const NDRange<4> _window_range;
68 
69     Requantize32  _qp;
70     int32_t *col_bias = nullptr;
71 
72     void *working_space = nullptr;
73 
74     unsigned int _nthreads;
75 
get_col_sum_size() const76     unsigned int get_col_sum_size() const {
77         return _Nsize * _nmulti * sizeof(int32_t);
78     }
79 
compute_k_block(const GemmArgs & args)80     static unsigned int compute_k_block(const GemmArgs &args) {
81         // We don't support K blocks as we only temporarily store 32 bit results.
82         return args._Ksize;
83 
84         if (args._cfg && args._cfg->inner_block_size) {
85             return args._cfg->inner_block_size;
86         }
87 
88         const unsigned int L1_size = args._ci->get_L1_cache_size();
89 
90         // k_block: Find out how much of the larger array can be loaded into half the cache.
91         // This should account for associative caches.
92         unsigned int k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
93 
94         // Needs to be (at least a single) multiple of the K unroll level.
95         k_block /= strategy::k_unroll();
96         k_block = std::max(k_block, 1U) * strategy::k_unroll();
97 
98         // Now tune to presented problem size; this is how many blocks we need.
99         unsigned int numk_blocks = iceildiv(args._Ksize, k_block);
100 
101         // So divide the space equally into that many blocks.
102         k_block = iceildiv(args._Ksize, numk_blocks);
103 
104         // And round UP to the K unroll level required.
105         k_block = roundup(k_block, strategy::k_unroll());
106 
107         return k_block;
108     }
109 
compute_n_block(const GemmArgs & args)110     static unsigned int compute_n_block(const GemmArgs &args) {
111         if (args._cfg && args._cfg->outer_block_size) {
112             return args._cfg->outer_block_size;
113         }
114 
115         const unsigned int k_block = compute_k_block(args);
116         const unsigned int L2_size = args._ci->get_L2_cache_size();
117 
118         // n_block: Work out how many rows (of length k_block) will fit in the L2
119         // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
120         unsigned int n_block = (((L2_size * 9) / 10) - (k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
121                                  (sizeof(Toi) * k_block);
122 
123         // Needs to be (at least a single) multiple of the kernel output width.
124         n_block /= strategy::out_width();
125         n_block = std::max(n_block, 1U) * strategy::out_width();
126 
127         // And tune to the presented problem size.
128         unsigned int numblocks = iceildiv(args._Nsize, n_block);
129         n_block = iceildiv(args._Nsize, numblocks);
130         n_block = roundup(n_block, strategy::out_width());
131 
132         return n_block;
133     }
134 
135 public:
136     GemmHybridQuantizedInline(GemmHybridQuantizedInline &) = delete;
137     GemmHybridQuantizedInline & operator= (GemmHybridQuantizedInline &) = delete;
138 
139     /* Constructor */
GemmHybridQuantizedInline(const GemmArgs & args,const Requantize32 & qp)140     GemmHybridQuantizedInline(const GemmArgs &args, const Requantize32 &qp)
141               : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize),
142                 _nbatches(args._nbatches), _nmulti(args._nmulti),
143                 _k_block(compute_k_block(args)), _n_block(compute_n_block(args)),
144                 _Mround(roundup(args._Msize, strategy::out_height())),
145                 _window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti),
146                 _qp (qp), _nthreads(args._maxthreads) { }
147 
148     // Interface implementation - Compulsory functions
get_window_size() const149     ndrange_t get_window_size() const override {
150         return { _window_range.total_size() };
151     }
152 
153     // This kernel can always be dynamically scheduled.
supports_dynamic_scheduling() const154     bool supports_dynamic_scheduling() const override {
155         return true;
156     }
157 
158     // Execute
execute(const ndcoord_t & work_range,const ndcoord_t &,int)159     void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override {
160 #ifdef CYCLE_PROFILING
161         profiler prof;
162 #endif
163         strategy strat(_ci);
164 
165         /* Make sure we've been set up correctly. */
166         assert(_B_transposed);
167         static_assert(std::is_same<To, Toi>::value, "gemm_native: Operand types must be the same.");
168 
169         /* For now, each work item implies all the K for a given output
170          * pixel (so we don't need to synchronize access to the output
171          * array).  So separate the loop over K blocks here.  */
172         for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
173             unsigned int kmax   = std::min(k0 + _k_block, _Ksize);
174             unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll());
175 
176             auto p = _window_range.iterator(work_range.get_position(0), work_range.get_position_end(0));
177 
178             if (p.done()) {
179                 return;
180             }
181 
182             do {
183                 const unsigned int m_start = p.dim(0) * strategy::out_height();
184                 const unsigned int m_end   = std::min(p.dim0_max() * strategy::out_height(), _Msize);
185                 const unsigned int batch   = p.dim(1);
186                 const unsigned int n0      = p.dim(2) * _n_block;
187                 const unsigned int nmax    = std::min(n0 + _n_block, _Nsize);
188                 const unsigned int multi   = p.dim(3);
189 
190                 const Toi *b_panel = _B_transposed +
191                                      (multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) +
192                                      (k0 * roundup(_Nsize, strategy::out_width())) +
193                                      (n0 * kern_k);
194 
195                 {
196 #ifdef CYCLE_PROFILING
197                     auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width()));
198 #endif
199                     strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda,
200                                  b_panel,
201                                  this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc,
202                                  (m_end - m_start), (nmax - n0), kmax - k0,
203                                  col_bias + (multi * _Nsize) + n0, _qp);
204                 }
205             } while (p.next_dim1());
206         }
207     }
208 
209     // Interface implementation - pretransposed
B_is_pretransposed() const210     bool B_is_pretransposed() const override {
211         return true;
212     }
213 
B_pretranspose_required() const214     bool B_pretranspose_required() const override {
215         return (_B_transposed==nullptr);
216     }
217 
get_B_pretransposed_array_size() const218     size_t get_B_pretransposed_array_size() const override {
219         return get_col_sum_size() + (roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi));
220     }
221 
requantize_bias(void * in_buffer,const To * B,const int ldb,const int B_multi_stride)222     void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
223         col_bias = reinterpret_cast<int32_t *>(in_buffer);
224 
225         for (unsigned int i=0; i<_nmulti; i++) {
226             compute_col_sums(_qp, _Nsize, _Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _Nsize),  _Ksize, i, 0);
227         }
228     }
229 
pretranspose_B_array(void * in_buffer,const To * B,const int ldb,const int B_multi_stride)230     void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
231         requantize_bias(in_buffer, B, ldb, B_multi_stride);
232 
233         uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
234         Toi *buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
235         _B_transposed = buffer;
236         strategy strat(_ci);
237 
238         for (unsigned int multi=0; multi<_nmulti; multi++) {
239             for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) {
240                 const unsigned int kmax = std::min(k0 + _k_block, _Ksize);
241                 const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll());
242 
243                 for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) {
244                     const unsigned int xmax = std::min(x0+_n_block, _Nsize);
245 
246                     const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size;
247 
248                     strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb,
249                                                x0, xmax, k0, kmax);
250 
251                     buffer += size;
252                 }
253             }
254         }
255     }
256 
set_pretransposed_B_data(void * in_buffer)257     void set_pretransposed_B_data(void *in_buffer) override {
258         uintptr_t buffer_int = reinterpret_cast<uintptr_t>(in_buffer);
259         _B_transposed = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
260         col_bias = reinterpret_cast<int32_t *>(in_buffer);
261     }
262 
set_quantized_bias(const int32_t * bias,size_t bias_multi_stride)263     void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override {
264         _qp.bias = bias;
265         _qp.bias_multi_stride = bias_multi_stride;
266     }
267 };
268 
269 } // namespace arm_gemm
270