1<!--{ 2 "Title": "The Go Programming Language Specification", 3 "Subtitle": "Version of Oct 15, 2021", 4 "Path": "/ref/spec" 5}--> 6 7<h2 id="Introduction">Introduction</h2> 8 9<p> 10This is the reference manual for the Go programming language as it was for 11language version 1.17, in October 2021, before the introduction of generics. 12It is provided for historical interest. 13The current reference manual can be found <a href="/doc/go_spec.html">here</a>. 14For more information and other documents, see <a href="/">go.dev</a>. 15</p> 16 17<p> 18Go is a general-purpose language designed with systems programming 19in mind. It is strongly typed and garbage-collected and has explicit 20support for concurrent programming. Programs are constructed from 21<i>packages</i>, whose properties allow efficient management of 22dependencies. 23</p> 24 25<p> 26The grammar is compact and simple to parse, allowing for easy analysis 27by automatic tools such as integrated development environments. 28</p> 29 30<h2 id="Notation">Notation</h2> 31<p> 32The syntax is specified using Extended Backus-Naur Form (EBNF): 33</p> 34 35<pre class="grammar"> 36Production = production_name "=" [ Expression ] "." . 37Expression = Alternative { "|" Alternative } . 38Alternative = Term { Term } . 39Term = production_name | token [ "…" token ] | Group | Option | Repetition . 40Group = "(" Expression ")" . 41Option = "[" Expression "]" . 42Repetition = "{" Expression "}" . 43</pre> 44 45<p> 46Productions are expressions constructed from terms and the following 47operators, in increasing precedence: 48</p> 49<pre class="grammar"> 50| alternation 51() grouping 52[] option (0 or 1 times) 53{} repetition (0 to n times) 54</pre> 55 56<p> 57Lower-case production names are used to identify lexical tokens. 58Non-terminals are in CamelCase. Lexical tokens are enclosed in 59double quotes <code>""</code> or back quotes <code>``</code>. 60</p> 61 62<p> 63The form <code>a … b</code> represents the set of characters from 64<code>a</code> through <code>b</code> as alternatives. The horizontal 65ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various 66enumerations or code snippets that are not further specified. The character <code>…</code> 67(as opposed to the three characters <code>...</code>) is not a token of the Go 68language. 69</p> 70 71<h2 id="Source_code_representation">Source code representation</h2> 72 73<p> 74Source code is Unicode text encoded in 75<a href="https://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not 76canonicalized, so a single accented code point is distinct from the 77same character constructed from combining an accent and a letter; 78those are treated as two code points. For simplicity, this document 79will use the unqualified term <i>character</i> to refer to a Unicode code point 80in the source text. 81</p> 82<p> 83Each code point is distinct; for instance, upper and lower case letters 84are different characters. 85</p> 86<p> 87Implementation restriction: For compatibility with other tools, a 88compiler may disallow the NUL character (U+0000) in the source text. 89</p> 90<p> 91Implementation restriction: For compatibility with other tools, a 92compiler may ignore a UTF-8-encoded byte order mark 93(U+FEFF) if it is the first Unicode code point in the source text. 94A byte order mark may be disallowed anywhere else in the source. 95</p> 96 97<h3 id="Characters">Characters</h3> 98 99<p> 100The following terms are used to denote specific Unicode character classes: 101</p> 102<pre class="ebnf"> 103newline = /* the Unicode code point U+000A */ . 104unicode_char = /* an arbitrary Unicode code point except newline */ . 105unicode_letter = /* a Unicode code point classified as "Letter" */ . 106unicode_digit = /* a Unicode code point classified as "Number, decimal digit" */ . 107</pre> 108 109<p> 110In <a href="https://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>, 111Section 4.5 "General Category" defines a set of character categories. 112Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo 113as Unicode letters, and those in the Number category Nd as Unicode digits. 114</p> 115 116<h3 id="Letters_and_digits">Letters and digits</h3> 117 118<p> 119The underscore character <code>_</code> (U+005F) is considered a letter. 120</p> 121<pre class="ebnf"> 122letter = unicode_letter | "_" . 123decimal_digit = "0" … "9" . 124binary_digit = "0" | "1" . 125octal_digit = "0" … "7" . 126hex_digit = "0" … "9" | "A" … "F" | "a" … "f" . 127</pre> 128 129<h2 id="Lexical_elements">Lexical elements</h2> 130 131<h3 id="Comments">Comments</h3> 132 133<p> 134Comments serve as program documentation. There are two forms: 135</p> 136 137<ol> 138<li> 139<i>Line comments</i> start with the character sequence <code>//</code> 140and stop at the end of the line. 141</li> 142<li> 143<i>General comments</i> start with the character sequence <code>/*</code> 144and stop with the first subsequent character sequence <code>*/</code>. 145</li> 146</ol> 147 148<p> 149A comment cannot start inside a <a href="#Rune_literals">rune</a> or 150<a href="#String_literals">string literal</a>, or inside a comment. 151A general comment containing no newlines acts like a space. 152Any other comment acts like a newline. 153</p> 154 155<h3 id="Tokens">Tokens</h3> 156 157<p> 158Tokens form the vocabulary of the Go language. 159There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators 160and punctuation</i>, and <i>literals</i>. <i>White space</i>, formed from 161spaces (U+0020), horizontal tabs (U+0009), 162carriage returns (U+000D), and newlines (U+000A), 163is ignored except as it separates tokens 164that would otherwise combine into a single token. Also, a newline or end of file 165may trigger the insertion of a <a href="#Semicolons">semicolon</a>. 166While breaking the input into tokens, 167the next token is the longest sequence of characters that form a 168valid token. 169</p> 170 171<h3 id="Semicolons">Semicolons</h3> 172 173<p> 174The formal grammar uses semicolons <code>";"</code> as terminators in 175a number of productions. Go programs may omit most of these semicolons 176using the following two rules: 177</p> 178 179<ol> 180<li> 181When the input is broken into tokens, a semicolon is automatically inserted 182into the token stream immediately after a line's final token if that token is 183<ul> 184 <li>an 185 <a href="#Identifiers">identifier</a> 186 </li> 187 188 <li>an 189 <a href="#Integer_literals">integer</a>, 190 <a href="#Floating-point_literals">floating-point</a>, 191 <a href="#Imaginary_literals">imaginary</a>, 192 <a href="#Rune_literals">rune</a>, or 193 <a href="#String_literals">string</a> literal 194 </li> 195 196 <li>one of the <a href="#Keywords">keywords</a> 197 <code>break</code>, 198 <code>continue</code>, 199 <code>fallthrough</code>, or 200 <code>return</code> 201 </li> 202 203 <li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a> 204 <code>++</code>, 205 <code>--</code>, 206 <code>)</code>, 207 <code>]</code>, or 208 <code>}</code> 209 </li> 210</ul> 211</li> 212 213<li> 214To allow complex statements to occupy a single line, a semicolon 215may be omitted before a closing <code>")"</code> or <code>"}"</code>. 216</li> 217</ol> 218 219<p> 220To reflect idiomatic use, code examples in this document elide semicolons 221using these rules. 222</p> 223 224 225<h3 id="Identifiers">Identifiers</h3> 226 227<p> 228Identifiers name program entities such as variables and types. 229An identifier is a sequence of one or more letters and digits. 230The first character in an identifier must be a letter. 231</p> 232<pre class="ebnf"> 233identifier = letter { letter | unicode_digit } . 234</pre> 235<pre> 236a 237_x9 238ThisVariableIsExported 239αβ 240</pre> 241 242<p> 243Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. 244</p> 245 246 247<h3 id="Keywords">Keywords</h3> 248 249<p> 250The following keywords are reserved and may not be used as identifiers. 251</p> 252<pre class="grammar"> 253break default func interface select 254case defer go map struct 255chan else goto package switch 256const fallthrough if range type 257continue for import return var 258</pre> 259 260<h3 id="Operators_and_punctuation">Operators and punctuation</h3> 261 262<p> 263The following character sequences represent <a href="#Operators">operators</a> 264(including <a href="#Assignments">assignment operators</a>) and punctuation: 265</p> 266<pre class="grammar"> 267+ & += &= && == != ( ) 268- | -= |= || < <= [ ] 269* ^ *= ^= <- > >= { } 270/ << /= <<= ++ = := , ; 271% >> %= >>= -- ! ... . : 272 &^ &^= 273</pre> 274 275<h3 id="Integer_literals">Integer literals</h3> 276 277<p> 278An integer literal is a sequence of digits representing an 279<a href="#Constants">integer constant</a>. 280An optional prefix sets a non-decimal base: <code>0b</code> or <code>0B</code> 281for binary, <code>0</code>, <code>0o</code>, or <code>0O</code> for octal, 282and <code>0x</code> or <code>0X</code> for hexadecimal. 283A single <code>0</code> is considered a decimal zero. 284In hexadecimal literals, letters <code>a</code> through <code>f</code> 285and <code>A</code> through <code>F</code> represent values 10 through 15. 286</p> 287 288<p> 289For readability, an underscore character <code>_</code> may appear after 290a base prefix or between successive digits; such underscores do not change 291the literal's value. 292</p> 293<pre class="ebnf"> 294int_lit = decimal_lit | binary_lit | octal_lit | hex_lit . 295decimal_lit = "0" | ( "1" … "9" ) [ [ "_" ] decimal_digits ] . 296binary_lit = "0" ( "b" | "B" ) [ "_" ] binary_digits . 297octal_lit = "0" [ "o" | "O" ] [ "_" ] octal_digits . 298hex_lit = "0" ( "x" | "X" ) [ "_" ] hex_digits . 299 300decimal_digits = decimal_digit { [ "_" ] decimal_digit } . 301binary_digits = binary_digit { [ "_" ] binary_digit } . 302octal_digits = octal_digit { [ "_" ] octal_digit } . 303hex_digits = hex_digit { [ "_" ] hex_digit } . 304</pre> 305 306<pre> 30742 3084_2 3090600 3100_600 3110o600 3120O600 // second character is capital letter 'O' 3130xBadFace 3140xBad_Face 3150x_67_7a_2f_cc_40_c6 316170141183460469231731687303715884105727 317170_141183_460469_231731_687303_715884_105727 318 319_42 // an identifier, not an integer literal 32042_ // invalid: _ must separate successive digits 3214__2 // invalid: only one _ at a time 3220_xBadFace // invalid: _ must separate successive digits 323</pre> 324 325 326<h3 id="Floating-point_literals">Floating-point literals</h3> 327 328<p> 329A floating-point literal is a decimal or hexadecimal representation of a 330<a href="#Constants">floating-point constant</a>. 331</p> 332 333<p> 334A decimal floating-point literal consists of an integer part (decimal digits), 335a decimal point, a fractional part (decimal digits), and an exponent part 336(<code>e</code> or <code>E</code> followed by an optional sign and decimal digits). 337One of the integer part or the fractional part may be elided; one of the decimal point 338or the exponent part may be elided. 339An exponent value exp scales the mantissa (integer and fractional part) by 10<sup>exp</sup>. 340</p> 341 342<p> 343A hexadecimal floating-point literal consists of a <code>0x</code> or <code>0X</code> 344prefix, an integer part (hexadecimal digits), a radix point, a fractional part (hexadecimal digits), 345and an exponent part (<code>p</code> or <code>P</code> followed by an optional sign and decimal digits). 346One of the integer part or the fractional part may be elided; the radix point may be elided as well, 347but the exponent part is required. (This syntax matches the one given in IEEE 754-2008 §5.12.3.) 348An exponent value exp scales the mantissa (integer and fractional part) by 2<sup>exp</sup>. 349</p> 350 351<p> 352For readability, an underscore character <code>_</code> may appear after 353a base prefix or between successive digits; such underscores do not change 354the literal value. 355</p> 356 357<pre class="ebnf"> 358float_lit = decimal_float_lit | hex_float_lit . 359 360decimal_float_lit = decimal_digits "." [ decimal_digits ] [ decimal_exponent ] | 361 decimal_digits decimal_exponent | 362 "." decimal_digits [ decimal_exponent ] . 363decimal_exponent = ( "e" | "E" ) [ "+" | "-" ] decimal_digits . 364 365hex_float_lit = "0" ( "x" | "X" ) hex_mantissa hex_exponent . 366hex_mantissa = [ "_" ] hex_digits "." [ hex_digits ] | 367 [ "_" ] hex_digits | 368 "." hex_digits . 369hex_exponent = ( "p" | "P" ) [ "+" | "-" ] decimal_digits . 370</pre> 371 372<pre> 3730. 37472.40 375072.40 // == 72.40 3762.71828 3771.e+0 3786.67428e-11 3791E6 380.25 381.12345E+5 3821_5. // == 15.0 3830.15e+0_2 // == 15.0 384 3850x1p-2 // == 0.25 3860x2.p10 // == 2048.0 3870x1.Fp+0 // == 1.9375 3880X.8p-0 // == 0.5 3890X_1FFFP-16 // == 0.1249847412109375 3900x15e-2 // == 0x15e - 2 (integer subtraction) 391 3920x.p1 // invalid: mantissa has no digits 3931p-2 // invalid: p exponent requires hexadecimal mantissa 3940x1.5e-2 // invalid: hexadecimal mantissa requires p exponent 3951_.5 // invalid: _ must separate successive digits 3961._5 // invalid: _ must separate successive digits 3971.5_e1 // invalid: _ must separate successive digits 3981.5e_1 // invalid: _ must separate successive digits 3991.5e1_ // invalid: _ must separate successive digits 400</pre> 401 402 403<h3 id="Imaginary_literals">Imaginary literals</h3> 404 405<p> 406An imaginary literal represents the imaginary part of a 407<a href="#Constants">complex constant</a>. 408It consists of an <a href="#Integer_literals">integer</a> or 409<a href="#Floating-point_literals">floating-point</a> literal 410followed by the lower-case letter <code>i</code>. 411The value of an imaginary literal is the value of the respective 412integer or floating-point literal multiplied by the imaginary unit <i>i</i>. 413</p> 414 415<pre class="ebnf"> 416imaginary_lit = (decimal_digits | int_lit | float_lit) "i" . 417</pre> 418 419<p> 420For backward compatibility, an imaginary literal's integer part consisting 421entirely of decimal digits (and possibly underscores) is considered a decimal 422integer, even if it starts with a leading <code>0</code>. 423</p> 424 425<pre> 4260i 4270123i // == 123i for backward-compatibility 4280o123i // == 0o123 * 1i == 83i 4290xabci // == 0xabc * 1i == 2748i 4300.i 4312.71828i 4321.e+0i 4336.67428e-11i 4341E6i 435.25i 436.12345E+5i 4370x1p-2i // == 0x1p-2 * 1i == 0.25i 438</pre> 439 440 441<h3 id="Rune_literals">Rune literals</h3> 442 443<p> 444A rune literal represents a <a href="#Constants">rune constant</a>, 445an integer value identifying a Unicode code point. 446A rune literal is expressed as one or more characters enclosed in single quotes, 447as in <code>'x'</code> or <code>'\n'</code>. 448Within the quotes, any character may appear except newline and unescaped single 449quote. A single quoted character represents the Unicode value 450of the character itself, 451while multi-character sequences beginning with a backslash encode 452values in various formats. 453</p> 454 455<p> 456The simplest form represents the single character within the quotes; 457since Go source text is Unicode characters encoded in UTF-8, multiple 458UTF-8-encoded bytes may represent a single integer value. For 459instance, the literal <code>'a'</code> holds a single byte representing 460a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while 461<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing 462a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. 463</p> 464 465<p> 466Several backslash escapes allow arbitrary values to be encoded as 467ASCII text. There are four ways to represent the integer value 468as a numeric constant: <code>\x</code> followed by exactly two hexadecimal 469digits; <code>\u</code> followed by exactly four hexadecimal digits; 470<code>\U</code> followed by exactly eight hexadecimal digits, and a 471plain backslash <code>\</code> followed by exactly three octal digits. 472In each case the value of the literal is the value represented by 473the digits in the corresponding base. 474</p> 475 476<p> 477Although these representations all result in an integer, they have 478different valid ranges. Octal escapes must represent a value between 4790 and 255 inclusive. Hexadecimal escapes satisfy this condition 480by construction. The escapes <code>\u</code> and <code>\U</code> 481represent Unicode code points so within them some values are illegal, 482in particular those above <code>0x10FFFF</code> and surrogate halves. 483</p> 484 485<p> 486After a backslash, certain single-character escapes represent special values: 487</p> 488 489<pre class="grammar"> 490\a U+0007 alert or bell 491\b U+0008 backspace 492\f U+000C form feed 493\n U+000A line feed or newline 494\r U+000D carriage return 495\t U+0009 horizontal tab 496\v U+000B vertical tab 497\\ U+005C backslash 498\' U+0027 single quote (valid escape only within rune literals) 499\" U+0022 double quote (valid escape only within string literals) 500</pre> 501 502<p> 503All other sequences starting with a backslash are illegal inside rune literals. 504</p> 505<pre class="ebnf"> 506rune_lit = "'" ( unicode_value | byte_value ) "'" . 507unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . 508byte_value = octal_byte_value | hex_byte_value . 509octal_byte_value = `\` octal_digit octal_digit octal_digit . 510hex_byte_value = `\` "x" hex_digit hex_digit . 511little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . 512big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit 513 hex_digit hex_digit hex_digit hex_digit . 514escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . 515</pre> 516 517<pre> 518'a' 519'ä' 520'本' 521'\t' 522'\000' 523'\007' 524'\377' 525'\x07' 526'\xff' 527'\u12e4' 528'\U00101234' 529'\'' // rune literal containing single quote character 530'aa' // illegal: too many characters 531'\xa' // illegal: too few hexadecimal digits 532'\0' // illegal: too few octal digits 533'\uDFFF' // illegal: surrogate half 534'\U00110000' // illegal: invalid Unicode code point 535</pre> 536 537 538<h3 id="String_literals">String literals</h3> 539 540<p> 541A string literal represents a <a href="#Constants">string constant</a> 542obtained from concatenating a sequence of characters. There are two forms: 543raw string literals and interpreted string literals. 544</p> 545 546<p> 547Raw string literals are character sequences between back quotes, as in 548<code>`foo`</code>. Within the quotes, any character may appear except 549back quote. The value of a raw string literal is the 550string composed of the uninterpreted (implicitly UTF-8-encoded) characters 551between the quotes; 552in particular, backslashes have no special meaning and the string may 553contain newlines. 554Carriage return characters ('\r') inside raw string literals 555are discarded from the raw string value. 556</p> 557 558<p> 559Interpreted string literals are character sequences between double 560quotes, as in <code>"bar"</code>. 561Within the quotes, any character may appear except newline and unescaped double quote. 562The text between the quotes forms the 563value of the literal, with backslash escapes interpreted as they 564are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and 565<code>\"</code> is legal), with the same restrictions. 566The three-digit octal (<code>\</code><i>nnn</i>) 567and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual 568<i>bytes</i> of the resulting string; all other escapes represent 569the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. 570Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent 571a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, 572<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent 573the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character 574U+00FF. 575</p> 576 577<pre class="ebnf"> 578string_lit = raw_string_lit | interpreted_string_lit . 579raw_string_lit = "`" { unicode_char | newline } "`" . 580interpreted_string_lit = `"` { unicode_value | byte_value } `"` . 581</pre> 582 583<pre> 584`abc` // same as "abc" 585`\n 586\n` // same as "\\n\n\\n" 587"\n" 588"\"" // same as `"` 589"Hello, world!\n" 590"日本語" 591"\u65e5本\U00008a9e" 592"\xff\u00FF" 593"\uD800" // illegal: surrogate half 594"\U00110000" // illegal: invalid Unicode code point 595</pre> 596 597<p> 598These examples all represent the same string: 599</p> 600 601<pre> 602"日本語" // UTF-8 input text 603`日本語` // UTF-8 input text as a raw literal 604"\u65e5\u672c\u8a9e" // the explicit Unicode code points 605"\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points 606"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes 607</pre> 608 609<p> 610If the source code represents a character as two code points, such as 611a combining form involving an accent and a letter, the result will be 612an error if placed in a rune literal (it is not a single code 613point), and will appear as two code points if placed in a string 614literal. 615</p> 616 617 618<h2 id="Constants">Constants</h2> 619 620<p>There are <i>boolean constants</i>, 621<i>rune constants</i>, 622<i>integer constants</i>, 623<i>floating-point constants</i>, <i>complex constants</i>, 624and <i>string constants</i>. Rune, integer, floating-point, 625and complex constants are 626collectively called <i>numeric constants</i>. 627</p> 628 629<p> 630A constant value is represented by a 631<a href="#Rune_literals">rune</a>, 632<a href="#Integer_literals">integer</a>, 633<a href="#Floating-point_literals">floating-point</a>, 634<a href="#Imaginary_literals">imaginary</a>, 635or 636<a href="#String_literals">string</a> literal, 637an identifier denoting a constant, 638a <a href="#Constant_expressions">constant expression</a>, 639a <a href="#Conversions">conversion</a> with a result that is a constant, or 640the result value of some built-in functions such as 641<code>unsafe.Sizeof</code> applied to any value, 642<code>cap</code> or <code>len</code> applied to 643<a href="#Length_and_capacity">some expressions</a>, 644<code>real</code> and <code>imag</code> applied to a complex constant 645and <code>complex</code> applied to numeric constants. 646The boolean truth values are represented by the predeclared constants 647<code>true</code> and <code>false</code>. The predeclared identifier 648<a href="#Iota">iota</a> denotes an integer constant. 649</p> 650 651<p> 652In general, complex constants are a form of 653<a href="#Constant_expressions">constant expression</a> 654and are discussed in that section. 655</p> 656 657<p> 658Numeric constants represent exact values of arbitrary precision and do not overflow. 659Consequently, there are no constants denoting the IEEE 754 negative zero, infinity, 660and not-a-number values. 661</p> 662 663<p> 664Constants may be <a href="#Types">typed</a> or <i>untyped</i>. 665Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, 666and certain <a href="#Constant_expressions">constant expressions</a> 667containing only untyped constant operands are untyped. 668</p> 669 670<p> 671A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> 672or <a href="#Conversions">conversion</a>, or implicitly when used in a 673<a href="#Variable_declarations">variable declaration</a> or an 674<a href="#Assignments">assignment</a> or as an 675operand in an <a href="#Expressions">expression</a>. 676It is an error if the constant value 677cannot be <a href="#Representability">represented</a> as a value of the respective type. 678</p> 679 680<p> 681An untyped constant has a <i>default type</i> which is the type to which the 682constant is implicitly converted in contexts where a typed value is required, 683for instance, in a <a href="#Short_variable_declarations">short variable declaration</a> 684such as <code>i := 0</code> where there is no explicit type. 685The default type of an untyped constant is <code>bool</code>, <code>rune</code>, 686<code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code> 687respectively, depending on whether it is a boolean, rune, integer, floating-point, 688complex, or string constant. 689</p> 690 691<p> 692Implementation restriction: Although numeric constants have arbitrary 693precision in the language, a compiler may implement them using an 694internal representation with limited precision. That said, every 695implementation must: 696</p> 697 698<ul> 699 <li>Represent integer constants with at least 256 bits.</li> 700 701 <li>Represent floating-point constants, including the parts of 702 a complex constant, with a mantissa of at least 256 bits 703 and a signed binary exponent of at least 16 bits.</li> 704 705 <li>Give an error if unable to represent an integer constant 706 precisely.</li> 707 708 <li>Give an error if unable to represent a floating-point or 709 complex constant due to overflow.</li> 710 711 <li>Round to the nearest representable constant if unable to 712 represent a floating-point or complex constant due to limits 713 on precision.</li> 714</ul> 715 716<p> 717These requirements apply both to literal constants and to the result 718of evaluating <a href="#Constant_expressions">constant 719expressions</a>. 720</p> 721 722 723<h2 id="Variables">Variables</h2> 724 725<p> 726A variable is a storage location for holding a <i>value</i>. 727The set of permissible values is determined by the 728variable's <i><a href="#Types">type</a></i>. 729</p> 730 731<p> 732A <a href="#Variable_declarations">variable declaration</a> 733or, for function parameters and results, the signature 734of a <a href="#Function_declarations">function declaration</a> 735or <a href="#Function_literals">function literal</a> reserves 736storage for a named variable. 737 738Calling the built-in function <a href="#Allocation"><code>new</code></a> 739or taking the address of a <a href="#Composite_literals">composite literal</a> 740allocates storage for a variable at run time. 741Such an anonymous variable is referred to via a (possibly implicit) 742<a href="#Address_operators">pointer indirection</a>. 743</p> 744 745<p> 746<i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>, 747and <a href="#Struct_types">struct</a> types have elements and fields that may 748be <a href="#Address_operators">addressed</a> individually. Each such element 749acts like a variable. 750</p> 751 752<p> 753The <i>static type</i> (or just <i>type</i>) of a variable is the 754type given in its declaration, the type provided in the 755<code>new</code> call or composite literal, or the type of 756an element of a structured variable. 757Variables of interface type also have a distinct <i>dynamic type</i>, 758which is the concrete type of the value assigned to the variable at run time 759(unless the value is the predeclared identifier <code>nil</code>, 760which has no type). 761The dynamic type may vary during execution but values stored in interface 762variables are always <a href="#Assignability">assignable</a> 763to the static type of the variable. 764</p> 765 766<pre> 767var x interface{} // x is nil and has static type interface{} 768var v *T // v has value nil, static type *T 769x = 42 // x has value 42 and dynamic type int 770x = v // x has value (*T)(nil) and dynamic type *T 771</pre> 772 773<p> 774A variable's value is retrieved by referring to the variable in an 775<a href="#Expressions">expression</a>; it is the most recent value 776<a href="#Assignments">assigned</a> to the variable. 777If a variable has not yet been assigned a value, its value is the 778<a href="#The_zero_value">zero value</a> for its type. 779</p> 780 781 782<h2 id="Types">Types</h2> 783 784<p> 785A type determines a set of values together with operations and methods specific 786to those values. A type may be denoted by a <i>type name</i>, if it has one, 787or specified using a <i>type literal</i>, which composes a type from existing types. 788</p> 789 790<pre class="ebnf"> 791Type = TypeName | TypeLit | "(" Type ")" . 792TypeName = identifier | QualifiedIdent . 793TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | 794 SliceType | MapType | ChannelType . 795</pre> 796 797<p> 798The language <a href="#Predeclared_identifiers">predeclares</a> certain type names. 799Others are introduced with <a href="#Type_declarations">type declarations</a>. 800<i>Composite types</i>—array, struct, pointer, function, 801interface, slice, map, and channel types—may be constructed using 802type literals. 803</p> 804 805<p> 806Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> 807is one of the predeclared boolean, numeric, or string types, or a type literal, 808the corresponding underlying 809type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type 810is the underlying type of the type to which <code>T</code> refers in its 811<a href="#Type_declarations">type declaration</a>. 812</p> 813 814<pre> 815type ( 816 A1 = string 817 A2 = A1 818) 819 820type ( 821 B1 string 822 B2 B1 823 B3 []B1 824 B4 B3 825) 826</pre> 827 828<p> 829The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>, 830and <code>B2</code> is <code>string</code>. 831The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>. 832</p> 833 834<h3 id="Method_sets">Method sets</h3> 835<p> 836A type has a (possibly empty) <i>method set</i> associated with it. 837The method set of an <a href="#Interface_types">interface type</a> is its interface. 838The method set of any other type <code>T</code> consists of all 839<a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>. 840The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code> 841is the set of all methods declared with receiver <code>*T</code> or <code>T</code> 842(that is, it also contains the method set of <code>T</code>). 843Further rules apply to structs containing embedded fields, as described 844in the section on <a href="#Struct_types">struct types</a>. 845Any other type has an empty method set. 846In a method set, each method must have a 847<a href="#Uniqueness_of_identifiers">unique</a> 848non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>. 849</p> 850 851<p> 852The method set of a type determines the interfaces that the 853type <a href="#Interface_types">implements</a> 854and the methods that can be <a href="#Calls">called</a> 855using a receiver of that type. 856</p> 857 858<h3 id="Boolean_types">Boolean types</h3> 859 860<p> 861A <i>boolean type</i> represents the set of Boolean truth values 862denoted by the predeclared constants <code>true</code> 863and <code>false</code>. The predeclared boolean type is <code>bool</code>; 864it is a <a href="#Type_definitions">defined type</a>. 865</p> 866 867<h3 id="Numeric_types">Numeric types</h3> 868 869<p> 870A <i>numeric type</i> represents sets of integer or floating-point values. 871The predeclared architecture-independent numeric types are: 872</p> 873 874<pre class="grammar"> 875uint8 the set of all unsigned 8-bit integers (0 to 255) 876uint16 the set of all unsigned 16-bit integers (0 to 65535) 877uint32 the set of all unsigned 32-bit integers (0 to 4294967295) 878uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) 879 880int8 the set of all signed 8-bit integers (-128 to 127) 881int16 the set of all signed 16-bit integers (-32768 to 32767) 882int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) 883int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) 884 885float32 the set of all IEEE 754 32-bit floating-point numbers 886float64 the set of all IEEE 754 64-bit floating-point numbers 887 888complex64 the set of all complex numbers with float32 real and imaginary parts 889complex128 the set of all complex numbers with float64 real and imaginary parts 890 891byte alias for uint8 892rune alias for int32 893</pre> 894 895<p> 896The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using 897<a href="https://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. 898</p> 899 900<p> 901There is also a set of predeclared numeric types with implementation-specific sizes: 902</p> 903 904<pre class="grammar"> 905uint either 32 or 64 bits 906int same size as uint 907uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 908</pre> 909 910<p> 911To avoid portability issues all numeric types are <a href="#Type_definitions">defined 912types</a> and thus distinct except 913<code>byte</code>, which is an <a href="#Alias_declarations">alias</a> for <code>uint8</code>, and 914<code>rune</code>, which is an alias for <code>int32</code>. 915Explicit conversions 916are required when different numeric types are mixed in an expression 917or assignment. For instance, <code>int32</code> and <code>int</code> 918are not the same type even though they may have the same size on a 919particular architecture. 920</p> 921 922<h3 id="String_types">String types</h3> 923 924<p> 925A <i>string type</i> represents the set of string values. 926A string value is a (possibly empty) sequence of bytes. 927The number of bytes is called the length of the string and is never negative. 928Strings are immutable: once created, 929it is impossible to change the contents of a string. 930The predeclared string type is <code>string</code>; 931it is a <a href="#Type_definitions">defined type</a>. 932</p> 933 934<p> 935The length of a string <code>s</code> can be discovered using 936the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 937The length is a compile-time constant if the string is a constant. 938A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a> 9390 through <code>len(s)-1</code>. 940It is illegal to take the address of such an element; if 941<code>s[i]</code> is the <code>i</code>'th byte of a 942string, <code>&s[i]</code> is invalid. 943</p> 944 945 946<h3 id="Array_types">Array types</h3> 947 948<p> 949An array is a numbered sequence of elements of a single 950type, called the element type. 951The number of elements is called the length of the array and is never negative. 952</p> 953 954<pre class="ebnf"> 955ArrayType = "[" ArrayLength "]" ElementType . 956ArrayLength = Expression . 957ElementType = Type . 958</pre> 959 960<p> 961The length is part of the array's type; it must evaluate to a 962non-negative <a href="#Constants">constant</a> 963<a href="#Representability">representable</a> by a value 964of type <code>int</code>. 965The length of array <code>a</code> can be discovered 966using the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 967The elements can be addressed by integer <a href="#Index_expressions">indices</a> 9680 through <code>len(a)-1</code>. 969Array types are always one-dimensional but may be composed to form 970multi-dimensional types. 971</p> 972 973<pre> 974[32]byte 975[2*N] struct { x, y int32 } 976[1000]*float64 977[3][5]int 978[2][2][2]float64 // same as [2]([2]([2]float64)) 979</pre> 980 981<h3 id="Slice_types">Slice types</h3> 982 983<p> 984A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and 985provides access to a numbered sequence of elements from that array. 986A slice type denotes the set of all slices of arrays of its element type. 987The number of elements is called the length of the slice and is never negative. 988The value of an uninitialized slice is <code>nil</code>. 989</p> 990 991<pre class="ebnf"> 992SliceType = "[" "]" ElementType . 993</pre> 994 995<p> 996The length of a slice <code>s</code> can be discovered by the built-in function 997<a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during 998execution. The elements can be addressed by integer <a href="#Index_expressions">indices</a> 9990 through <code>len(s)-1</code>. The slice index of a 1000given element may be less than the index of the same element in the 1001underlying array. 1002</p> 1003<p> 1004A slice, once initialized, is always associated with an underlying 1005array that holds its elements. A slice therefore shares storage 1006with its array and with other slices of the same array; by contrast, 1007distinct arrays always represent distinct storage. 1008</p> 1009<p> 1010The array underlying a slice may extend past the end of the slice. 1011The <i>capacity</i> is a measure of that extent: it is the sum of 1012the length of the slice and the length of the array beyond the slice; 1013a slice of length up to that capacity can be created by 1014<a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice. 1015The capacity of a slice <code>a</code> can be discovered using the 1016built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. 1017</p> 1018 1019<p> 1020A new, initialized slice value for a given element type <code>T</code> is 1021made using the built-in function 1022<a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1023which takes a slice type 1024and parameters specifying the length and optionally the capacity. 1025A slice created with <code>make</code> always allocates a new, hidden array 1026to which the returned slice value refers. That is, executing 1027</p> 1028 1029<pre> 1030make([]T, length, capacity) 1031</pre> 1032 1033<p> 1034produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a> 1035it, so these two expressions are equivalent: 1036</p> 1037 1038<pre> 1039make([]int, 50, 100) 1040new([100]int)[0:50] 1041</pre> 1042 1043<p> 1044Like arrays, slices are always one-dimensional but may be composed to construct 1045higher-dimensional objects. 1046With arrays of arrays, the inner arrays are, by construction, always the same length; 1047however with slices of slices (or arrays of slices), the inner lengths may vary dynamically. 1048Moreover, the inner slices must be initialized individually. 1049</p> 1050 1051<h3 id="Struct_types">Struct types</h3> 1052 1053<p> 1054A struct is a sequence of named elements, called fields, each of which has a 1055name and a type. Field names may be specified explicitly (IdentifierList) or 1056implicitly (EmbeddedField). 1057Within a struct, non-<a href="#Blank_identifier">blank</a> field names must 1058be <a href="#Uniqueness_of_identifiers">unique</a>. 1059</p> 1060 1061<pre class="ebnf"> 1062StructType = "struct" "{" { FieldDecl ";" } "}" . 1063FieldDecl = (IdentifierList Type | EmbeddedField) [ Tag ] . 1064EmbeddedField = [ "*" ] TypeName . 1065Tag = string_lit . 1066</pre> 1067 1068<pre> 1069// An empty struct. 1070struct {} 1071 1072// A struct with 6 fields. 1073struct { 1074 x, y int 1075 u float32 1076 _ float32 // padding 1077 A *[]int 1078 F func() 1079} 1080</pre> 1081 1082<p> 1083A field declared with a type but no explicit field name is called an <i>embedded field</i>. 1084An embedded field must be specified as 1085a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, 1086and <code>T</code> itself may not be 1087a pointer type. The unqualified type name acts as the field name. 1088</p> 1089 1090<pre> 1091// A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4 1092struct { 1093 T1 // field name is T1 1094 *T2 // field name is T2 1095 P.T3 // field name is T3 1096 *P.T4 // field name is T4 1097 x, y int // field names are x and y 1098} 1099</pre> 1100 1101<p> 1102The following declaration is illegal because field names must be unique 1103in a struct type: 1104</p> 1105 1106<pre> 1107struct { 1108 T // conflicts with embedded field *T and *P.T 1109 *T // conflicts with embedded field T and *P.T 1110 *P.T // conflicts with embedded field T and *T 1111} 1112</pre> 1113 1114<p> 1115A field or <a href="#Method_declarations">method</a> <code>f</code> of an 1116embedded field in a struct <code>x</code> is called <i>promoted</i> if 1117<code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes 1118that field or method <code>f</code>. 1119</p> 1120 1121<p> 1122Promoted fields act like ordinary fields 1123of a struct except that they cannot be used as field names in 1124<a href="#Composite_literals">composite literals</a> of the struct. 1125</p> 1126 1127<p> 1128Given a struct type <code>S</code> and a <a href="#Type_definitions">defined type</a> 1129<code>T</code>, promoted methods are included in the method set of the struct as follows: 1130</p> 1131<ul> 1132 <li> 1133 If <code>S</code> contains an embedded field <code>T</code>, 1134 the <a href="#Method_sets">method sets</a> of <code>S</code> 1135 and <code>*S</code> both include promoted methods with receiver 1136 <code>T</code>. The method set of <code>*S</code> also 1137 includes promoted methods with receiver <code>*T</code>. 1138 </li> 1139 1140 <li> 1141 If <code>S</code> contains an embedded field <code>*T</code>, 1142 the method sets of <code>S</code> and <code>*S</code> both 1143 include promoted methods with receiver <code>T</code> or 1144 <code>*T</code>. 1145 </li> 1146</ul> 1147 1148<p> 1149A field declaration may be followed by an optional string literal <i>tag</i>, 1150which becomes an attribute for all the fields in the corresponding 1151field declaration. An empty tag string is equivalent to an absent tag. 1152The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a> 1153and take part in <a href="#Type_identity">type identity</a> for structs 1154but are otherwise ignored. 1155</p> 1156 1157<pre> 1158struct { 1159 x, y float64 "" // an empty tag string is like an absent tag 1160 name string "any string is permitted as a tag" 1161 _ [4]byte "ceci n'est pas un champ de structure" 1162} 1163 1164// A struct corresponding to a TimeStamp protocol buffer. 1165// The tag strings define the protocol buffer field numbers; 1166// they follow the convention outlined by the reflect package. 1167struct { 1168 microsec uint64 `protobuf:"1"` 1169 serverIP6 uint64 `protobuf:"2"` 1170} 1171</pre> 1172 1173<h3 id="Pointer_types">Pointer types</h3> 1174 1175<p> 1176A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given 1177type, called the <i>base type</i> of the pointer. 1178The value of an uninitialized pointer is <code>nil</code>. 1179</p> 1180 1181<pre class="ebnf"> 1182PointerType = "*" BaseType . 1183BaseType = Type . 1184</pre> 1185 1186<pre> 1187*Point 1188*[4]int 1189</pre> 1190 1191<h3 id="Function_types">Function types</h3> 1192 1193<p> 1194A function type denotes the set of all functions with the same parameter 1195and result types. The value of an uninitialized variable of function type 1196is <code>nil</code>. 1197</p> 1198 1199<pre class="ebnf"> 1200FunctionType = "func" Signature . 1201Signature = Parameters [ Result ] . 1202Result = Parameters | Type . 1203Parameters = "(" [ ParameterList [ "," ] ] ")" . 1204ParameterList = ParameterDecl { "," ParameterDecl } . 1205ParameterDecl = [ IdentifierList ] [ "..." ] Type . 1206</pre> 1207 1208<p> 1209Within a list of parameters or results, the names (IdentifierList) 1210must either all be present or all be absent. If present, each name 1211stands for one item (parameter or result) of the specified type and 1212all non-<a href="#Blank_identifier">blank</a> names in the signature 1213must be <a href="#Uniqueness_of_identifiers">unique</a>. 1214If absent, each type stands for one item of that type. 1215Parameter and result 1216lists are always parenthesized except that if there is exactly 1217one unnamed result it may be written as an unparenthesized type. 1218</p> 1219 1220<p> 1221The final incoming parameter in a function signature may have 1222a type prefixed with <code>...</code>. 1223A function with such a parameter is called <i>variadic</i> and 1224may be invoked with zero or more arguments for that parameter. 1225</p> 1226 1227<pre> 1228func() 1229func(x int) int 1230func(a, _ int, z float32) bool 1231func(a, b int, z float32) (bool) 1232func(prefix string, values ...int) 1233func(a, b int, z float64, opt ...interface{}) (success bool) 1234func(int, int, float64) (float64, *[]int) 1235func(n int) func(p *T) 1236</pre> 1237 1238 1239<h3 id="Interface_types">Interface types</h3> 1240 1241<p> 1242An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. 1243A variable of interface type can store a value of any type with a method set 1244that is any superset of the interface. Such a type is said to 1245<i>implement the interface</i>. 1246The value of an uninitialized variable of interface type is <code>nil</code>. 1247</p> 1248 1249<pre class="ebnf"> 1250InterfaceType = "interface" "{" { ( MethodSpec | InterfaceTypeName ) ";" } "}" . 1251MethodSpec = MethodName Signature . 1252MethodName = identifier . 1253InterfaceTypeName = TypeName . 1254</pre> 1255 1256<p> 1257An interface type may specify methods <i>explicitly</i> through method specifications, 1258or it may <i>embed</i> methods of other interfaces through interface type names. 1259</p> 1260 1261<pre> 1262// A simple File interface. 1263interface { 1264 Read([]byte) (int, error) 1265 Write([]byte) (int, error) 1266 Close() error 1267} 1268</pre> 1269 1270<p> 1271The name of each explicitly specified method must be <a href="#Uniqueness_of_identifiers">unique</a> 1272and not <a href="#Blank_identifier">blank</a>. 1273</p> 1274 1275<pre> 1276interface { 1277 String() string 1278 String() string // illegal: String not unique 1279 _(x int) // illegal: method must have non-blank name 1280} 1281</pre> 1282 1283<p> 1284More than one type may implement an interface. 1285For instance, if two types <code>S1</code> and <code>S2</code> 1286have the method set 1287</p> 1288 1289<pre> 1290func (p T) Read(p []byte) (n int, err error) 1291func (p T) Write(p []byte) (n int, err error) 1292func (p T) Close() error 1293</pre> 1294 1295<p> 1296(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) 1297then the <code>File</code> interface is implemented by both <code>S1</code> and 1298<code>S2</code>, regardless of what other methods 1299<code>S1</code> and <code>S2</code> may have or share. 1300</p> 1301 1302<p> 1303A type implements any interface comprising any subset of its methods 1304and may therefore implement several distinct interfaces. For 1305instance, all types implement the <i>empty interface</i>: 1306</p> 1307 1308<pre> 1309interface{} 1310</pre> 1311 1312<p> 1313Similarly, consider this interface specification, 1314which appears within a <a href="#Type_declarations">type declaration</a> 1315to define an interface called <code>Locker</code>: 1316</p> 1317 1318<pre> 1319type Locker interface { 1320 Lock() 1321 Unlock() 1322} 1323</pre> 1324 1325<p> 1326If <code>S1</code> and <code>S2</code> also implement 1327</p> 1328 1329<pre> 1330func (p T) Lock() { … } 1331func (p T) Unlock() { … } 1332</pre> 1333 1334<p> 1335they implement the <code>Locker</code> interface as well 1336as the <code>File</code> interface. 1337</p> 1338 1339<p> 1340An interface <code>T</code> may use a (possibly qualified) interface type 1341name <code>E</code> in place of a method specification. This is called 1342<i>embedding</i> interface <code>E</code> in <code>T</code>. 1343The <a href="#Method_sets">method set</a> of <code>T</code> is the <i>union</i> 1344of the method sets of <code>T</code>’s explicitly declared methods and of 1345<code>T</code>’s embedded interfaces. 1346</p> 1347 1348<pre> 1349type Reader interface { 1350 Read(p []byte) (n int, err error) 1351 Close() error 1352} 1353 1354type Writer interface { 1355 Write(p []byte) (n int, err error) 1356 Close() error 1357} 1358 1359// ReadWriter's methods are Read, Write, and Close. 1360type ReadWriter interface { 1361 Reader // includes methods of Reader in ReadWriter's method set 1362 Writer // includes methods of Writer in ReadWriter's method set 1363} 1364</pre> 1365 1366<p> 1367A <i>union</i> of method sets contains the (exported and non-exported) 1368methods of each method set exactly once, and methods with the 1369<a href="#Uniqueness_of_identifiers">same</a> names must 1370have <a href="#Type_identity">identical</a> signatures. 1371</p> 1372 1373<pre> 1374type ReadCloser interface { 1375 Reader // includes methods of Reader in ReadCloser's method set 1376 Close() // illegal: signatures of Reader.Close and Close are different 1377} 1378</pre> 1379 1380<p> 1381An interface type <code>T</code> may not embed itself 1382or any interface type that embeds <code>T</code>, recursively. 1383</p> 1384 1385<pre> 1386// illegal: Bad cannot embed itself 1387type Bad interface { 1388 Bad 1389} 1390 1391// illegal: Bad1 cannot embed itself using Bad2 1392type Bad1 interface { 1393 Bad2 1394} 1395type Bad2 interface { 1396 Bad1 1397} 1398</pre> 1399 1400<h3 id="Map_types">Map types</h3> 1401 1402<p> 1403A map is an unordered group of elements of one type, called the 1404element type, indexed by a set of unique <i>keys</i> of another type, 1405called the key type. 1406The value of an uninitialized map is <code>nil</code>. 1407</p> 1408 1409<pre class="ebnf"> 1410MapType = "map" "[" KeyType "]" ElementType . 1411KeyType = Type . 1412</pre> 1413 1414<p> 1415The <a href="#Comparison_operators">comparison operators</a> 1416<code>==</code> and <code>!=</code> must be fully defined 1417for operands of the key type; thus the key type must not be a function, map, or 1418slice. 1419If the key type is an interface type, these 1420comparison operators must be defined for the dynamic key values; 1421failure will cause a <a href="#Run_time_panics">run-time panic</a>. 1422 1423</p> 1424 1425<pre> 1426map[string]int 1427map[*T]struct{ x, y float64 } 1428map[string]interface{} 1429</pre> 1430 1431<p> 1432The number of map elements is called its length. 1433For a map <code>m</code>, it can be discovered using the 1434built-in function <a href="#Length_and_capacity"><code>len</code></a> 1435and may change during execution. Elements may be added during execution 1436using <a href="#Assignments">assignments</a> and retrieved with 1437<a href="#Index_expressions">index expressions</a>; they may be removed with the 1438<a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function. 1439</p> 1440<p> 1441A new, empty map value is made using the built-in 1442function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1443which takes the map type and an optional capacity hint as arguments: 1444</p> 1445 1446<pre> 1447make(map[string]int) 1448make(map[string]int, 100) 1449</pre> 1450 1451<p> 1452The initial capacity does not bound its size: 1453maps grow to accommodate the number of items 1454stored in them, with the exception of <code>nil</code> maps. 1455A <code>nil</code> map is equivalent to an empty map except that no elements 1456may be added. 1457</p> 1458 1459<h3 id="Channel_types">Channel types</h3> 1460 1461<p> 1462A channel provides a mechanism for 1463<a href="#Go_statements">concurrently executing functions</a> 1464to communicate by 1465<a href="#Send_statements">sending</a> and 1466<a href="#Receive_operator">receiving</a> 1467values of a specified element type. 1468The value of an uninitialized channel is <code>nil</code>. 1469</p> 1470 1471<pre class="ebnf"> 1472ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType . 1473</pre> 1474 1475<p> 1476The optional <code><-</code> operator specifies the channel <i>direction</i>, 1477<i>send</i> or <i>receive</i>. If no direction is given, the channel is 1478<i>bidirectional</i>. 1479A channel may be constrained only to send or only to receive by 1480<a href="#Assignments">assignment</a> or 1481explicit <a href="#Conversions">conversion</a>. 1482</p> 1483 1484<pre> 1485chan T // can be used to send and receive values of type T 1486chan<- float64 // can only be used to send float64s 1487<-chan int // can only be used to receive ints 1488</pre> 1489 1490<p> 1491The <code><-</code> operator associates with the leftmost <code>chan</code> 1492possible: 1493</p> 1494 1495<pre> 1496chan<- chan int // same as chan<- (chan int) 1497chan<- <-chan int // same as chan<- (<-chan int) 1498<-chan <-chan int // same as <-chan (<-chan int) 1499chan (<-chan int) 1500</pre> 1501 1502<p> 1503A new, initialized channel 1504value can be made using the built-in function 1505<a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1506which takes the channel type and an optional <i>capacity</i> as arguments: 1507</p> 1508 1509<pre> 1510make(chan int, 100) 1511</pre> 1512 1513<p> 1514The capacity, in number of elements, sets the size of the buffer in the channel. 1515If the capacity is zero or absent, the channel is unbuffered and communication 1516succeeds only when both a sender and receiver are ready. Otherwise, the channel 1517is buffered and communication succeeds without blocking if the buffer 1518is not full (sends) or not empty (receives). 1519A <code>nil</code> channel is never ready for communication. 1520</p> 1521 1522<p> 1523A channel may be closed with the built-in function 1524<a href="#Close"><code>close</code></a>. 1525The multi-valued assignment form of the 1526<a href="#Receive_operator">receive operator</a> 1527reports whether a received value was sent before 1528the channel was closed. 1529</p> 1530 1531<p> 1532A single channel may be used in 1533<a href="#Send_statements">send statements</a>, 1534<a href="#Receive_operator">receive operations</a>, 1535and calls to the built-in functions 1536<a href="#Length_and_capacity"><code>cap</code></a> and 1537<a href="#Length_and_capacity"><code>len</code></a> 1538by any number of goroutines without further synchronization. 1539Channels act as first-in-first-out queues. 1540For example, if one goroutine sends values on a channel 1541and a second goroutine receives them, the values are 1542received in the order sent. 1543</p> 1544 1545<h2 id="Properties_of_types_and_values">Properties of types and values</h2> 1546 1547<h3 id="Type_identity">Type identity</h3> 1548 1549<p> 1550Two types are either <i>identical</i> or <i>different</i>. 1551</p> 1552 1553<p> 1554A <a href="#Type_definitions">defined type</a> is always different from any other type. 1555Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are 1556structurally equivalent; that is, they have the same literal structure and corresponding 1557components have identical types. In detail: 1558</p> 1559 1560<ul> 1561 <li>Two array types are identical if they have identical element types and 1562 the same array length.</li> 1563 1564 <li>Two slice types are identical if they have identical element types.</li> 1565 1566 <li>Two struct types are identical if they have the same sequence of fields, 1567 and if corresponding fields have the same names, and identical types, 1568 and identical tags. 1569 <a href="#Exported_identifiers">Non-exported</a> field names from different 1570 packages are always different.</li> 1571 1572 <li>Two pointer types are identical if they have identical base types.</li> 1573 1574 <li>Two function types are identical if they have the same number of parameters 1575 and result values, corresponding parameter and result types are 1576 identical, and either both functions are variadic or neither is. 1577 Parameter and result names are not required to match.</li> 1578 1579 <li>Two interface types are identical if they have the same set of methods 1580 with the same names and identical function types. 1581 <a href="#Exported_identifiers">Non-exported</a> method names from different 1582 packages are always different. The order of the methods is irrelevant.</li> 1583 1584 <li>Two map types are identical if they have identical key and element types.</li> 1585 1586 <li>Two channel types are identical if they have identical element types and 1587 the same direction.</li> 1588</ul> 1589 1590<p> 1591Given the declarations 1592</p> 1593 1594<pre> 1595type ( 1596 A0 = []string 1597 A1 = A0 1598 A2 = struct{ a, b int } 1599 A3 = int 1600 A4 = func(A3, float64) *A0 1601 A5 = func(x int, _ float64) *[]string 1602) 1603 1604type ( 1605 B0 A0 1606 B1 []string 1607 B2 struct{ a, b int } 1608 B3 struct{ a, c int } 1609 B4 func(int, float64) *B0 1610 B5 func(x int, y float64) *A1 1611) 1612 1613type C0 = B0 1614</pre> 1615 1616<p> 1617these types are identical: 1618</p> 1619 1620<pre> 1621A0, A1, and []string 1622A2 and struct{ a, b int } 1623A3 and int 1624A4, func(int, float64) *[]string, and A5 1625 1626B0 and C0 1627[]int and []int 1628struct{ a, b *T5 } and struct{ a, b *T5 } 1629func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5 1630</pre> 1631 1632<p> 1633<code>B0</code> and <code>B1</code> are different because they are new types 1634created by distinct <a href="#Type_definitions">type definitions</a>; 1635<code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code> 1636are different because <code>B0</code> is different from <code>[]string</code>. 1637</p> 1638 1639 1640<h3 id="Assignability">Assignability</h3> 1641 1642<p> 1643A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code> 1644("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies: 1645</p> 1646 1647<ul> 1648<li> 1649<code>x</code>'s type is identical to <code>T</code>. 1650</li> 1651<li> 1652<code>x</code>'s type <code>V</code> and <code>T</code> have identical 1653<a href="#Types">underlying types</a> and at least one of <code>V</code> 1654or <code>T</code> is not a <a href="#Type_definitions">defined</a> type. 1655</li> 1656<li> 1657<code>T</code> is an interface type and 1658<code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. 1659</li> 1660<li> 1661<code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, 1662<code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, 1663and at least one of <code>V</code> or <code>T</code> is not a defined type. 1664</li> 1665<li> 1666<code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> 1667is a pointer, function, slice, map, channel, or interface type. 1668</li> 1669<li> 1670<code>x</code> is an untyped <a href="#Constants">constant</a> 1671<a href="#Representability">representable</a> 1672by a value of type <code>T</code>. 1673</li> 1674</ul> 1675 1676 1677<h3 id="Representability">Representability</h3> 1678 1679<p> 1680A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i> 1681by a value of type <code>T</code> if one of the following conditions applies: 1682</p> 1683 1684<ul> 1685<li> 1686<code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>. 1687</li> 1688 1689<li> 1690<code>T</code> is a floating-point type and <code>x</code> can be rounded to <code>T</code>'s 1691precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE 1692negative zero further simplified to an unsigned zero. Note that constant values never result 1693in an IEEE negative zero, NaN, or infinity. 1694</li> 1695 1696<li> 1697<code>T</code> is a complex type, and <code>x</code>'s 1698<a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code> 1699are representable by values of <code>T</code>'s component type (<code>float32</code> or 1700<code>float64</code>). 1701</li> 1702</ul> 1703 1704<pre> 1705x T x is representable by a value of T because 1706 1707'a' byte 97 is in the set of byte values 170897 rune rune is an alias for int32, and 97 is in the set of 32-bit integers 1709"foo" string "foo" is in the set of string values 17101024 int16 1024 is in the set of 16-bit integers 171142.0 byte 42 is in the set of unsigned 8-bit integers 17121e10 uint64 10000000000 is in the set of unsigned 64-bit integers 17132.718281828459045 float32 2.718281828459045 rounds to 2.7182817 which is in the set of float32 values 1714-1e-1000 float64 -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0 17150i int 0 is an integer value 1716(42 + 0i) float32 42.0 (with zero imaginary part) is in the set of float32 values 1717</pre> 1718 1719<pre> 1720x T x is not representable by a value of T because 1721 17220 bool 0 is not in the set of boolean values 1723'a' string 'a' is a rune, it is not in the set of string values 17241024 byte 1024 is not in the set of unsigned 8-bit integers 1725-1 uint16 -1 is not in the set of unsigned 16-bit integers 17261.1 int 1.1 is not an integer value 172742i float32 (0 + 42i) is not in the set of float32 values 17281e1000 float64 1e1000 overflows to IEEE +Inf after rounding 1729</pre> 1730 1731 1732<h2 id="Blocks">Blocks</h2> 1733 1734<p> 1735A <i>block</i> is a possibly empty sequence of declarations and statements 1736within matching brace brackets. 1737</p> 1738 1739<pre class="ebnf"> 1740Block = "{" StatementList "}" . 1741StatementList = { Statement ";" } . 1742</pre> 1743 1744<p> 1745In addition to explicit blocks in the source code, there are implicit blocks: 1746</p> 1747 1748<ol> 1749 <li>The <i>universe block</i> encompasses all Go source text.</li> 1750 1751 <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all 1752 Go source text for that package.</li> 1753 1754 <li>Each file has a <i>file block</i> containing all Go source text 1755 in that file.</li> 1756 1757 <li>Each <a href="#If_statements">"if"</a>, 1758 <a href="#For_statements">"for"</a>, and 1759 <a href="#Switch_statements">"switch"</a> 1760 statement is considered to be in its own implicit block.</li> 1761 1762 <li>Each clause in a <a href="#Switch_statements">"switch"</a> 1763 or <a href="#Select_statements">"select"</a> statement 1764 acts as an implicit block.</li> 1765</ol> 1766 1767<p> 1768Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. 1769</p> 1770 1771 1772<h2 id="Declarations_and_scope">Declarations and scope</h2> 1773 1774<p> 1775A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a 1776<a href="#Constant_declarations">constant</a>, 1777<a href="#Type_declarations">type</a>, 1778<a href="#Variable_declarations">variable</a>, 1779<a href="#Function_declarations">function</a>, 1780<a href="#Labeled_statements">label</a>, or 1781<a href="#Import_declarations">package</a>. 1782Every identifier in a program must be declared. 1783No identifier may be declared twice in the same block, and 1784no identifier may be declared in both the file and package block. 1785</p> 1786 1787<p> 1788The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier 1789in a declaration, but it does not introduce a binding and thus is not declared. 1790In the package block, the identifier <code>init</code> may only be used for 1791<a href="#Package_initialization"><code>init</code> function</a> declarations, 1792and like the blank identifier it does not introduce a new binding. 1793</p> 1794 1795<pre class="ebnf"> 1796Declaration = ConstDecl | TypeDecl | VarDecl . 1797TopLevelDecl = Declaration | FunctionDecl | MethodDecl . 1798</pre> 1799 1800<p> 1801The <i>scope</i> of a declared identifier is the extent of source text in which 1802the identifier denotes the specified constant, type, variable, function, label, or package. 1803</p> 1804 1805<p> 1806Go is lexically scoped using <a href="#Blocks">blocks</a>: 1807</p> 1808 1809<ol> 1810 <li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li> 1811 1812 <li>The scope of an identifier denoting a constant, type, variable, 1813 or function (but not method) declared at top level (outside any 1814 function) is the package block.</li> 1815 1816 <li>The scope of the package name of an imported package is the file block 1817 of the file containing the import declaration.</li> 1818 1819 <li>The scope of an identifier denoting a method receiver, function parameter, 1820 or result variable is the function body.</li> 1821 1822 <li>The scope of a constant or variable identifier declared 1823 inside a function begins at the end of the ConstSpec or VarSpec 1824 (ShortVarDecl for short variable declarations) 1825 and ends at the end of the innermost containing block.</li> 1826 1827 <li>The scope of a type identifier declared inside a function 1828 begins at the identifier in the TypeSpec 1829 and ends at the end of the innermost containing block.</li> 1830</ol> 1831 1832<p> 1833An identifier declared in a block may be redeclared in an inner block. 1834While the identifier of the inner declaration is in scope, it denotes 1835the entity declared by the inner declaration. 1836</p> 1837 1838<p> 1839The <a href="#Package_clause">package clause</a> is not a declaration; the package name 1840does not appear in any scope. Its purpose is to identify the files belonging 1841to the same <a href="#Packages">package</a> and to specify the default package name for import 1842declarations. 1843</p> 1844 1845 1846<h3 id="Label_scopes">Label scopes</h3> 1847 1848<p> 1849Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are 1850used in the <a href="#Break_statements">"break"</a>, 1851<a href="#Continue_statements">"continue"</a>, and 1852<a href="#Goto_statements">"goto"</a> statements. 1853It is illegal to define a label that is never used. 1854In contrast to other identifiers, labels are not block scoped and do 1855not conflict with identifiers that are not labels. The scope of a label 1856is the body of the function in which it is declared and excludes 1857the body of any nested function. 1858</p> 1859 1860 1861<h3 id="Blank_identifier">Blank identifier</h3> 1862 1863<p> 1864The <i>blank identifier</i> is represented by the underscore character <code>_</code>. 1865It serves as an anonymous placeholder instead of a regular (non-blank) 1866identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>, 1867as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>. 1868</p> 1869 1870 1871<h3 id="Predeclared_identifiers">Predeclared identifiers</h3> 1872 1873<p> 1874The following identifiers are implicitly declared in the 1875<a href="#Blocks">universe block</a>: 1876</p> 1877<pre class="grammar"> 1878Types: 1879 bool byte complex64 complex128 error float32 float64 1880 int int8 int16 int32 int64 rune string 1881 uint uint8 uint16 uint32 uint64 uintptr 1882 1883Constants: 1884 true false iota 1885 1886Zero value: 1887 nil 1888 1889Functions: 1890 append cap close complex copy delete imag len 1891 make new panic print println real recover 1892</pre> 1893 1894 1895<h3 id="Exported_identifiers">Exported identifiers</h3> 1896 1897<p> 1898An identifier may be <i>exported</i> to permit access to it from another package. 1899An identifier is exported if both: 1900</p> 1901<ol> 1902 <li>the first character of the identifier's name is a Unicode upper case 1903 letter (Unicode class "Lu"); and</li> 1904 <li>the identifier is declared in the <a href="#Blocks">package block</a> 1905 or it is a <a href="#Struct_types">field name</a> or 1906 <a href="#MethodName">method name</a>.</li> 1907</ol> 1908<p> 1909All other identifiers are not exported. 1910</p> 1911 1912 1913<h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3> 1914 1915<p> 1916Given a set of identifiers, an identifier is called <i>unique</i> if it is 1917<i>different</i> from every other in the set. 1918Two identifiers are different if they are spelled differently, or if they 1919appear in different <a href="#Packages">packages</a> and are not 1920<a href="#Exported_identifiers">exported</a>. Otherwise, they are the same. 1921</p> 1922 1923<h3 id="Constant_declarations">Constant declarations</h3> 1924 1925<p> 1926A constant declaration binds a list of identifiers (the names of 1927the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. 1928The number of identifiers must be equal 1929to the number of expressions, and the <i>n</i>th identifier on 1930the left is bound to the value of the <i>n</i>th expression on the 1931right. 1932</p> 1933 1934<pre class="ebnf"> 1935ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . 1936ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . 1937 1938IdentifierList = identifier { "," identifier } . 1939ExpressionList = Expression { "," Expression } . 1940</pre> 1941 1942<p> 1943If the type is present, all constants take the type specified, and 1944the expressions must be <a href="#Assignability">assignable</a> to that type. 1945If the type is omitted, the constants take the 1946individual types of the corresponding expressions. 1947If the expression values are untyped <a href="#Constants">constants</a>, 1948the declared constants remain untyped and the constant identifiers 1949denote the constant values. For instance, if the expression is a 1950floating-point literal, the constant identifier denotes a floating-point 1951constant, even if the literal's fractional part is zero. 1952</p> 1953 1954<pre> 1955const Pi float64 = 3.14159265358979323846 1956const zero = 0.0 // untyped floating-point constant 1957const ( 1958 size int64 = 1024 1959 eof = -1 // untyped integer constant 1960) 1961const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants 1962const u, v float32 = 0, 3 // u = 0.0, v = 3.0 1963</pre> 1964 1965<p> 1966Within a parenthesized <code>const</code> declaration list the 1967expression list may be omitted from any but the first ConstSpec. 1968Such an empty list is equivalent to the textual substitution of the 1969first preceding non-empty expression list and its type if any. 1970Omitting the list of expressions is therefore equivalent to 1971repeating the previous list. The number of identifiers must be equal 1972to the number of expressions in the previous list. 1973Together with the <a href="#Iota"><code>iota</code> constant generator</a> 1974this mechanism permits light-weight declaration of sequential values: 1975</p> 1976 1977<pre> 1978const ( 1979 Sunday = iota 1980 Monday 1981 Tuesday 1982 Wednesday 1983 Thursday 1984 Friday 1985 Partyday 1986 numberOfDays // this constant is not exported 1987) 1988</pre> 1989 1990 1991<h3 id="Iota">Iota</h3> 1992 1993<p> 1994Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier 1995<code>iota</code> represents successive untyped integer <a href="#Constants"> 1996constants</a>. Its value is the index of the respective <a href="#ConstSpec">ConstSpec</a> 1997in that constant declaration, starting at zero. 1998It can be used to construct a set of related constants: 1999</p> 2000 2001<pre> 2002const ( 2003 c0 = iota // c0 == 0 2004 c1 = iota // c1 == 1 2005 c2 = iota // c2 == 2 2006) 2007 2008const ( 2009 a = 1 << iota // a == 1 (iota == 0) 2010 b = 1 << iota // b == 2 (iota == 1) 2011 c = 3 // c == 3 (iota == 2, unused) 2012 d = 1 << iota // d == 8 (iota == 3) 2013) 2014 2015const ( 2016 u = iota * 42 // u == 0 (untyped integer constant) 2017 v float64 = iota * 42 // v == 42.0 (float64 constant) 2018 w = iota * 42 // w == 84 (untyped integer constant) 2019) 2020 2021const x = iota // x == 0 2022const y = iota // y == 0 2023</pre> 2024 2025<p> 2026By definition, multiple uses of <code>iota</code> in the same ConstSpec all have the same value: 2027</p> 2028 2029<pre> 2030const ( 2031 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 (iota == 0) 2032 bit1, mask1 // bit1 == 2, mask1 == 1 (iota == 1) 2033 _, _ // (iota == 2, unused) 2034 bit3, mask3 // bit3 == 8, mask3 == 7 (iota == 3) 2035) 2036</pre> 2037 2038<p> 2039This last example exploits the <a href="#Constant_declarations">implicit repetition</a> 2040of the last non-empty expression list. 2041</p> 2042 2043 2044<h3 id="Type_declarations">Type declarations</h3> 2045 2046<p> 2047A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>. 2048Type declarations come in two forms: alias declarations and type definitions. 2049</p> 2050 2051<pre class="ebnf"> 2052TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . 2053TypeSpec = AliasDecl | TypeDef . 2054</pre> 2055 2056<h4 id="Alias_declarations">Alias declarations</h4> 2057 2058<p> 2059An alias declaration binds an identifier to the given type. 2060</p> 2061 2062<pre class="ebnf"> 2063AliasDecl = identifier "=" Type . 2064</pre> 2065 2066<p> 2067Within the <a href="#Declarations_and_scope">scope</a> of 2068the identifier, it serves as an <i>alias</i> for the type. 2069</p> 2070 2071<pre> 2072type ( 2073 nodeList = []*Node // nodeList and []*Node are identical types 2074 Polar = polar // Polar and polar denote identical types 2075) 2076</pre> 2077 2078 2079<h4 id="Type_definitions">Type definitions</h4> 2080 2081<p> 2082A type definition creates a new, distinct type with the same 2083<a href="#Types">underlying type</a> and operations as the given type, 2084and binds an identifier to it. 2085</p> 2086 2087<pre class="ebnf"> 2088TypeDef = identifier Type . 2089</pre> 2090 2091<p> 2092The new type is called a <i>defined type</i>. 2093It is <a href="#Type_identity">different</a> from any other type, 2094including the type it is created from. 2095</p> 2096 2097<pre> 2098type ( 2099 Point struct{ x, y float64 } // Point and struct{ x, y float64 } are different types 2100 polar Point // polar and Point denote different types 2101) 2102 2103type TreeNode struct { 2104 left, right *TreeNode 2105 value *Comparable 2106} 2107 2108type Block interface { 2109 BlockSize() int 2110 Encrypt(src, dst []byte) 2111 Decrypt(src, dst []byte) 2112} 2113</pre> 2114 2115<p> 2116A defined type may have <a href="#Method_declarations">methods</a> associated with it. 2117It does not inherit any methods bound to the given type, 2118but the <a href="#Method_sets">method set</a> 2119of an interface type or of elements of a composite type remains unchanged: 2120</p> 2121 2122<pre> 2123// A Mutex is a data type with two methods, Lock and Unlock. 2124type Mutex struct { /* Mutex fields */ } 2125func (m *Mutex) Lock() { /* Lock implementation */ } 2126func (m *Mutex) Unlock() { /* Unlock implementation */ } 2127 2128// NewMutex has the same composition as Mutex but its method set is empty. 2129type NewMutex Mutex 2130 2131// The method set of PtrMutex's underlying type *Mutex remains unchanged, 2132// but the method set of PtrMutex is empty. 2133type PtrMutex *Mutex 2134 2135// The method set of *PrintableMutex contains the methods 2136// Lock and Unlock bound to its embedded field Mutex. 2137type PrintableMutex struct { 2138 Mutex 2139} 2140 2141// MyBlock is an interface type that has the same method set as Block. 2142type MyBlock Block 2143</pre> 2144 2145<p> 2146Type definitions may be used to define different boolean, numeric, 2147or string types and associate methods with them: 2148</p> 2149 2150<pre> 2151type TimeZone int 2152 2153const ( 2154 EST TimeZone = -(5 + iota) 2155 CST 2156 MST 2157 PST 2158) 2159 2160func (tz TimeZone) String() string { 2161 return fmt.Sprintf("GMT%+dh", tz) 2162} 2163</pre> 2164 2165 2166<h3 id="Variable_declarations">Variable declarations</h3> 2167 2168<p> 2169A variable declaration creates one or more <a href="#Variables">variables</a>, 2170binds corresponding identifiers to them, and gives each a type and an initial value. 2171</p> 2172 2173<pre class="ebnf"> 2174VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . 2175VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . 2176</pre> 2177 2178<pre> 2179var i int 2180var U, V, W float64 2181var k = 0 2182var x, y float32 = -1, -2 2183var ( 2184 i int 2185 u, v, s = 2.0, 3.0, "bar" 2186) 2187var re, im = complexSqrt(-1) 2188var _, found = entries[name] // map lookup; only interested in "found" 2189</pre> 2190 2191<p> 2192If a list of expressions is given, the variables are initialized 2193with the expressions following the rules for <a href="#Assignments">assignments</a>. 2194Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. 2195</p> 2196 2197<p> 2198If a type is present, each variable is given that type. 2199Otherwise, each variable is given the type of the corresponding 2200initialization value in the assignment. 2201If that value is an untyped constant, it is first implicitly 2202<a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 2203if it is an untyped boolean value, it is first implicitly converted to type <code>bool</code>. 2204The predeclared value <code>nil</code> cannot be used to initialize a variable 2205with no explicit type. 2206</p> 2207 2208<pre> 2209var d = math.Sin(0.5) // d is float64 2210var i = 42 // i is int 2211var t, ok = x.(T) // t is T, ok is bool 2212var n = nil // illegal 2213</pre> 2214 2215<p> 2216Implementation restriction: A compiler may make it illegal to declare a variable 2217inside a <a href="#Function_declarations">function body</a> if the variable is 2218never used. 2219</p> 2220 2221<h3 id="Short_variable_declarations">Short variable declarations</h3> 2222 2223<p> 2224A <i>short variable declaration</i> uses the syntax: 2225</p> 2226 2227<pre class="ebnf"> 2228ShortVarDecl = IdentifierList ":=" ExpressionList . 2229</pre> 2230 2231<p> 2232It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a> 2233with initializer expressions but no types: 2234</p> 2235 2236<pre class="grammar"> 2237"var" IdentifierList = ExpressionList . 2238</pre> 2239 2240<pre> 2241i, j := 0, 10 2242f := func() int { return 7 } 2243ch := make(chan int) 2244r, w, _ := os.Pipe() // os.Pipe() returns a connected pair of Files and an error, if any 2245_, y, _ := coord(p) // coord() returns three values; only interested in y coordinate 2246</pre> 2247 2248<p> 2249Unlike regular variable declarations, a short variable declaration may <i>redeclare</i> 2250variables provided they were originally declared earlier in the same block 2251(or the parameter lists if the block is the function body) with the same type, 2252and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new. 2253As a consequence, redeclaration can only appear in a multi-variable short declaration. 2254Redeclaration does not introduce a new variable; it just assigns a new value to the original. 2255</p> 2256 2257<pre> 2258field1, offset := nextField(str, 0) 2259field2, offset := nextField(str, offset) // redeclares offset 2260a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere 2261</pre> 2262 2263<p> 2264Short variable declarations may appear only inside functions. 2265In some contexts such as the initializers for 2266<a href="#If_statements">"if"</a>, 2267<a href="#For_statements">"for"</a>, or 2268<a href="#Switch_statements">"switch"</a> statements, 2269they can be used to declare local temporary variables. 2270</p> 2271 2272<h3 id="Function_declarations">Function declarations</h3> 2273 2274<p> 2275A function declaration binds an identifier, the <i>function name</i>, 2276to a function. 2277</p> 2278 2279<pre class="ebnf"> 2280FunctionDecl = "func" FunctionName Signature [ FunctionBody ] . 2281FunctionName = identifier . 2282FunctionBody = Block . 2283</pre> 2284 2285<p> 2286If the function's <a href="#Function_types">signature</a> declares 2287result parameters, the function body's statement list must end in 2288a <a href="#Terminating_statements">terminating statement</a>. 2289</p> 2290 2291<pre> 2292func IndexRune(s string, r rune) int { 2293 for i, c := range s { 2294 if c == r { 2295 return i 2296 } 2297 } 2298 // invalid: missing return statement 2299} 2300</pre> 2301 2302<p> 2303A function declaration may omit the body. Such a declaration provides the 2304signature for a function implemented outside Go, such as an assembly routine. 2305</p> 2306 2307<pre> 2308func min(x int, y int) int { 2309 if x < y { 2310 return x 2311 } 2312 return y 2313} 2314 2315func flushICache(begin, end uintptr) // implemented externally 2316</pre> 2317 2318<h3 id="Method_declarations">Method declarations</h3> 2319 2320<p> 2321A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>. 2322A method declaration binds an identifier, the <i>method name</i>, to a method, 2323and associates the method with the receiver's <i>base type</i>. 2324</p> 2325 2326<pre class="ebnf"> 2327MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] . 2328Receiver = Parameters . 2329</pre> 2330 2331<p> 2332The receiver is specified via an extra parameter section preceding the method 2333name. That parameter section must declare a single non-variadic parameter, the receiver. 2334Its type must be a <a href="#Type_definitions">defined</a> type <code>T</code> or a 2335pointer to a defined type <code>T</code>. <code>T</code> is called the receiver 2336<i>base type</i>. A receiver base type cannot be a pointer or interface type and 2337it must be defined in the same package as the method. 2338The method is said to be <i>bound</i> to its receiver base type and the method name 2339is visible only within <a href="#Selectors">selectors</a> for type <code>T</code> 2340or <code>*T</code>. 2341</p> 2342 2343<p> 2344A non-<a href="#Blank_identifier">blank</a> receiver identifier must be 2345<a href="#Uniqueness_of_identifiers">unique</a> in the method signature. 2346If the receiver's value is not referenced inside the body of the method, 2347its identifier may be omitted in the declaration. The same applies in 2348general to parameters of functions and methods. 2349</p> 2350 2351<p> 2352For a base type, the non-blank names of methods bound to it must be unique. 2353If the base type is a <a href="#Struct_types">struct type</a>, 2354the non-blank method and field names must be distinct. 2355</p> 2356 2357<p> 2358Given defined type <code>Point</code>, the declarations 2359</p> 2360 2361<pre> 2362func (p *Point) Length() float64 { 2363 return math.Sqrt(p.x * p.x + p.y * p.y) 2364} 2365 2366func (p *Point) Scale(factor float64) { 2367 p.x *= factor 2368 p.y *= factor 2369} 2370</pre> 2371 2372<p> 2373bind the methods <code>Length</code> and <code>Scale</code>, 2374with receiver type <code>*Point</code>, 2375to the base type <code>Point</code>. 2376</p> 2377 2378<p> 2379The type of a method is the type of a function with the receiver as first 2380argument. For instance, the method <code>Scale</code> has type 2381</p> 2382 2383<pre> 2384func(p *Point, factor float64) 2385</pre> 2386 2387<p> 2388However, a function declared this way is not a method. 2389</p> 2390 2391 2392<h2 id="Expressions">Expressions</h2> 2393 2394<p> 2395An expression specifies the computation of a value by applying 2396operators and functions to operands. 2397</p> 2398 2399<h3 id="Operands">Operands</h3> 2400 2401<p> 2402Operands denote the elementary values in an expression. An operand may be a 2403literal, a (possibly <a href="#Qualified_identifiers">qualified</a>) 2404non-<a href="#Blank_identifier">blank</a> identifier denoting a 2405<a href="#Constant_declarations">constant</a>, 2406<a href="#Variable_declarations">variable</a>, or 2407<a href="#Function_declarations">function</a>, 2408or a parenthesized expression. 2409</p> 2410 2411<p> 2412The <a href="#Blank_identifier">blank identifier</a> may appear as an 2413operand only on the left-hand side of an <a href="#Assignments">assignment</a>. 2414</p> 2415 2416<pre class="ebnf"> 2417Operand = Literal | OperandName | "(" Expression ")" . 2418Literal = BasicLit | CompositeLit | FunctionLit . 2419BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . 2420OperandName = identifier | QualifiedIdent . 2421</pre> 2422 2423<h3 id="Qualified_identifiers">Qualified identifiers</h3> 2424 2425<p> 2426A qualified identifier is an identifier qualified with a package name prefix. 2427Both the package name and the identifier must not be 2428<a href="#Blank_identifier">blank</a>. 2429</p> 2430 2431<pre class="ebnf"> 2432QualifiedIdent = PackageName "." identifier . 2433</pre> 2434 2435<p> 2436A qualified identifier accesses an identifier in a different package, which 2437must be <a href="#Import_declarations">imported</a>. 2438The identifier must be <a href="#Exported_identifiers">exported</a> and 2439declared in the <a href="#Blocks">package block</a> of that package. 2440</p> 2441 2442<pre> 2443math.Sin // denotes the Sin function in package math 2444</pre> 2445 2446<h3 id="Composite_literals">Composite literals</h3> 2447 2448<p> 2449Composite literals construct values for structs, arrays, slices, and maps 2450and create a new value each time they are evaluated. 2451They consist of the type of the literal followed by a brace-bound list of elements. 2452Each element may optionally be preceded by a corresponding key. 2453</p> 2454 2455<pre class="ebnf"> 2456CompositeLit = LiteralType LiteralValue . 2457LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | 2458 SliceType | MapType | TypeName . 2459LiteralValue = "{" [ ElementList [ "," ] ] "}" . 2460ElementList = KeyedElement { "," KeyedElement } . 2461KeyedElement = [ Key ":" ] Element . 2462Key = FieldName | Expression | LiteralValue . 2463FieldName = identifier . 2464Element = Expression | LiteralValue . 2465</pre> 2466 2467<p> 2468The LiteralType's underlying type must be a struct, array, slice, or map type 2469(the grammar enforces this constraint except when the type is given 2470as a TypeName). 2471The types of the elements and keys must be <a href="#Assignability">assignable</a> 2472to the respective field, element, and key types of the literal type; 2473there is no additional conversion. 2474The key is interpreted as a field name for struct literals, 2475an index for array and slice literals, and a key for map literals. 2476For map literals, all elements must have a key. It is an error 2477to specify multiple elements with the same field name or 2478constant key value. For non-constant map keys, see the section on 2479<a href="#Order_of_evaluation">evaluation order</a>. 2480</p> 2481 2482<p> 2483For struct literals the following rules apply: 2484</p> 2485<ul> 2486 <li>A key must be a field name declared in the struct type. 2487 </li> 2488 <li>An element list that does not contain any keys must 2489 list an element for each struct field in the 2490 order in which the fields are declared. 2491 </li> 2492 <li>If any element has a key, every element must have a key. 2493 </li> 2494 <li>An element list that contains keys does not need to 2495 have an element for each struct field. Omitted fields 2496 get the zero value for that field. 2497 </li> 2498 <li>A literal may omit the element list; such a literal evaluates 2499 to the zero value for its type. 2500 </li> 2501 <li>It is an error to specify an element for a non-exported 2502 field of a struct belonging to a different package. 2503 </li> 2504</ul> 2505 2506<p> 2507Given the declarations 2508</p> 2509<pre> 2510type Point3D struct { x, y, z float64 } 2511type Line struct { p, q Point3D } 2512</pre> 2513 2514<p> 2515one may write 2516</p> 2517 2518<pre> 2519origin := Point3D{} // zero value for Point3D 2520line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x 2521</pre> 2522 2523<p> 2524For array and slice literals the following rules apply: 2525</p> 2526<ul> 2527 <li>Each element has an associated integer index marking 2528 its position in the array. 2529 </li> 2530 <li>An element with a key uses the key as its index. The 2531 key must be a non-negative constant 2532 <a href="#Representability">representable</a> by 2533 a value of type <code>int</code>; and if it is typed 2534 it must be of integer type. 2535 </li> 2536 <li>An element without a key uses the previous element's index plus one. 2537 If the first element has no key, its index is zero. 2538 </li> 2539</ul> 2540 2541<p> 2542<a href="#Address_operators">Taking the address</a> of a composite literal 2543generates a pointer to a unique <a href="#Variables">variable</a> initialized 2544with the literal's value. 2545</p> 2546 2547<pre> 2548var pointer *Point3D = &Point3D{y: 1000} 2549</pre> 2550 2551<p> 2552Note that the <a href="#The_zero_value">zero value</a> for a slice or map 2553type is not the same as an initialized but empty value of the same type. 2554Consequently, taking the address of an empty slice or map composite literal 2555does not have the same effect as allocating a new slice or map value with 2556<a href="#Allocation">new</a>. 2557</p> 2558 2559<pre> 2560p1 := &[]int{} // p1 points to an initialized, empty slice with value []int{} and length 0 2561p2 := new([]int) // p2 points to an uninitialized slice with value nil and length 0 2562</pre> 2563 2564<p> 2565The length of an array literal is the length specified in the literal type. 2566If fewer elements than the length are provided in the literal, the missing 2567elements are set to the zero value for the array element type. 2568It is an error to provide elements with index values outside the index range 2569of the array. The notation <code>...</code> specifies an array length equal 2570to the maximum element index plus one. 2571</p> 2572 2573<pre> 2574buffer := [10]string{} // len(buffer) == 10 2575intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 2576days := [...]string{"Sat", "Sun"} // len(days) == 2 2577</pre> 2578 2579<p> 2580A slice literal describes the entire underlying array literal. 2581Thus the length and capacity of a slice literal are the maximum 2582element index plus one. A slice literal has the form 2583</p> 2584 2585<pre> 2586[]T{x1, x2, … xn} 2587</pre> 2588 2589<p> 2590and is shorthand for a slice operation applied to an array: 2591</p> 2592 2593<pre> 2594tmp := [n]T{x1, x2, … xn} 2595tmp[0 : n] 2596</pre> 2597 2598<p> 2599Within a composite literal of array, slice, or map type <code>T</code>, 2600elements or map keys that are themselves composite literals may elide the respective 2601literal type if it is identical to the element or key type of <code>T</code>. 2602Similarly, elements or keys that are addresses of composite literals may elide 2603the <code>&T</code> when the element or key type is <code>*T</code>. 2604</p> 2605 2606<pre> 2607[...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} 2608[][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} 2609[][]Point{{{0, 1}, {1, 2}}} // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}} 2610map[string]Point{"orig": {0, 0}} // same as map[string]Point{"orig": Point{0, 0}} 2611map[Point]string{{0, 0}: "orig"} // same as map[Point]string{Point{0, 0}: "orig"} 2612 2613type PPoint *Point 2614[2]*Point{{1.5, -3.5}, {}} // same as [2]*Point{&Point{1.5, -3.5}, &Point{}} 2615[2]PPoint{{1.5, -3.5}, {}} // same as [2]PPoint{PPoint(&Point{1.5, -3.5}), PPoint(&Point{})} 2616</pre> 2617 2618<p> 2619A parsing ambiguity arises when a composite literal using the 2620TypeName form of the LiteralType appears as an operand between the 2621<a href="#Keywords">keyword</a> and the opening brace of the block 2622of an "if", "for", or "switch" statement, and the composite literal 2623is not enclosed in parentheses, square brackets, or curly braces. 2624In this rare case, the opening brace of the literal is erroneously parsed 2625as the one introducing the block of statements. To resolve the ambiguity, 2626the composite literal must appear within parentheses. 2627</p> 2628 2629<pre> 2630if x == (T{a,b,c}[i]) { … } 2631if (x == T{a,b,c}[i]) { … } 2632</pre> 2633 2634<p> 2635Examples of valid array, slice, and map literals: 2636</p> 2637 2638<pre> 2639// list of prime numbers 2640primes := []int{2, 3, 5, 7, 9, 2147483647} 2641 2642// vowels[ch] is true if ch is a vowel 2643vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} 2644 2645// the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} 2646filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} 2647 2648// frequencies in Hz for equal-tempered scale (A4 = 440Hz) 2649noteFrequency := map[string]float32{ 2650 "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, 2651 "G0": 24.50, "A0": 27.50, "B0": 30.87, 2652} 2653</pre> 2654 2655 2656<h3 id="Function_literals">Function literals</h3> 2657 2658<p> 2659A function literal represents an anonymous <a href="#Function_declarations">function</a>. 2660</p> 2661 2662<pre class="ebnf"> 2663FunctionLit = "func" Signature FunctionBody . 2664</pre> 2665 2666<pre> 2667func(a, b int, z float64) bool { return a*b < int(z) } 2668</pre> 2669 2670<p> 2671A function literal can be assigned to a variable or invoked directly. 2672</p> 2673 2674<pre> 2675f := func(x, y int) int { return x + y } 2676func(ch chan int) { ch <- ACK }(replyChan) 2677</pre> 2678 2679<p> 2680Function literals are <i>closures</i>: they may refer to variables 2681defined in a surrounding function. Those variables are then shared between 2682the surrounding function and the function literal, and they survive as long 2683as they are accessible. 2684</p> 2685 2686 2687<h3 id="Primary_expressions">Primary expressions</h3> 2688 2689<p> 2690Primary expressions are the operands for unary and binary expressions. 2691</p> 2692 2693<pre class="ebnf"> 2694PrimaryExpr = 2695 Operand | 2696 Conversion | 2697 MethodExpr | 2698 PrimaryExpr Selector | 2699 PrimaryExpr Index | 2700 PrimaryExpr Slice | 2701 PrimaryExpr TypeAssertion | 2702 PrimaryExpr Arguments . 2703 2704Selector = "." identifier . 2705Index = "[" Expression "]" . 2706Slice = "[" [ Expression ] ":" [ Expression ] "]" | 2707 "[" [ Expression ] ":" Expression ":" Expression "]" . 2708TypeAssertion = "." "(" Type ")" . 2709Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . 2710</pre> 2711 2712 2713<pre> 2714x 27152 2716(s + ".txt") 2717f(3.1415, true) 2718Point{1, 2} 2719m["foo"] 2720s[i : j + 1] 2721obj.color 2722f.p[i].x() 2723</pre> 2724 2725 2726<h3 id="Selectors">Selectors</h3> 2727 2728<p> 2729For a <a href="#Primary_expressions">primary expression</a> <code>x</code> 2730that is not a <a href="#Package_clause">package name</a>, the 2731<i>selector expression</i> 2732</p> 2733 2734<pre> 2735x.f 2736</pre> 2737 2738<p> 2739denotes the field or method <code>f</code> of the value <code>x</code> 2740(or sometimes <code>*x</code>; see below). 2741The identifier <code>f</code> is called the (field or method) <i>selector</i>; 2742it must not be the <a href="#Blank_identifier">blank identifier</a>. 2743The type of the selector expression is the type of <code>f</code>. 2744If <code>x</code> is a package name, see the section on 2745<a href="#Qualified_identifiers">qualified identifiers</a>. 2746</p> 2747 2748<p> 2749A selector <code>f</code> may denote a field or method <code>f</code> of 2750a type <code>T</code>, or it may refer 2751to a field or method <code>f</code> of a nested 2752<a href="#Struct_types">embedded field</a> of <code>T</code>. 2753The number of embedded fields traversed 2754to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. 2755The depth of a field or method <code>f</code> 2756declared in <code>T</code> is zero. 2757The depth of a field or method <code>f</code> declared in 2758an embedded field <code>A</code> in <code>T</code> is the 2759depth of <code>f</code> in <code>A</code> plus one. 2760</p> 2761 2762<p> 2763The following rules apply to selectors: 2764</p> 2765 2766<ol> 2767<li> 2768For a value <code>x</code> of type <code>T</code> or <code>*T</code> 2769where <code>T</code> is not a pointer or interface type, 2770<code>x.f</code> denotes the field or method at the shallowest depth 2771in <code>T</code> where there 2772is such an <code>f</code>. 2773If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a> 2774with shallowest depth, the selector expression is illegal. 2775</li> 2776 2777<li> 2778For a value <code>x</code> of type <code>I</code> where <code>I</code> 2779is an interface type, <code>x.f</code> denotes the actual method with name 2780<code>f</code> of the dynamic value of <code>x</code>. 2781If there is no method with name <code>f</code> in the 2782<a href="#Method_sets">method set</a> of <code>I</code>, the selector 2783expression is illegal. 2784</li> 2785 2786<li> 2787As an exception, if the type of <code>x</code> is a <a href="#Type_definitions">defined</a> 2788pointer type and <code>(*x).f</code> is a valid selector expression denoting a field 2789(but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>. 2790</li> 2791 2792<li> 2793In all other cases, <code>x.f</code> is illegal. 2794</li> 2795 2796<li> 2797If <code>x</code> is of pointer type and has the value 2798<code>nil</code> and <code>x.f</code> denotes a struct field, 2799assigning to or evaluating <code>x.f</code> 2800causes a <a href="#Run_time_panics">run-time panic</a>. 2801</li> 2802 2803<li> 2804If <code>x</code> is of interface type and has the value 2805<code>nil</code>, <a href="#Calls">calling</a> or 2806<a href="#Method_values">evaluating</a> the method <code>x.f</code> 2807causes a <a href="#Run_time_panics">run-time panic</a>. 2808</li> 2809</ol> 2810 2811<p> 2812For example, given the declarations: 2813</p> 2814 2815<pre> 2816type T0 struct { 2817 x int 2818} 2819 2820func (*T0) M0() 2821 2822type T1 struct { 2823 y int 2824} 2825 2826func (T1) M1() 2827 2828type T2 struct { 2829 z int 2830 T1 2831 *T0 2832} 2833 2834func (*T2) M2() 2835 2836type Q *T2 2837 2838var t T2 // with t.T0 != nil 2839var p *T2 // with p != nil and (*p).T0 != nil 2840var q Q = p 2841</pre> 2842 2843<p> 2844one may write: 2845</p> 2846 2847<pre> 2848t.z // t.z 2849t.y // t.T1.y 2850t.x // (*t.T0).x 2851 2852p.z // (*p).z 2853p.y // (*p).T1.y 2854p.x // (*(*p).T0).x 2855 2856q.x // (*(*q).T0).x (*q).x is a valid field selector 2857 2858p.M0() // ((*p).T0).M0() M0 expects *T0 receiver 2859p.M1() // ((*p).T1).M1() M1 expects T1 receiver 2860p.M2() // p.M2() M2 expects *T2 receiver 2861t.M2() // (&t).M2() M2 expects *T2 receiver, see section on Calls 2862</pre> 2863 2864<p> 2865but the following is invalid: 2866</p> 2867 2868<pre> 2869q.M0() // (*q).M0 is valid but not a field selector 2870</pre> 2871 2872 2873<h3 id="Method_expressions">Method expressions</h3> 2874 2875<p> 2876If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2877<code>T.M</code> is a function that is callable as a regular function 2878with the same arguments as <code>M</code> prefixed by an additional 2879argument that is the receiver of the method. 2880</p> 2881 2882<pre class="ebnf"> 2883MethodExpr = ReceiverType "." MethodName . 2884ReceiverType = Type . 2885</pre> 2886 2887<p> 2888Consider a struct type <code>T</code> with two methods, 2889<code>Mv</code>, whose receiver is of type <code>T</code>, and 2890<code>Mp</code>, whose receiver is of type <code>*T</code>. 2891</p> 2892 2893<pre> 2894type T struct { 2895 a int 2896} 2897func (tv T) Mv(a int) int { return 0 } // value receiver 2898func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2899 2900var t T 2901</pre> 2902 2903<p> 2904The expression 2905</p> 2906 2907<pre> 2908T.Mv 2909</pre> 2910 2911<p> 2912yields a function equivalent to <code>Mv</code> but 2913with an explicit receiver as its first argument; it has signature 2914</p> 2915 2916<pre> 2917func(tv T, a int) int 2918</pre> 2919 2920<p> 2921That function may be called normally with an explicit receiver, so 2922these five invocations are equivalent: 2923</p> 2924 2925<pre> 2926t.Mv(7) 2927T.Mv(t, 7) 2928(T).Mv(t, 7) 2929f1 := T.Mv; f1(t, 7) 2930f2 := (T).Mv; f2(t, 7) 2931</pre> 2932 2933<p> 2934Similarly, the expression 2935</p> 2936 2937<pre> 2938(*T).Mp 2939</pre> 2940 2941<p> 2942yields a function value representing <code>Mp</code> with signature 2943</p> 2944 2945<pre> 2946func(tp *T, f float32) float32 2947</pre> 2948 2949<p> 2950For a method with a value receiver, one can derive a function 2951with an explicit pointer receiver, so 2952</p> 2953 2954<pre> 2955(*T).Mv 2956</pre> 2957 2958<p> 2959yields a function value representing <code>Mv</code> with signature 2960</p> 2961 2962<pre> 2963func(tv *T, a int) int 2964</pre> 2965 2966<p> 2967Such a function indirects through the receiver to create a value 2968to pass as the receiver to the underlying method; 2969the method does not overwrite the value whose address is passed in 2970the function call. 2971</p> 2972 2973<p> 2974The final case, a value-receiver function for a pointer-receiver method, 2975is illegal because pointer-receiver methods are not in the method set 2976of the value type. 2977</p> 2978 2979<p> 2980Function values derived from methods are called with function call syntax; 2981the receiver is provided as the first argument to the call. 2982That is, given <code>f := T.Mv</code>, <code>f</code> is invoked 2983as <code>f(t, 7)</code> not <code>t.f(7)</code>. 2984To construct a function that binds the receiver, use a 2985<a href="#Function_literals">function literal</a> or 2986<a href="#Method_values">method value</a>. 2987</p> 2988 2989<p> 2990It is legal to derive a function value from a method of an interface type. 2991The resulting function takes an explicit receiver of that interface type. 2992</p> 2993 2994<h3 id="Method_values">Method values</h3> 2995 2996<p> 2997If the expression <code>x</code> has static type <code>T</code> and 2998<code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2999<code>x.M</code> is called a <i>method value</i>. 3000The method value <code>x.M</code> is a function value that is callable 3001with the same arguments as a method call of <code>x.M</code>. 3002The expression <code>x</code> is evaluated and saved during the evaluation of the 3003method value; the saved copy is then used as the receiver in any calls, 3004which may be executed later. 3005</p> 3006 3007<pre> 3008type S struct { *T } 3009type T int 3010func (t T) M() { print(t) } 3011 3012t := new(T) 3013s := S{T: t} 3014f := t.M // receiver *t is evaluated and stored in f 3015g := s.M // receiver *(s.T) is evaluated and stored in g 3016*t = 42 // does not affect stored receivers in f and g 3017</pre> 3018 3019<p> 3020The type <code>T</code> may be an interface or non-interface type. 3021</p> 3022 3023<p> 3024As in the discussion of <a href="#Method_expressions">method expressions</a> above, 3025consider a struct type <code>T</code> with two methods, 3026<code>Mv</code>, whose receiver is of type <code>T</code>, and 3027<code>Mp</code>, whose receiver is of type <code>*T</code>. 3028</p> 3029 3030<pre> 3031type T struct { 3032 a int 3033} 3034func (tv T) Mv(a int) int { return 0 } // value receiver 3035func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 3036 3037var t T 3038var pt *T 3039func makeT() T 3040</pre> 3041 3042<p> 3043The expression 3044</p> 3045 3046<pre> 3047t.Mv 3048</pre> 3049 3050<p> 3051yields a function value of type 3052</p> 3053 3054<pre> 3055func(int) int 3056</pre> 3057 3058<p> 3059These two invocations are equivalent: 3060</p> 3061 3062<pre> 3063t.Mv(7) 3064f := t.Mv; f(7) 3065</pre> 3066 3067<p> 3068Similarly, the expression 3069</p> 3070 3071<pre> 3072pt.Mp 3073</pre> 3074 3075<p> 3076yields a function value of type 3077</p> 3078 3079<pre> 3080func(float32) float32 3081</pre> 3082 3083<p> 3084As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver 3085using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>. 3086</p> 3087 3088<p> 3089As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver 3090using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&t).Mp</code>. 3091</p> 3092 3093<pre> 3094f := t.Mv; f(7) // like t.Mv(7) 3095f := pt.Mp; f(7) // like pt.Mp(7) 3096f := pt.Mv; f(7) // like (*pt).Mv(7) 3097f := t.Mp; f(7) // like (&t).Mp(7) 3098f := makeT().Mp // invalid: result of makeT() is not addressable 3099</pre> 3100 3101<p> 3102Although the examples above use non-interface types, it is also legal to create a method value 3103from a value of interface type. 3104</p> 3105 3106<pre> 3107var i interface { M(int) } = myVal 3108f := i.M; f(7) // like i.M(7) 3109</pre> 3110 3111 3112<h3 id="Index_expressions">Index expressions</h3> 3113 3114<p> 3115A primary expression of the form 3116</p> 3117 3118<pre> 3119a[x] 3120</pre> 3121 3122<p> 3123denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>. 3124The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively. 3125The following rules apply: 3126</p> 3127 3128<p> 3129If <code>a</code> is not a map: 3130</p> 3131<ul> 3132 <li>the index <code>x</code> must be of integer type or an untyped constant</li> 3133 <li>a constant index must be non-negative and 3134 <a href="#Representability">representable</a> by a value of type <code>int</code></li> 3135 <li>a constant index that is untyped is given type <code>int</code></li> 3136 <li>the index <code>x</code> is <i>in range</i> if <code>0 <= x < len(a)</code>, 3137 otherwise it is <i>out of range</i></li> 3138</ul> 3139 3140<p> 3141For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>: 3142</p> 3143<ul> 3144 <li>a <a href="#Constants">constant</a> index must be in range</li> 3145 <li>if <code>x</code> is out of range at run time, 3146 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3147 <li><code>a[x]</code> is the array element at index <code>x</code> and the type of 3148 <code>a[x]</code> is the element type of <code>A</code></li> 3149</ul> 3150 3151<p> 3152For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type: 3153</p> 3154<ul> 3155 <li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li> 3156</ul> 3157 3158<p> 3159For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>: 3160</p> 3161<ul> 3162 <li>if <code>x</code> is out of range at run time, 3163 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3164 <li><code>a[x]</code> is the slice element at index <code>x</code> and the type of 3165 <code>a[x]</code> is the element type of <code>S</code></li> 3166</ul> 3167 3168<p> 3169For <code>a</code> of <a href="#String_types">string type</a>: 3170</p> 3171<ul> 3172 <li>a <a href="#Constants">constant</a> index must be in range 3173 if the string <code>a</code> is also constant</li> 3174 <li>if <code>x</code> is out of range at run time, 3175 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3176 <li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of 3177 <code>a[x]</code> is <code>byte</code></li> 3178 <li><code>a[x]</code> may not be assigned to</li> 3179</ul> 3180 3181<p> 3182For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>: 3183</p> 3184<ul> 3185 <li><code>x</code>'s type must be 3186 <a href="#Assignability">assignable</a> 3187 to the key type of <code>M</code></li> 3188 <li>if the map contains an entry with key <code>x</code>, 3189 <code>a[x]</code> is the map element with key <code>x</code> 3190 and the type of <code>a[x]</code> is the element type of <code>M</code></li> 3191 <li>if the map is <code>nil</code> or does not contain such an entry, 3192 <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> 3193 for the element type of <code>M</code></li> 3194</ul> 3195 3196<p> 3197Otherwise <code>a[x]</code> is illegal. 3198</p> 3199 3200<p> 3201An index expression on a map <code>a</code> of type <code>map[K]V</code> 3202used in an <a href="#Assignments">assignment</a> or initialization of the special form 3203</p> 3204 3205<pre> 3206v, ok = a[x] 3207v, ok := a[x] 3208var v, ok = a[x] 3209</pre> 3210 3211<p> 3212yields an additional untyped boolean value. The value of <code>ok</code> is 3213<code>true</code> if the key <code>x</code> is present in the map, and 3214<code>false</code> otherwise. 3215</p> 3216 3217<p> 3218Assigning to an element of a <code>nil</code> map causes a 3219<a href="#Run_time_panics">run-time panic</a>. 3220</p> 3221 3222 3223<h3 id="Slice_expressions">Slice expressions</h3> 3224 3225<p> 3226Slice expressions construct a substring or slice from a string, array, pointer 3227to array, or slice. There are two variants: a simple form that specifies a low 3228and high bound, and a full form that also specifies a bound on the capacity. 3229</p> 3230 3231<h4>Simple slice expressions</h4> 3232 3233<p> 3234For a string, array, pointer to array, or slice <code>a</code>, the primary expression 3235</p> 3236 3237<pre> 3238a[low : high] 3239</pre> 3240 3241<p> 3242constructs a substring or slice. The <i>indices</i> <code>low</code> and 3243<code>high</code> select which elements of operand <code>a</code> appear 3244in the result. The result has indices starting at 0 and length equal to 3245<code>high</code> - <code>low</code>. 3246After slicing the array <code>a</code> 3247</p> 3248 3249<pre> 3250a := [5]int{1, 2, 3, 4, 5} 3251s := a[1:4] 3252</pre> 3253 3254<p> 3255the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements 3256</p> 3257 3258<pre> 3259s[0] == 2 3260s[1] == 3 3261s[2] == 4 3262</pre> 3263 3264<p> 3265For convenience, any of the indices may be omitted. A missing <code>low</code> 3266index defaults to zero; a missing <code>high</code> index defaults to the length of the 3267sliced operand: 3268</p> 3269 3270<pre> 3271a[2:] // same as a[2 : len(a)] 3272a[:3] // same as a[0 : 3] 3273a[:] // same as a[0 : len(a)] 3274</pre> 3275 3276<p> 3277If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for 3278<code>(*a)[low : high]</code>. 3279</p> 3280 3281<p> 3282For arrays or strings, the indices are <i>in range</i> if 3283<code>0</code> <= <code>low</code> <= <code>high</code> <= <code>len(a)</code>, 3284otherwise they are <i>out of range</i>. 3285For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length. 3286A <a href="#Constants">constant</a> index must be non-negative and 3287<a href="#Representability">representable</a> by a value of type 3288<code>int</code>; for arrays or constant strings, constant indices must also be in range. 3289If both indices are constant, they must satisfy <code>low <= high</code>. 3290If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3291</p> 3292 3293<p> 3294Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice, 3295the result of the slice operation is a non-constant value of the same type as the operand. 3296For untyped string operands the result is a non-constant value of type <code>string</code>. 3297If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> 3298and the result of the slice operation is a slice with the same element type as the array. 3299</p> 3300 3301<p> 3302If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result 3303is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying 3304array with the operand. 3305</p> 3306 3307<pre> 3308var a [10]int 3309s1 := a[3:7] // underlying array of s1 is array a; &s1[2] == &a[5] 3310s2 := s1[1:4] // underlying array of s2 is underlying array of s1 which is array a; &s2[1] == &a[5] 3311s2[1] = 42 // s2[1] == s1[2] == a[5] == 42; they all refer to the same underlying array element 3312</pre> 3313 3314 3315<h4>Full slice expressions</h4> 3316 3317<p> 3318For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression 3319</p> 3320 3321<pre> 3322a[low : high : max] 3323</pre> 3324 3325<p> 3326constructs a slice of the same type, and with the same length and elements as the simple slice 3327expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity 3328by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0. 3329After slicing the array <code>a</code> 3330</p> 3331 3332<pre> 3333a := [5]int{1, 2, 3, 4, 5} 3334t := a[1:3:5] 3335</pre> 3336 3337<p> 3338the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements 3339</p> 3340 3341<pre> 3342t[0] == 2 3343t[1] == 3 3344</pre> 3345 3346<p> 3347As for simple slice expressions, if <code>a</code> is a pointer to an array, 3348<code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>. 3349If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>. 3350</p> 3351 3352<p> 3353The indices are <i>in range</i> if <code>0 <= low <= high <= max <= cap(a)</code>, 3354otherwise they are <i>out of range</i>. 3355A <a href="#Constants">constant</a> index must be non-negative and 3356<a href="#Representability">representable</a> by a value of type 3357<code>int</code>; for arrays, constant indices must also be in range. 3358If multiple indices are constant, the constants that are present must be in range relative to each 3359other. 3360If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3361</p> 3362 3363<h3 id="Type_assertions">Type assertions</h3> 3364 3365<p> 3366For an expression <code>x</code> of <a href="#Interface_types">interface type</a> 3367and a type <code>T</code>, the primary expression 3368</p> 3369 3370<pre> 3371x.(T) 3372</pre> 3373 3374<p> 3375asserts that <code>x</code> is not <code>nil</code> 3376and that the value stored in <code>x</code> is of type <code>T</code>. 3377The notation <code>x.(T)</code> is called a <i>type assertion</i>. 3378</p> 3379<p> 3380More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts 3381that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> 3382to the type <code>T</code>. 3383In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>; 3384otherwise the type assertion is invalid since it is not possible for <code>x</code> 3385to store a value of type <code>T</code>. 3386If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type 3387of <code>x</code> implements the interface <code>T</code>. 3388</p> 3389<p> 3390If the type assertion holds, the value of the expression is the value 3391stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, 3392a <a href="#Run_time_panics">run-time panic</a> occurs. 3393In other words, even though the dynamic type of <code>x</code> 3394is known only at run time, the type of <code>x.(T)</code> is 3395known to be <code>T</code> in a correct program. 3396</p> 3397 3398<pre> 3399var x interface{} = 7 // x has dynamic type int and value 7 3400i := x.(int) // i has type int and value 7 3401 3402type I interface { m() } 3403 3404func f(y I) { 3405 s := y.(string) // illegal: string does not implement I (missing method m) 3406 r := y.(io.Reader) // r has type io.Reader and the dynamic type of y must implement both I and io.Reader 3407 … 3408} 3409</pre> 3410 3411<p> 3412A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form 3413</p> 3414 3415<pre> 3416v, ok = x.(T) 3417v, ok := x.(T) 3418var v, ok = x.(T) 3419var v, ok interface{} = x.(T) // dynamic types of v and ok are T and bool 3420</pre> 3421 3422<p> 3423yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code> 3424if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is 3425the <a href="#The_zero_value">zero value</a> for type <code>T</code>. 3426No <a href="#Run_time_panics">run-time panic</a> occurs in this case. 3427</p> 3428 3429 3430<h3 id="Calls">Calls</h3> 3431 3432<p> 3433Given an expression <code>f</code> of function type 3434<code>F</code>, 3435</p> 3436 3437<pre> 3438f(a1, a2, … an) 3439</pre> 3440 3441<p> 3442calls <code>f</code> with arguments <code>a1, a2, … an</code>. 3443Except for one special case, arguments must be single-valued expressions 3444<a href="#Assignability">assignable</a> to the parameter types of 3445<code>F</code> and are evaluated before the function is called. 3446The type of the expression is the result type 3447of <code>F</code>. 3448A method invocation is similar but the method itself 3449is specified as a selector upon a value of the receiver type for 3450the method. 3451</p> 3452 3453<pre> 3454math.Atan2(x, y) // function call 3455var pt *Point 3456pt.Scale(3.5) // method call with receiver pt 3457</pre> 3458 3459<p> 3460In a function call, the function value and arguments are evaluated in 3461<a href="#Order_of_evaluation">the usual order</a>. 3462After they are evaluated, the parameters of the call are passed by value to the function 3463and the called function begins execution. 3464The return parameters of the function are passed by value 3465back to the caller when the function returns. 3466</p> 3467 3468<p> 3469Calling a <code>nil</code> function value 3470causes a <a href="#Run_time_panics">run-time panic</a>. 3471</p> 3472 3473<p> 3474As a special case, if the return values of a function or method 3475<code>g</code> are equal in number and individually 3476assignable to the parameters of another function or method 3477<code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> 3478will invoke <code>f</code> after binding the return values of 3479<code>g</code> to the parameters of <code>f</code> in order. The call 3480of <code>f</code> must contain no parameters other than the call of <code>g</code>, 3481and <code>g</code> must have at least one return value. 3482If <code>f</code> has a final <code>...</code> parameter, it is 3483assigned the return values of <code>g</code> that remain after 3484assignment of regular parameters. 3485</p> 3486 3487<pre> 3488func Split(s string, pos int) (string, string) { 3489 return s[0:pos], s[pos:] 3490} 3491 3492func Join(s, t string) string { 3493 return s + t 3494} 3495 3496if Join(Split(value, len(value)/2)) != value { 3497 log.Panic("test fails") 3498} 3499</pre> 3500 3501<p> 3502A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> 3503of (the type of) <code>x</code> contains <code>m</code> and the 3504argument list can be assigned to the parameter list of <code>m</code>. 3505If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method 3506set contains <code>m</code>, <code>x.m()</code> is shorthand 3507for <code>(&x).m()</code>: 3508</p> 3509 3510<pre> 3511var p Point 3512p.Scale(3.5) 3513</pre> 3514 3515<p> 3516There is no distinct method type and there are no method literals. 3517</p> 3518 3519<h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> 3520 3521<p> 3522If <code>f</code> is <a href="#Function_types">variadic</a> with a final 3523parameter <code>p</code> of type <code>...T</code>, then within <code>f</code> 3524the type of <code>p</code> is equivalent to type <code>[]T</code>. 3525If <code>f</code> is invoked with no actual arguments for <code>p</code>, 3526the value passed to <code>p</code> is <code>nil</code>. 3527Otherwise, the value passed is a new slice 3528of type <code>[]T</code> with a new underlying array whose successive elements 3529are the actual arguments, which all must be <a href="#Assignability">assignable</a> 3530to <code>T</code>. The length and capacity of the slice is therefore 3531the number of arguments bound to <code>p</code> and may differ for each 3532call site. 3533</p> 3534 3535<p> 3536Given the function and calls 3537</p> 3538<pre> 3539func Greeting(prefix string, who ...string) 3540Greeting("nobody") 3541Greeting("hello:", "Joe", "Anna", "Eileen") 3542</pre> 3543 3544<p> 3545within <code>Greeting</code>, <code>who</code> will have the value 3546<code>nil</code> in the first call, and 3547<code>[]string{"Joe", "Anna", "Eileen"}</code> in the second. 3548</p> 3549 3550<p> 3551If the final argument is assignable to a slice type <code>[]T</code> and 3552is followed by <code>...</code>, it is passed unchanged as the value 3553for a <code>...T</code> parameter. In this case no new slice is created. 3554</p> 3555 3556<p> 3557Given the slice <code>s</code> and call 3558</p> 3559 3560<pre> 3561s := []string{"James", "Jasmine"} 3562Greeting("goodbye:", s...) 3563</pre> 3564 3565<p> 3566within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> 3567with the same underlying array. 3568</p> 3569 3570 3571<h3 id="Operators">Operators</h3> 3572 3573<p> 3574Operators combine operands into expressions. 3575</p> 3576 3577<pre class="ebnf"> 3578Expression = UnaryExpr | Expression binary_op Expression . 3579UnaryExpr = PrimaryExpr | unary_op UnaryExpr . 3580 3581binary_op = "||" | "&&" | rel_op | add_op | mul_op . 3582rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . 3583add_op = "+" | "-" | "|" | "^" . 3584mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . 3585 3586unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . 3587</pre> 3588 3589<p> 3590Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. 3591For other binary operators, the operand types must be <a href="#Type_identity">identical</a> 3592unless the operation involves shifts or untyped <a href="#Constants">constants</a>. 3593For operations involving constants only, see the section on 3594<a href="#Constant_expressions">constant expressions</a>. 3595</p> 3596 3597<p> 3598Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> 3599and the other operand is not, the constant is implicitly <a href="#Conversions">converted</a> 3600to the type of the other operand. 3601</p> 3602 3603<p> 3604The right operand in a shift expression must have integer type 3605or be an untyped constant <a href="#Representability">representable</a> by a 3606value of type <code>uint</code>. 3607If the left operand of a non-constant shift expression is an untyped constant, 3608it is first implicitly converted to the type it would assume if the shift expression were 3609replaced by its left operand alone. 3610</p> 3611 3612<pre> 3613var a [1024]byte 3614var s uint = 33 3615 3616// The results of the following examples are given for 64-bit ints. 3617var i = 1<<s // 1 has type int 3618var j int32 = 1<<s // 1 has type int32; j == 0 3619var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 3620var m int = 1.0<<s // 1.0 has type int; m == 1<<33 3621var n = 1.0<<s == j // 1.0 has type int32; n == true 3622var o = 1<<s == 2<<s // 1 and 2 have type int; o == false 3623var p = 1<<s == 1<<33 // 1 has type int; p == true 3624var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift 3625var u1 = 1.0<<s != 0 // illegal: 1.0 has type float64, cannot shift 3626var u2 = 1<<s != 1.0 // illegal: 1 has type float64, cannot shift 3627var v float32 = 1<<s // illegal: 1 has type float32, cannot shift 3628var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression; w == 1<<33 3629var x = a[1.0<<s] // panics: 1.0 has type int, but 1<<33 overflows array bounds 3630var b = make([]byte, 1.0<<s) // 1.0 has type int; len(b) == 1<<33 3631 3632// The results of the following examples are given for 32-bit ints, 3633// which means the shifts will overflow. 3634var mm int = 1.0<<s // 1.0 has type int; mm == 0 3635var oo = 1<<s == 2<<s // 1 and 2 have type int; oo == true 3636var pp = 1<<s == 1<<33 // illegal: 1 has type int, but 1<<33 overflows int 3637var xx = a[1.0<<s] // 1.0 has type int; xx == a[0] 3638var bb = make([]byte, 1.0<<s) // 1.0 has type int; len(bb) == 0 3639</pre> 3640 3641<h4 id="Operator_precedence">Operator precedence</h4> 3642<p> 3643Unary operators have the highest precedence. 3644As the <code>++</code> and <code>--</code> operators form 3645statements, not expressions, they fall 3646outside the operator hierarchy. 3647As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. 3648</p> 3649 3650<p> 3651There are five precedence levels for binary operators. 3652Multiplication operators bind strongest, followed by addition 3653operators, comparison operators, <code>&&</code> (logical AND), 3654and finally <code>||</code> (logical OR): 3655</p> 3656 3657<pre class="grammar"> 3658Precedence Operator 3659 5 * / % << >> & &^ 3660 4 + - | ^ 3661 3 == != < <= > >= 3662 2 && 3663 1 || 3664</pre> 3665 3666<p> 3667Binary operators of the same precedence associate from left to right. 3668For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. 3669</p> 3670 3671<pre> 3672+x 367323 + 3*x[i] 3674x <= f() 3675^a >> b 3676f() || g() 3677x == y+1 && <-chanInt > 0 3678</pre> 3679 3680 3681<h3 id="Arithmetic_operators">Arithmetic operators</h3> 3682<p> 3683Arithmetic operators apply to numeric values and yield a result of the same 3684type as the first operand. The four standard arithmetic operators (<code>+</code>, 3685<code>-</code>, <code>*</code>, <code>/</code>) apply to integer, 3686floating-point, and complex types; <code>+</code> also applies to strings. 3687The bitwise logical and shift operators apply to integers only. 3688</p> 3689 3690<pre class="grammar"> 3691+ sum integers, floats, complex values, strings 3692- difference integers, floats, complex values 3693* product integers, floats, complex values 3694/ quotient integers, floats, complex values 3695% remainder integers 3696 3697& bitwise AND integers 3698| bitwise OR integers 3699^ bitwise XOR integers 3700&^ bit clear (AND NOT) integers 3701 3702<< left shift integer << integer >= 0 3703>> right shift integer >> integer >= 0 3704</pre> 3705 3706 3707<h4 id="Integer_operators">Integer operators</h4> 3708 3709<p> 3710For two integer values <code>x</code> and <code>y</code>, the integer quotient 3711<code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following 3712relationships: 3713</p> 3714 3715<pre> 3716x = q*y + r and |r| < |y| 3717</pre> 3718 3719<p> 3720with <code>x / y</code> truncated towards zero 3721(<a href="https://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). 3722</p> 3723 3724<pre> 3725 x y x / y x % y 3726 5 3 1 2 3727-5 3 -1 -2 3728 5 -3 -1 2 3729-5 -3 1 -2 3730</pre> 3731 3732<p> 3733The one exception to this rule is that if the dividend <code>x</code> is 3734the most negative value for the int type of <code>x</code>, the quotient 3735<code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>) 3736due to two's-complement <a href="#Integer_overflow">integer overflow</a>: 3737</p> 3738 3739<pre> 3740 x, q 3741int8 -128 3742int16 -32768 3743int32 -2147483648 3744int64 -9223372036854775808 3745</pre> 3746 3747<p> 3748If the divisor is a <a href="#Constants">constant</a>, it must not be zero. 3749If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3750If the dividend is non-negative and the divisor is a constant power of 2, 3751the division may be replaced by a right shift, and computing the remainder may 3752be replaced by a bitwise AND operation: 3753</p> 3754 3755<pre> 3756 x x / 4 x % 4 x >> 2 x & 3 3757 11 2 3 2 3 3758-11 -2 -3 -3 1 3759</pre> 3760 3761<p> 3762The shift operators shift the left operand by the shift count specified by the 3763right operand, which must be non-negative. If the shift count is negative at run time, 3764a <a href="#Run_time_panics">run-time panic</a> occurs. 3765The shift operators implement arithmetic shifts if the left operand is a signed 3766integer and logical shifts if it is an unsigned integer. 3767There is no upper limit on the shift count. Shifts behave 3768as if the left operand is shifted <code>n</code> times by 1 for a shift 3769count of <code>n</code>. 3770As a result, <code>x << 1</code> is the same as <code>x*2</code> 3771and <code>x >> 1</code> is the same as 3772<code>x/2</code> but truncated towards negative infinity. 3773</p> 3774 3775<p> 3776For integer operands, the unary operators 3777<code>+</code>, <code>-</code>, and <code>^</code> are defined as 3778follows: 3779</p> 3780 3781<pre class="grammar"> 3782+x is 0 + x 3783-x negation is 0 - x 3784^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x 3785 and m = -1 for signed x 3786</pre> 3787 3788 3789<h4 id="Integer_overflow">Integer overflow</h4> 3790 3791<p> 3792For unsigned integer values, the operations <code>+</code>, 3793<code>-</code>, <code>*</code>, and <code><<</code> are 3794computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of 3795the <a href="#Numeric_types">unsigned integer</a>'s type. 3796Loosely speaking, these unsigned integer operations 3797discard high bits upon overflow, and programs may rely on "wrap around". 3798</p> 3799<p> 3800For signed integers, the operations <code>+</code>, 3801<code>-</code>, <code>*</code>, <code>/</code>, and <code><<</code> may legally 3802overflow and the resulting value exists and is deterministically defined 3803by the signed integer representation, the operation, and its operands. 3804Overflow does not cause a <a href="#Run_time_panics">run-time panic</a>. 3805A compiler may not optimize code under the assumption that overflow does 3806not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. 3807</p> 3808 3809 3810<h4 id="Floating_point_operators">Floating-point operators</h4> 3811 3812<p> 3813For floating-point and complex numbers, 3814<code>+x</code> is the same as <code>x</code>, 3815while <code>-x</code> is the negation of <code>x</code>. 3816The result of a floating-point or complex division by zero is not specified beyond the 3817IEEE 754 standard; whether a <a href="#Run_time_panics">run-time panic</a> 3818occurs is implementation-specific. 3819</p> 3820 3821<p> 3822An implementation may combine multiple floating-point operations into a single 3823fused operation, possibly across statements, and produce a result that differs 3824from the value obtained by executing and rounding the instructions individually. 3825An explicit floating-point type <a href="#Conversions">conversion</a> rounds to 3826the precision of the target type, preventing fusion that would discard that rounding. 3827</p> 3828 3829<p> 3830For instance, some architectures provide a "fused multiply and add" (FMA) instruction 3831that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>. 3832These examples show when a Go implementation can use that instruction: 3833</p> 3834 3835<pre> 3836// FMA allowed for computing r, because x*y is not explicitly rounded: 3837r = x*y + z 3838r = z; r += x*y 3839t = x*y; r = t + z 3840*p = x*y; r = *p + z 3841r = x*y + float64(z) 3842 3843// FMA disallowed for computing r, because it would omit rounding of x*y: 3844r = float64(x*y) + z 3845r = z; r += float64(x*y) 3846t = float64(x*y); r = t + z 3847</pre> 3848 3849<h4 id="String_concatenation">String concatenation</h4> 3850 3851<p> 3852Strings can be concatenated using the <code>+</code> operator 3853or the <code>+=</code> assignment operator: 3854</p> 3855 3856<pre> 3857s := "hi" + string(c) 3858s += " and good bye" 3859</pre> 3860 3861<p> 3862String addition creates a new string by concatenating the operands. 3863</p> 3864 3865 3866<h3 id="Comparison_operators">Comparison operators</h3> 3867 3868<p> 3869Comparison operators compare two operands and yield an untyped boolean value. 3870</p> 3871 3872<pre class="grammar"> 3873== equal 3874!= not equal 3875< less 3876<= less or equal 3877> greater 3878>= greater or equal 3879</pre> 3880 3881<p> 3882In any comparison, the first operand 3883must be <a href="#Assignability">assignable</a> 3884to the type of the second operand, or vice versa. 3885</p> 3886<p> 3887The equality operators <code>==</code> and <code>!=</code> apply 3888to operands that are <i>comparable</i>. 3889The ordering operators <code><</code>, <code><=</code>, <code>></code>, and <code>>=</code> 3890apply to operands that are <i>ordered</i>. 3891These terms and the result of the comparisons are defined as follows: 3892</p> 3893 3894<ul> 3895 <li> 3896 Boolean values are comparable. 3897 Two boolean values are equal if they are either both 3898 <code>true</code> or both <code>false</code>. 3899 </li> 3900 3901 <li> 3902 Integer values are comparable and ordered, in the usual way. 3903 </li> 3904 3905 <li> 3906 Floating-point values are comparable and ordered, 3907 as defined by the IEEE 754 standard. 3908 </li> 3909 3910 <li> 3911 Complex values are comparable. 3912 Two complex values <code>u</code> and <code>v</code> are 3913 equal if both <code>real(u) == real(v)</code> and 3914 <code>imag(u) == imag(v)</code>. 3915 </li> 3916 3917 <li> 3918 String values are comparable and ordered, lexically byte-wise. 3919 </li> 3920 3921 <li> 3922 Pointer values are comparable. 3923 Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>. 3924 Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal. 3925 </li> 3926 3927 <li> 3928 Channel values are comparable. 3929 Two channel values are equal if they were created by the same call to 3930 <a href="#Making_slices_maps_and_channels"><code>make</code></a> 3931 or if both have value <code>nil</code>. 3932 </li> 3933 3934 <li> 3935 Interface values are comparable. 3936 Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types 3937 and equal dynamic values or if both have value <code>nil</code>. 3938 </li> 3939 3940 <li> 3941 A value <code>x</code> of non-interface type <code>X</code> and 3942 a value <code>t</code> of interface type <code>T</code> are comparable when values 3943 of type <code>X</code> are comparable and 3944 <code>X</code> implements <code>T</code>. 3945 They are equal if <code>t</code>'s dynamic type is identical to <code>X</code> 3946 and <code>t</code>'s dynamic value is equal to <code>x</code>. 3947 </li> 3948 3949 <li> 3950 Struct values are comparable if all their fields are comparable. 3951 Two struct values are equal if their corresponding 3952 non-<a href="#Blank_identifier">blank</a> fields are equal. 3953 </li> 3954 3955 <li> 3956 Array values are comparable if values of the array element type are comparable. 3957 Two array values are equal if their corresponding elements are equal. 3958 </li> 3959</ul> 3960 3961<p> 3962A comparison of two interface values with identical dynamic types 3963causes a <a href="#Run_time_panics">run-time panic</a> if values 3964of that type are not comparable. This behavior applies not only to direct interface 3965value comparisons but also when comparing arrays of interface values 3966or structs with interface-valued fields. 3967</p> 3968 3969<p> 3970Slice, map, and function values are not comparable. 3971However, as a special case, a slice, map, or function value may 3972be compared to the predeclared identifier <code>nil</code>. 3973Comparison of pointer, channel, and interface values to <code>nil</code> 3974is also allowed and follows from the general rules above. 3975</p> 3976 3977<pre> 3978const c = 3 < 4 // c is the untyped boolean constant true 3979 3980type MyBool bool 3981var x, y int 3982var ( 3983 // The result of a comparison is an untyped boolean. 3984 // The usual assignment rules apply. 3985 b3 = x == y // b3 has type bool 3986 b4 bool = x == y // b4 has type bool 3987 b5 MyBool = x == y // b5 has type MyBool 3988) 3989</pre> 3990 3991<h3 id="Logical_operators">Logical operators</h3> 3992 3993<p> 3994Logical operators apply to <a href="#Boolean_types">boolean</a> values 3995and yield a result of the same type as the operands. 3996The right operand is evaluated conditionally. 3997</p> 3998 3999<pre class="grammar"> 4000&& conditional AND p && q is "if p then q else false" 4001|| conditional OR p || q is "if p then true else q" 4002! NOT !p is "not p" 4003</pre> 4004 4005 4006<h3 id="Address_operators">Address operators</h3> 4007 4008<p> 4009For an operand <code>x</code> of type <code>T</code>, the address operation 4010<code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. 4011The operand must be <i>addressable</i>, 4012that is, either a variable, pointer indirection, or slice indexing 4013operation; or a field selector of an addressable struct operand; 4014or an array indexing operation of an addressable array. 4015As an exception to the addressability requirement, <code>x</code> may also be a 4016(possibly parenthesized) 4017<a href="#Composite_literals">composite literal</a>. 4018If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>, 4019then the evaluation of <code>&x</code> does too. 4020</p> 4021 4022<p> 4023For an operand <code>x</code> of pointer type <code>*T</code>, the pointer 4024indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed 4025to by <code>x</code>. 4026If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code> 4027will cause a <a href="#Run_time_panics">run-time panic</a>. 4028</p> 4029 4030<pre> 4031&x 4032&a[f(2)] 4033&Point{2, 3} 4034*p 4035*pf(x) 4036 4037var x *int = nil 4038*x // causes a run-time panic 4039&*x // causes a run-time panic 4040</pre> 4041 4042 4043<h3 id="Receive_operator">Receive operator</h3> 4044 4045<p> 4046For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, 4047the value of the receive operation <code><-ch</code> is the value received 4048from the channel <code>ch</code>. The channel direction must permit receive operations, 4049and the type of the receive operation is the element type of the channel. 4050The expression blocks until a value is available. 4051Receiving from a <code>nil</code> channel blocks forever. 4052A receive operation on a <a href="#Close">closed</a> channel can always proceed 4053immediately, yielding the element type's <a href="#The_zero_value">zero value</a> 4054after any previously sent values have been received. 4055</p> 4056 4057<pre> 4058v1 := <-ch 4059v2 = <-ch 4060f(<-ch) 4061<-strobe // wait until clock pulse and discard received value 4062</pre> 4063 4064<p> 4065A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form 4066</p> 4067 4068<pre> 4069x, ok = <-ch 4070x, ok := <-ch 4071var x, ok = <-ch 4072var x, ok T = <-ch 4073</pre> 4074 4075<p> 4076yields an additional untyped boolean result reporting whether the 4077communication succeeded. The value of <code>ok</code> is <code>true</code> 4078if the value received was delivered by a successful send operation to the 4079channel, or <code>false</code> if it is a zero value generated because the 4080channel is closed and empty. 4081</p> 4082 4083 4084<h3 id="Conversions">Conversions</h3> 4085 4086<p> 4087A conversion changes the <a href="#Types">type</a> of an expression 4088to the type specified by the conversion. 4089A conversion may appear literally in the source, or it may be <i>implied</i> 4090by the context in which an expression appears. 4091</p> 4092 4093<p> 4094An <i>explicit</i> conversion is an expression of the form <code>T(x)</code> 4095where <code>T</code> is a type and <code>x</code> is an expression 4096that can be converted to type <code>T</code>. 4097</p> 4098 4099<pre class="ebnf"> 4100Conversion = Type "(" Expression [ "," ] ")" . 4101</pre> 4102 4103<p> 4104If the type starts with the operator <code>*</code> or <code><-</code>, 4105or if the type starts with the keyword <code>func</code> 4106and has no result list, it must be parenthesized when 4107necessary to avoid ambiguity: 4108</p> 4109 4110<pre> 4111*Point(p) // same as *(Point(p)) 4112(*Point)(p) // p is converted to *Point 4113<-chan int(c) // same as <-(chan int(c)) 4114(<-chan int)(c) // c is converted to <-chan int 4115func()(x) // function signature func() x 4116(func())(x) // x is converted to func() 4117(func() int)(x) // x is converted to func() int 4118func() int(x) // x is converted to func() int (unambiguous) 4119</pre> 4120 4121<p> 4122A <a href="#Constants">constant</a> value <code>x</code> can be converted to 4123type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a> 4124by a value of <code>T</code>. 4125As a special case, an integer constant <code>x</code> can be explicitly converted to a 4126<a href="#String_types">string type</a> using the 4127<a href="#Conversions_to_and_from_a_string_type">same rule</a> 4128as for non-constant <code>x</code>. 4129</p> 4130 4131<p> 4132Converting a constant yields a typed constant as result. 4133</p> 4134 4135<pre> 4136uint(iota) // iota value of type uint 4137float32(2.718281828) // 2.718281828 of type float32 4138complex128(1) // 1.0 + 0.0i of type complex128 4139float32(0.49999999) // 0.5 of type float32 4140float64(-1e-1000) // 0.0 of type float64 4141string('x') // "x" of type string 4142string(0x266c) // "♬" of type string 4143MyString("foo" + "bar") // "foobar" of type MyString 4144string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant 4145(*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type 4146int(1.2) // illegal: 1.2 cannot be represented as an int 4147string(65.0) // illegal: 65.0 is not an integer constant 4148</pre> 4149 4150<p> 4151A non-constant value <code>x</code> can be converted to type <code>T</code> 4152in any of these cases: 4153</p> 4154 4155<ul> 4156 <li> 4157 <code>x</code> is <a href="#Assignability">assignable</a> 4158 to <code>T</code>. 4159 </li> 4160 <li> 4161 ignoring struct tags (see below), 4162 <code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a> 4163 <a href="#Types">underlying types</a>. 4164 </li> 4165 <li> 4166 ignoring struct tags (see below), 4167 <code>x</code>'s type and <code>T</code> are pointer types 4168 that are not <a href="#Type_definitions">defined types</a>, 4169 and their pointer base types have identical underlying types. 4170 </li> 4171 <li> 4172 <code>x</code>'s type and <code>T</code> are both integer or floating 4173 point types. 4174 </li> 4175 <li> 4176 <code>x</code>'s type and <code>T</code> are both complex types. 4177 </li> 4178 <li> 4179 <code>x</code> is an integer or a slice of bytes or runes 4180 and <code>T</code> is a string type. 4181 </li> 4182 <li> 4183 <code>x</code> is a string and <code>T</code> is a slice of bytes or runes. 4184 </li> 4185 <li> 4186 <code>x</code> is a slice, <code>T</code> is a pointer to an array, 4187 and the slice and array types have <a href="#Type_identity">identical</a> element types. 4188 </li> 4189</ul> 4190 4191<p> 4192<a href="#Struct_types">Struct tags</a> are ignored when comparing struct types 4193for identity for the purpose of conversion: 4194</p> 4195 4196<pre> 4197type Person struct { 4198 Name string 4199 Address *struct { 4200 Street string 4201 City string 4202 } 4203} 4204 4205var data *struct { 4206 Name string `json:"name"` 4207 Address *struct { 4208 Street string `json:"street"` 4209 City string `json:"city"` 4210 } `json:"address"` 4211} 4212 4213var person = (*Person)(data) // ignoring tags, the underlying types are identical 4214</pre> 4215 4216<p> 4217Specific rules apply to (non-constant) conversions between numeric types or 4218to and from a string type. 4219These conversions may change the representation of <code>x</code> 4220and incur a run-time cost. 4221All other conversions only change the type but not the representation 4222of <code>x</code>. 4223</p> 4224 4225<p> 4226There is no linguistic mechanism to convert between pointers and integers. 4227The package <a href="#Package_unsafe"><code>unsafe</code></a> 4228implements this functionality under 4229restricted circumstances. 4230</p> 4231 4232<h4>Conversions between numeric types</h4> 4233 4234<p> 4235For the conversion of non-constant numeric values, the following rules apply: 4236</p> 4237 4238<ol> 4239<li> 4240When converting between integer types, if the value is a signed integer, it is 4241sign extended to implicit infinite precision; otherwise it is zero extended. 4242It is then truncated to fit in the result type's size. 4243For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. 4244The conversion always yields a valid value; there is no indication of overflow. 4245</li> 4246<li> 4247When converting a floating-point number to an integer, the fraction is discarded 4248(truncation towards zero). 4249</li> 4250<li> 4251When converting an integer or floating-point number to a floating-point type, 4252or a complex number to another complex type, the result value is rounded 4253to the precision specified by the destination type. 4254For instance, the value of a variable <code>x</code> of type <code>float32</code> 4255may be stored using additional precision beyond that of an IEEE 754 32-bit number, 4256but float32(x) represents the result of rounding <code>x</code>'s value to 425732-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits 4258of precision, but <code>float32(x + 0.1)</code> does not. 4259</li> 4260</ol> 4261 4262<p> 4263In all non-constant conversions involving floating-point or complex values, 4264if the result type cannot represent the value the conversion 4265succeeds but the result value is implementation-dependent. 4266</p> 4267 4268<h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> 4269 4270<ol> 4271<li> 4272Converting a signed or unsigned integer value to a string type yields a 4273string containing the UTF-8 representation of the integer. Values outside 4274the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. 4275 4276<pre> 4277string('a') // "a" 4278string(-1) // "\ufffd" == "\xef\xbf\xbd" 4279string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" 4280type MyString string 4281MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" 4282</pre> 4283</li> 4284 4285<li> 4286Converting a slice of bytes to a string type yields 4287a string whose successive bytes are the elements of the slice. 4288 4289<pre> 4290string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4291string([]byte{}) // "" 4292string([]byte(nil)) // "" 4293 4294type MyBytes []byte 4295string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 4296</pre> 4297</li> 4298 4299<li> 4300Converting a slice of runes to a string type yields 4301a string that is the concatenation of the individual rune values 4302converted to strings. 4303 4304<pre> 4305string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4306string([]rune{}) // "" 4307string([]rune(nil)) // "" 4308 4309type MyRunes []rune 4310string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 4311</pre> 4312</li> 4313 4314<li> 4315Converting a value of a string type to a slice of bytes type 4316yields a slice whose successive elements are the bytes of the string. 4317 4318<pre> 4319[]byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4320[]byte("") // []byte{} 4321 4322MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4323</pre> 4324</li> 4325 4326<li> 4327Converting a value of a string type to a slice of runes type 4328yields a slice containing the individual Unicode code points of the string. 4329 4330<pre> 4331[]rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4} 4332[]rune("") // []rune{} 4333 4334MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4} 4335</pre> 4336</li> 4337</ol> 4338 4339<h4 id="Conversions_from_slice_to_array_pointer">Conversions from slice to array pointer</h4> 4340 4341<p> 4342Converting a slice to an array pointer yields a pointer to the underlying array of the slice. 4343If the <a href="#Length_and_capacity">length</a> of the slice is less than the length of the array, 4344a <a href="#Run_time_panics">run-time panic</a> occurs. 4345</p> 4346 4347<pre> 4348s := make([]byte, 2, 4) 4349s0 := (*[0]byte)(s) // s0 != nil 4350s1 := (*[1]byte)(s[1:]) // &s1[0] == &s[1] 4351s2 := (*[2]byte)(s) // &s2[0] == &s[0] 4352s4 := (*[4]byte)(s) // panics: len([4]byte) > len(s) 4353 4354var t []string 4355t0 := (*[0]string)(t) // t0 == nil 4356t1 := (*[1]string)(t) // panics: len([1]string) > len(t) 4357 4358u := make([]byte, 0) 4359u0 := (*[0]byte)(u) // u0 != nil 4360</pre> 4361 4362<h3 id="Constant_expressions">Constant expressions</h3> 4363 4364<p> 4365Constant expressions may contain only <a href="#Constants">constant</a> 4366operands and are evaluated at compile time. 4367</p> 4368 4369<p> 4370Untyped boolean, numeric, and string constants may be used as operands 4371wherever it is legal to use an operand of boolean, numeric, or string type, 4372respectively. 4373</p> 4374 4375<p> 4376A constant <a href="#Comparison_operators">comparison</a> always yields 4377an untyped boolean constant. If the left operand of a constant 4378<a href="#Operators">shift expression</a> is an untyped constant, the 4379result is an integer constant; otherwise it is a constant of the same 4380type as the left operand, which must be of 4381<a href="#Numeric_types">integer type</a>. 4382</p> 4383 4384<p> 4385Any other operation on untyped constants results in an untyped constant of the 4386same kind; that is, a boolean, integer, floating-point, complex, or string 4387constant. 4388If the untyped operands of a binary operation (other than a shift) are of 4389different kinds, the result is of the operand's kind that appears later in this 4390list: integer, rune, floating-point, complex. 4391For example, an untyped integer constant divided by an 4392untyped complex constant yields an untyped complex constant. 4393</p> 4394 4395<pre> 4396const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) 4397const b = 15 / 4 // b == 3 (untyped integer constant) 4398const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) 4399const Θ float64 = 3/2 // Θ == 1.0 (type float64, 3/2 is integer division) 4400const Π float64 = 3/2. // Π == 1.5 (type float64, 3/2. is float division) 4401const d = 1 << 3.0 // d == 8 (untyped integer constant) 4402const e = 1.0 << 3 // e == 8 (untyped integer constant) 4403const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32) 4404const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) 4405const h = "foo" > "bar" // h == true (untyped boolean constant) 4406const j = true // j == true (untyped boolean constant) 4407const k = 'w' + 1 // k == 'x' (untyped rune constant) 4408const l = "hi" // l == "hi" (untyped string constant) 4409const m = string(k) // m == "x" (type string) 4410const Σ = 1 - 0.707i // (untyped complex constant) 4411const Δ = Σ + 2.0e-4 // (untyped complex constant) 4412const Φ = iota*1i - 1/1i // (untyped complex constant) 4413</pre> 4414 4415<p> 4416Applying the built-in function <code>complex</code> to untyped 4417integer, rune, or floating-point constants yields 4418an untyped complex constant. 4419</p> 4420 4421<pre> 4422const ic = complex(0, c) // ic == 3.75i (untyped complex constant) 4423const iΘ = complex(0, Θ) // iΘ == 1i (type complex128) 4424</pre> 4425 4426<p> 4427Constant expressions are always evaluated exactly; intermediate values and the 4428constants themselves may require precision significantly larger than supported 4429by any predeclared type in the language. The following are legal declarations: 4430</p> 4431 4432<pre> 4433const Huge = 1 << 100 // Huge == 1267650600228229401496703205376 (untyped integer constant) 4434const Four int8 = Huge >> 98 // Four == 4 (type int8) 4435</pre> 4436 4437<p> 4438The divisor of a constant division or remainder operation must not be zero: 4439</p> 4440 4441<pre> 44423.14 / 0.0 // illegal: division by zero 4443</pre> 4444 4445<p> 4446The values of <i>typed</i> constants must always be accurately 4447<a href="#Representability">representable</a> by values 4448of the constant type. The following constant expressions are illegal: 4449</p> 4450 4451<pre> 4452uint(-1) // -1 cannot be represented as a uint 4453int(3.14) // 3.14 cannot be represented as an int 4454int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64 4455Four * 300 // operand 300 cannot be represented as an int8 (type of Four) 4456Four * 100 // product 400 cannot be represented as an int8 (type of Four) 4457</pre> 4458 4459<p> 4460The mask used by the unary bitwise complement operator <code>^</code> matches 4461the rule for non-constants: the mask is all 1s for unsigned constants 4462and -1 for signed and untyped constants. 4463</p> 4464 4465<pre> 4466^1 // untyped integer constant, equal to -2 4467uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8 4468^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) 4469int8(^1) // same as int8(-2) 4470^int8(1) // same as -1 ^ int8(1) = -2 4471</pre> 4472 4473<p> 4474Implementation restriction: A compiler may use rounding while 4475computing untyped floating-point or complex constant expressions; see 4476the implementation restriction in the section 4477on <a href="#Constants">constants</a>. This rounding may cause a 4478floating-point constant expression to be invalid in an integer 4479context, even if it would be integral when calculated using infinite 4480precision, and vice versa. 4481</p> 4482 4483 4484<h3 id="Order_of_evaluation">Order of evaluation</h3> 4485 4486<p> 4487At package level, <a href="#Package_initialization">initialization dependencies</a> 4488determine the evaluation order of individual initialization expressions in 4489<a href="#Variable_declarations">variable declarations</a>. 4490Otherwise, when evaluating the <a href="#Operands">operands</a> of an 4491expression, assignment, or 4492<a href="#Return_statements">return statement</a>, 4493all function calls, method calls, and 4494communication operations are evaluated in lexical left-to-right 4495order. 4496</p> 4497 4498<p> 4499For example, in the (function-local) assignment 4500</p> 4501<pre> 4502y[f()], ok = g(h(), i()+x[j()], <-c), k() 4503</pre> 4504<p> 4505the function calls and communication happen in the order 4506<code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, 4507<code><-c</code>, <code>g()</code>, and <code>k()</code>. 4508However, the order of those events compared to the evaluation 4509and indexing of <code>x</code> and the evaluation 4510of <code>y</code> is not specified. 4511</p> 4512 4513<pre> 4514a := 1 4515f := func() int { a++; return a } 4516x := []int{a, f()} // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified 4517m := map[int]int{a: 1, a: 2} // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified 4518n := map[int]int{a: f()} // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified 4519</pre> 4520 4521<p> 4522At package level, initialization dependencies override the left-to-right rule 4523for individual initialization expressions, but not for operands within each 4524expression: 4525</p> 4526 4527<pre> 4528var a, b, c = f() + v(), g(), sqr(u()) + v() 4529 4530func f() int { return c } 4531func g() int { return a } 4532func sqr(x int) int { return x*x } 4533 4534// functions u and v are independent of all other variables and functions 4535</pre> 4536 4537<p> 4538The function calls happen in the order 4539<code>u()</code>, <code>sqr()</code>, <code>v()</code>, 4540<code>f()</code>, <code>v()</code>, and <code>g()</code>. 4541</p> 4542 4543<p> 4544Floating-point operations within a single expression are evaluated according to 4545the associativity of the operators. Explicit parentheses affect the evaluation 4546by overriding the default associativity. 4547In the expression <code>x + (y + z)</code> the addition <code>y + z</code> 4548is performed before adding <code>x</code>. 4549</p> 4550 4551<h2 id="Statements">Statements</h2> 4552 4553<p> 4554Statements control execution. 4555</p> 4556 4557<pre class="ebnf"> 4558Statement = 4559 Declaration | LabeledStmt | SimpleStmt | 4560 GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | 4561 FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | 4562 DeferStmt . 4563 4564SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . 4565</pre> 4566 4567<h3 id="Terminating_statements">Terminating statements</h3> 4568 4569<p> 4570A <i>terminating statement</i> interrupts the regular flow of control in 4571a <a href="#Blocks">block</a>. The following statements are terminating: 4572</p> 4573 4574<ol> 4575<li> 4576 A <a href="#Return_statements">"return"</a> or 4577 <a href="#Goto_statements">"goto"</a> statement. 4578 <!-- ul below only for regular layout --> 4579 <ul> </ul> 4580</li> 4581 4582<li> 4583 A call to the built-in function 4584 <a href="#Handling_panics"><code>panic</code></a>. 4585 <!-- ul below only for regular layout --> 4586 <ul> </ul> 4587</li> 4588 4589<li> 4590 A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement. 4591 <!-- ul below only for regular layout --> 4592 <ul> </ul> 4593</li> 4594 4595<li> 4596 An <a href="#If_statements">"if" statement</a> in which: 4597 <ul> 4598 <li>the "else" branch is present, and</li> 4599 <li>both branches are terminating statements.</li> 4600 </ul> 4601</li> 4602 4603<li> 4604 A <a href="#For_statements">"for" statement</a> in which: 4605 <ul> 4606 <li>there are no "break" statements referring to the "for" statement, and</li> 4607 <li>the loop condition is absent, and</li> 4608 <li>the "for" statement does not use a range clause.</li> 4609 </ul> 4610</li> 4611 4612<li> 4613 A <a href="#Switch_statements">"switch" statement</a> in which: 4614 <ul> 4615 <li>there are no "break" statements referring to the "switch" statement,</li> 4616 <li>there is a default case, and</li> 4617 <li>the statement lists in each case, including the default, end in a terminating 4618 statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough" 4619 statement</a>.</li> 4620 </ul> 4621</li> 4622 4623<li> 4624 A <a href="#Select_statements">"select" statement</a> in which: 4625 <ul> 4626 <li>there are no "break" statements referring to the "select" statement, and</li> 4627 <li>the statement lists in each case, including the default if present, 4628 end in a terminating statement.</li> 4629 </ul> 4630</li> 4631 4632<li> 4633 A <a href="#Labeled_statements">labeled statement</a> labeling 4634 a terminating statement. 4635</li> 4636</ol> 4637 4638<p> 4639All other statements are not terminating. 4640</p> 4641 4642<p> 4643A <a href="#Blocks">statement list</a> ends in a terminating statement if the list 4644is not empty and its final non-empty statement is terminating. 4645</p> 4646 4647 4648<h3 id="Empty_statements">Empty statements</h3> 4649 4650<p> 4651The empty statement does nothing. 4652</p> 4653 4654<pre class="ebnf"> 4655EmptyStmt = . 4656</pre> 4657 4658 4659<h3 id="Labeled_statements">Labeled statements</h3> 4660 4661<p> 4662A labeled statement may be the target of a <code>goto</code>, 4663<code>break</code> or <code>continue</code> statement. 4664</p> 4665 4666<pre class="ebnf"> 4667LabeledStmt = Label ":" Statement . 4668Label = identifier . 4669</pre> 4670 4671<pre> 4672Error: log.Panic("error encountered") 4673</pre> 4674 4675 4676<h3 id="Expression_statements">Expression statements</h3> 4677 4678<p> 4679With the exception of specific built-in functions, 4680function and method <a href="#Calls">calls</a> and 4681<a href="#Receive_operator">receive operations</a> 4682can appear in statement context. Such statements may be parenthesized. 4683</p> 4684 4685<pre class="ebnf"> 4686ExpressionStmt = Expression . 4687</pre> 4688 4689<p> 4690The following built-in functions are not permitted in statement context: 4691</p> 4692 4693<pre> 4694append cap complex imag len make new real 4695unsafe.Add unsafe.Alignof unsafe.Offsetof unsafe.Sizeof unsafe.Slice 4696</pre> 4697 4698<pre> 4699h(x+y) 4700f.Close() 4701<-ch 4702(<-ch) 4703len("foo") // illegal if len is the built-in function 4704</pre> 4705 4706 4707<h3 id="Send_statements">Send statements</h3> 4708 4709<p> 4710A send statement sends a value on a channel. 4711The channel expression must be of <a href="#Channel_types">channel type</a>, 4712the channel direction must permit send operations, 4713and the type of the value to be sent must be <a href="#Assignability">assignable</a> 4714to the channel's element type. 4715</p> 4716 4717<pre class="ebnf"> 4718SendStmt = Channel "<-" Expression . 4719Channel = Expression . 4720</pre> 4721 4722<p> 4723Both the channel and the value expression are evaluated before communication 4724begins. Communication blocks until the send can proceed. 4725A send on an unbuffered channel can proceed if a receiver is ready. 4726A send on a buffered channel can proceed if there is room in the buffer. 4727A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>. 4728A send on a <code>nil</code> channel blocks forever. 4729</p> 4730 4731<pre> 4732ch <- 3 // send value 3 to channel ch 4733</pre> 4734 4735 4736<h3 id="IncDec_statements">IncDec statements</h3> 4737 4738<p> 4739The "++" and "--" statements increment or decrement their operands 4740by the untyped <a href="#Constants">constant</a> <code>1</code>. 4741As with an assignment, the operand must be <a href="#Address_operators">addressable</a> 4742or a map index expression. 4743</p> 4744 4745<pre class="ebnf"> 4746IncDecStmt = Expression ( "++" | "--" ) . 4747</pre> 4748 4749<p> 4750The following <a href="#Assignments">assignment statements</a> are semantically 4751equivalent: 4752</p> 4753 4754<pre class="grammar"> 4755IncDec statement Assignment 4756x++ x += 1 4757x-- x -= 1 4758</pre> 4759 4760 4761<h3 id="Assignments">Assignments</h3> 4762 4763<pre class="ebnf"> 4764Assignment = ExpressionList assign_op ExpressionList . 4765 4766assign_op = [ add_op | mul_op ] "=" . 4767</pre> 4768 4769<p> 4770Each left-hand side operand must be <a href="#Address_operators">addressable</a>, 4771a map index expression, or (for <code>=</code> assignments only) the 4772<a href="#Blank_identifier">blank identifier</a>. 4773Operands may be parenthesized. 4774</p> 4775 4776<pre> 4777x = 1 4778*p = f() 4779a[i] = 23 4780(k) = <-ch // same as: k = <-ch 4781</pre> 4782 4783<p> 4784An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> 4785<code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a> 4786is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i> 4787<code>(y)</code> but evaluates <code>x</code> 4788only once. The <i>op</i><code>=</code> construct is a single token. 4789In assignment operations, both the left- and right-hand expression lists 4790must contain exactly one single-valued expression, and the left-hand 4791expression must not be the blank identifier. 4792</p> 4793 4794<pre> 4795a[i] <<= 2 4796i &^= 1<<n 4797</pre> 4798 4799<p> 4800A tuple assignment assigns the individual elements of a multi-valued 4801operation to a list of variables. There are two forms. In the 4802first, the right hand operand is a single multi-valued expression 4803such as a function call, a <a href="#Channel_types">channel</a> or 4804<a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>. 4805The number of operands on the left 4806hand side must match the number of values. For instance, if 4807<code>f</code> is a function returning two values, 4808</p> 4809 4810<pre> 4811x, y = f() 4812</pre> 4813 4814<p> 4815assigns the first value to <code>x</code> and the second to <code>y</code>. 4816In the second form, the number of operands on the left must equal the number 4817of expressions on the right, each of which must be single-valued, and the 4818<i>n</i>th expression on the right is assigned to the <i>n</i>th 4819operand on the left: 4820</p> 4821 4822<pre> 4823one, two, three = '一', '二', '三' 4824</pre> 4825 4826<p> 4827The <a href="#Blank_identifier">blank identifier</a> provides a way to 4828ignore right-hand side values in an assignment: 4829</p> 4830 4831<pre> 4832_ = x // evaluate x but ignore it 4833x, _ = f() // evaluate f() but ignore second result value 4834</pre> 4835 4836<p> 4837The assignment proceeds in two phases. 4838First, the operands of <a href="#Index_expressions">index expressions</a> 4839and <a href="#Address_operators">pointer indirections</a> 4840(including implicit pointer indirections in <a href="#Selectors">selectors</a>) 4841on the left and the expressions on the right are all 4842<a href="#Order_of_evaluation">evaluated in the usual order</a>. 4843Second, the assignments are carried out in left-to-right order. 4844</p> 4845 4846<pre> 4847a, b = b, a // exchange a and b 4848 4849x := []int{1, 2, 3} 4850i := 0 4851i, x[i] = 1, 2 // set i = 1, x[0] = 2 4852 4853i = 0 4854x[i], i = 2, 1 // set x[0] = 2, i = 1 4855 4856x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) 4857 4858x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. 4859 4860type Point struct { x, y int } 4861var p *Point 4862x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 4863 4864i = 2 4865x = []int{3, 5, 7} 4866for i, x[i] = range x { // set i, x[2] = 0, x[0] 4867 break 4868} 4869// after this loop, i == 0 and x == []int{3, 5, 3} 4870</pre> 4871 4872<p> 4873In assignments, each value must be <a href="#Assignability">assignable</a> 4874to the type of the operand to which it is assigned, with the following special cases: 4875</p> 4876 4877<ol> 4878<li> 4879 Any typed value may be assigned to the blank identifier. 4880</li> 4881 4882<li> 4883 If an untyped constant 4884 is assigned to a variable of interface type or the blank identifier, 4885 the constant is first implicitly <a href="#Conversions">converted</a> to its 4886 <a href="#Constants">default type</a>. 4887</li> 4888 4889<li> 4890 If an untyped boolean value is assigned to a variable of interface type or 4891 the blank identifier, it is first implicitly converted to type <code>bool</code>. 4892</li> 4893</ol> 4894 4895<h3 id="If_statements">If statements</h3> 4896 4897<p> 4898"If" statements specify the conditional execution of two branches 4899according to the value of a boolean expression. If the expression 4900evaluates to true, the "if" branch is executed, otherwise, if 4901present, the "else" branch is executed. 4902</p> 4903 4904<pre class="ebnf"> 4905IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . 4906</pre> 4907 4908<pre> 4909if x > max { 4910 x = max 4911} 4912</pre> 4913 4914<p> 4915The expression may be preceded by a simple statement, which 4916executes before the expression is evaluated. 4917</p> 4918 4919<pre> 4920if x := f(); x < y { 4921 return x 4922} else if x > z { 4923 return z 4924} else { 4925 return y 4926} 4927</pre> 4928 4929 4930<h3 id="Switch_statements">Switch statements</h3> 4931 4932<p> 4933"Switch" statements provide multi-way execution. 4934An expression or type is compared to the "cases" 4935inside the "switch" to determine which branch 4936to execute. 4937</p> 4938 4939<pre class="ebnf"> 4940SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . 4941</pre> 4942 4943<p> 4944There are two forms: expression switches and type switches. 4945In an expression switch, the cases contain expressions that are compared 4946against the value of the switch expression. 4947In a type switch, the cases contain types that are compared against the 4948type of a specially annotated switch expression. 4949The switch expression is evaluated exactly once in a switch statement. 4950</p> 4951 4952<h4 id="Expression_switches">Expression switches</h4> 4953 4954<p> 4955In an expression switch, 4956the switch expression is evaluated and 4957the case expressions, which need not be constants, 4958are evaluated left-to-right and top-to-bottom; the first one that equals the 4959switch expression 4960triggers execution of the statements of the associated case; 4961the other cases are skipped. 4962If no case matches and there is a "default" case, 4963its statements are executed. 4964There can be at most one default case and it may appear anywhere in the 4965"switch" statement. 4966A missing switch expression is equivalent to the boolean value 4967<code>true</code>. 4968</p> 4969 4970<pre class="ebnf"> 4971ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . 4972ExprCaseClause = ExprSwitchCase ":" StatementList . 4973ExprSwitchCase = "case" ExpressionList | "default" . 4974</pre> 4975 4976<p> 4977If the switch expression evaluates to an untyped constant, it is first implicitly 4978<a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>. 4979The predeclared untyped value <code>nil</code> cannot be used as a switch expression. 4980The switch expression type must be <a href="#Comparison_operators">comparable</a>. 4981</p> 4982 4983<p> 4984If a case expression is untyped, it is first implicitly <a href="#Conversions">converted</a> 4985to the type of the switch expression. 4986For each (possibly converted) case expression <code>x</code> and the value <code>t</code> 4987of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>. 4988</p> 4989 4990<p> 4991In other words, the switch expression is treated as if it were used to declare and 4992initialize a temporary variable <code>t</code> without explicit type; it is that 4993value of <code>t</code> against which each case expression <code>x</code> is tested 4994for equality. 4995</p> 4996 4997<p> 4998In a case or default clause, the last non-empty statement 4999may be a (possibly <a href="#Labeled_statements">labeled</a>) 5000<a href="#Fallthrough_statements">"fallthrough" statement</a> to 5001indicate that control should flow from the end of this clause to 5002the first statement of the next clause. 5003Otherwise control flows to the end of the "switch" statement. 5004A "fallthrough" statement may appear as the last statement of all 5005but the last clause of an expression switch. 5006</p> 5007 5008<p> 5009The switch expression may be preceded by a simple statement, which 5010executes before the expression is evaluated. 5011</p> 5012 5013<pre> 5014switch tag { 5015default: s3() 5016case 0, 1, 2, 3: s1() 5017case 4, 5, 6, 7: s2() 5018} 5019 5020switch x := f(); { // missing switch expression means "true" 5021case x < 0: return -x 5022default: return x 5023} 5024 5025switch { 5026case x < y: f1() 5027case x < z: f2() 5028case x == 4: f3() 5029} 5030</pre> 5031 5032<p> 5033Implementation restriction: A compiler may disallow multiple case 5034expressions evaluating to the same constant. 5035For instance, the current compilers disallow duplicate integer, 5036floating point, or string constants in case expressions. 5037</p> 5038 5039<h4 id="Type_switches">Type switches</h4> 5040 5041<p> 5042A type switch compares types rather than values. It is otherwise similar 5043to an expression switch. It is marked by a special switch expression that 5044has the form of a <a href="#Type_assertions">type assertion</a> 5045using the keyword <code>type</code> rather than an actual type: 5046</p> 5047 5048<pre> 5049switch x.(type) { 5050// cases 5051} 5052</pre> 5053 5054<p> 5055Cases then match actual types <code>T</code> against the dynamic type of the 5056expression <code>x</code>. As with type assertions, <code>x</code> must be of 5057<a href="#Interface_types">interface type</a>, and each non-interface type 5058<code>T</code> listed in a case must implement the type of <code>x</code>. 5059The types listed in the cases of a type switch must all be 5060<a href="#Type_identity">different</a>. 5061</p> 5062 5063<pre class="ebnf"> 5064TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . 5065TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . 5066TypeCaseClause = TypeSwitchCase ":" StatementList . 5067TypeSwitchCase = "case" TypeList | "default" . 5068TypeList = Type { "," Type } . 5069</pre> 5070 5071<p> 5072The TypeSwitchGuard may include a 5073<a href="#Short_variable_declarations">short variable declaration</a>. 5074When that form is used, the variable is declared at the end of the 5075TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause. 5076In clauses with a case listing exactly one type, the variable 5077has that type; otherwise, the variable has the type of the expression 5078in the TypeSwitchGuard. 5079</p> 5080 5081<p> 5082Instead of a type, a case may use the predeclared identifier 5083<a href="#Predeclared_identifiers"><code>nil</code></a>; 5084that case is selected when the expression in the TypeSwitchGuard 5085is a <code>nil</code> interface value. 5086There may be at most one <code>nil</code> case. 5087</p> 5088 5089<p> 5090Given an expression <code>x</code> of type <code>interface{}</code>, 5091the following type switch: 5092</p> 5093 5094<pre> 5095switch i := x.(type) { 5096case nil: 5097 printString("x is nil") // type of i is type of x (interface{}) 5098case int: 5099 printInt(i) // type of i is int 5100case float64: 5101 printFloat64(i) // type of i is float64 5102case func(int) float64: 5103 printFunction(i) // type of i is func(int) float64 5104case bool, string: 5105 printString("type is bool or string") // type of i is type of x (interface{}) 5106default: 5107 printString("don't know the type") // type of i is type of x (interface{}) 5108} 5109</pre> 5110 5111<p> 5112could be rewritten: 5113</p> 5114 5115<pre> 5116v := x // x is evaluated exactly once 5117if v == nil { 5118 i := v // type of i is type of x (interface{}) 5119 printString("x is nil") 5120} else if i, isInt := v.(int); isInt { 5121 printInt(i) // type of i is int 5122} else if i, isFloat64 := v.(float64); isFloat64 { 5123 printFloat64(i) // type of i is float64 5124} else if i, isFunc := v.(func(int) float64); isFunc { 5125 printFunction(i) // type of i is func(int) float64 5126} else { 5127 _, isBool := v.(bool) 5128 _, isString := v.(string) 5129 if isBool || isString { 5130 i := v // type of i is type of x (interface{}) 5131 printString("type is bool or string") 5132 } else { 5133 i := v // type of i is type of x (interface{}) 5134 printString("don't know the type") 5135 } 5136} 5137</pre> 5138 5139<p> 5140The type switch guard may be preceded by a simple statement, which 5141executes before the guard is evaluated. 5142</p> 5143 5144<p> 5145The "fallthrough" statement is not permitted in a type switch. 5146</p> 5147 5148<h3 id="For_statements">For statements</h3> 5149 5150<p> 5151A "for" statement specifies repeated execution of a block. There are three forms: 5152The iteration may be controlled by a single condition, a "for" clause, or a "range" clause. 5153</p> 5154 5155<pre class="ebnf"> 5156ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . 5157Condition = Expression . 5158</pre> 5159 5160<h4 id="For_condition">For statements with single condition</h4> 5161 5162<p> 5163In its simplest form, a "for" statement specifies the repeated execution of 5164a block as long as a boolean condition evaluates to true. 5165The condition is evaluated before each iteration. 5166If the condition is absent, it is equivalent to the boolean value 5167<code>true</code>. 5168</p> 5169 5170<pre> 5171for a < b { 5172 a *= 2 5173} 5174</pre> 5175 5176<h4 id="For_clause">For statements with <code>for</code> clause</h4> 5177 5178<p> 5179A "for" statement with a ForClause is also controlled by its condition, but 5180additionally it may specify an <i>init</i> 5181and a <i>post</i> statement, such as an assignment, 5182an increment or decrement statement. The init statement may be a 5183<a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. 5184Variables declared by the init statement are re-used in each iteration. 5185</p> 5186 5187<pre class="ebnf"> 5188ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . 5189InitStmt = SimpleStmt . 5190PostStmt = SimpleStmt . 5191</pre> 5192 5193<pre> 5194for i := 0; i < 10; i++ { 5195 f(i) 5196} 5197</pre> 5198 5199<p> 5200If non-empty, the init statement is executed once before evaluating the 5201condition for the first iteration; 5202the post statement is executed after each execution of the block (and 5203only if the block was executed). 5204Any element of the ForClause may be empty but the 5205<a href="#Semicolons">semicolons</a> are 5206required unless there is only a condition. 5207If the condition is absent, it is equivalent to the boolean value 5208<code>true</code>. 5209</p> 5210 5211<pre> 5212for cond { S() } is the same as for ; cond ; { S() } 5213for { S() } is the same as for true { S() } 5214</pre> 5215 5216<h4 id="For_range">For statements with <code>range</code> clause</h4> 5217 5218<p> 5219A "for" statement with a "range" clause 5220iterates through all entries of an array, slice, string or map, 5221or values received on a channel. For each entry it assigns <i>iteration values</i> 5222to corresponding <i>iteration variables</i> if present and then executes the block. 5223</p> 5224 5225<pre class="ebnf"> 5226RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression . 5227</pre> 5228 5229<p> 5230The expression on the right in the "range" clause is called the <i>range expression</i>, 5231which may be an array, pointer to an array, slice, string, map, or channel permitting 5232<a href="#Receive_operator">receive operations</a>. 5233As with an assignment, if present the operands on the left must be 5234<a href="#Address_operators">addressable</a> or map index expressions; they 5235denote the iteration variables. If the range expression is a channel, at most 5236one iteration variable is permitted, otherwise there may be up to two. 5237If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>, 5238the range clause is equivalent to the same clause without that identifier. 5239</p> 5240 5241<p> 5242The range expression <code>x</code> is evaluated once before beginning the loop, 5243with one exception: if at most one iteration variable is present and 5244<code>len(x)</code> is <a href="#Length_and_capacity">constant</a>, 5245the range expression is not evaluated. 5246</p> 5247 5248<p> 5249Function calls on the left are evaluated once per iteration. 5250For each iteration, iteration values are produced as follows 5251if the respective iteration variables are present: 5252</p> 5253 5254<pre class="grammar"> 5255Range expression 1st value 2nd value 5256 5257array or slice a [n]E, *[n]E, or []E index i int a[i] E 5258string s string type index i int see below rune 5259map m map[K]V key k K m[k] V 5260channel c chan E, <-chan E element e E 5261</pre> 5262 5263<ol> 5264<li> 5265For an array, pointer to array, or slice value <code>a</code>, the index iteration 5266values are produced in increasing order, starting at element index 0. 5267If at most one iteration variable is present, the range loop produces 5268iteration values from 0 up to <code>len(a)-1</code> and does not index into the array 5269or slice itself. For a <code>nil</code> slice, the number of iterations is 0. 5270</li> 5271 5272<li> 5273For a string value, the "range" clause iterates over the Unicode code points 5274in the string starting at byte index 0. On successive iterations, the index value will be the 5275index of the first byte of successive UTF-8-encoded code points in the string, 5276and the second value, of type <code>rune</code>, will be the value of 5277the corresponding code point. If the iteration encounters an invalid 5278UTF-8 sequence, the second value will be <code>0xFFFD</code>, 5279the Unicode replacement character, and the next iteration will advance 5280a single byte in the string. 5281</li> 5282 5283<li> 5284The iteration order over maps is not specified 5285and is not guaranteed to be the same from one iteration to the next. 5286If a map entry that has not yet been reached is removed during iteration, 5287the corresponding iteration value will not be produced. If a map entry is 5288created during iteration, that entry may be produced during the iteration or 5289may be skipped. The choice may vary for each entry created and from one 5290iteration to the next. 5291If the map is <code>nil</code>, the number of iterations is 0. 5292</li> 5293 5294<li> 5295For channels, the iteration values produced are the successive values sent on 5296the channel until the channel is <a href="#Close">closed</a>. If the channel 5297is <code>nil</code>, the range expression blocks forever. 5298</li> 5299</ol> 5300 5301<p> 5302The iteration values are assigned to the respective 5303iteration variables as in an <a href="#Assignments">assignment statement</a>. 5304</p> 5305 5306<p> 5307The iteration variables may be declared by the "range" clause using a form of 5308<a href="#Short_variable_declarations">short variable declaration</a> 5309(<code>:=</code>). 5310In this case their types are set to the types of the respective iteration values 5311and their <a href="#Declarations_and_scope">scope</a> is the block of the "for" 5312statement; they are re-used in each iteration. 5313If the iteration variables are declared outside the "for" statement, 5314after execution their values will be those of the last iteration. 5315</p> 5316 5317<pre> 5318var testdata *struct { 5319 a *[7]int 5320} 5321for i, _ := range testdata.a { 5322 // testdata.a is never evaluated; len(testdata.a) is constant 5323 // i ranges from 0 to 6 5324 f(i) 5325} 5326 5327var a [10]string 5328for i, s := range a { 5329 // type of i is int 5330 // type of s is string 5331 // s == a[i] 5332 g(i, s) 5333} 5334 5335var key string 5336var val interface{} // element type of m is assignable to val 5337m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} 5338for key, val = range m { 5339 h(key, val) 5340} 5341// key == last map key encountered in iteration 5342// val == map[key] 5343 5344var ch chan Work = producer() 5345for w := range ch { 5346 doWork(w) 5347} 5348 5349// empty a channel 5350for range ch {} 5351</pre> 5352 5353 5354<h3 id="Go_statements">Go statements</h3> 5355 5356<p> 5357A "go" statement starts the execution of a function call 5358as an independent concurrent thread of control, or <i>goroutine</i>, 5359within the same address space. 5360</p> 5361 5362<pre class="ebnf"> 5363GoStmt = "go" Expression . 5364</pre> 5365 5366<p> 5367The expression must be a function or method call; it cannot be parenthesized. 5368Calls of built-in functions are restricted as for 5369<a href="#Expression_statements">expression statements</a>. 5370</p> 5371 5372<p> 5373The function value and parameters are 5374<a href="#Calls">evaluated as usual</a> 5375in the calling goroutine, but 5376unlike with a regular call, program execution does not wait 5377for the invoked function to complete. 5378Instead, the function begins executing independently 5379in a new goroutine. 5380When the function terminates, its goroutine also terminates. 5381If the function has any return values, they are discarded when the 5382function completes. 5383</p> 5384 5385<pre> 5386go Server() 5387go func(ch chan<- bool) { for { sleep(10); ch <- true }} (c) 5388</pre> 5389 5390 5391<h3 id="Select_statements">Select statements</h3> 5392 5393<p> 5394A "select" statement chooses which of a set of possible 5395<a href="#Send_statements">send</a> or 5396<a href="#Receive_operator">receive</a> 5397operations will proceed. 5398It looks similar to a 5399<a href="#Switch_statements">"switch"</a> statement but with the 5400cases all referring to communication operations. 5401</p> 5402 5403<pre class="ebnf"> 5404SelectStmt = "select" "{" { CommClause } "}" . 5405CommClause = CommCase ":" StatementList . 5406CommCase = "case" ( SendStmt | RecvStmt ) | "default" . 5407RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . 5408RecvExpr = Expression . 5409</pre> 5410 5411<p> 5412A case with a RecvStmt may assign the result of a RecvExpr to one or 5413two variables, which may be declared using a 5414<a href="#Short_variable_declarations">short variable declaration</a>. 5415The RecvExpr must be a (possibly parenthesized) receive operation. 5416There can be at most one default case and it may appear anywhere 5417in the list of cases. 5418</p> 5419 5420<p> 5421Execution of a "select" statement proceeds in several steps: 5422</p> 5423 5424<ol> 5425<li> 5426For all the cases in the statement, the channel operands of receive operations 5427and the channel and right-hand-side expressions of send statements are 5428evaluated exactly once, in source order, upon entering the "select" statement. 5429The result is a set of channels to receive from or send to, 5430and the corresponding values to send. 5431Any side effects in that evaluation will occur irrespective of which (if any) 5432communication operation is selected to proceed. 5433Expressions on the left-hand side of a RecvStmt with a short variable declaration 5434or assignment are not yet evaluated. 5435</li> 5436 5437<li> 5438If one or more of the communications can proceed, 5439a single one that can proceed is chosen via a uniform pseudo-random selection. 5440Otherwise, if there is a default case, that case is chosen. 5441If there is no default case, the "select" statement blocks until 5442at least one of the communications can proceed. 5443</li> 5444 5445<li> 5446Unless the selected case is the default case, the respective communication 5447operation is executed. 5448</li> 5449 5450<li> 5451If the selected case is a RecvStmt with a short variable declaration or 5452an assignment, the left-hand side expressions are evaluated and the 5453received value (or values) are assigned. 5454</li> 5455 5456<li> 5457The statement list of the selected case is executed. 5458</li> 5459</ol> 5460 5461<p> 5462Since communication on <code>nil</code> channels can never proceed, 5463a select with only <code>nil</code> channels and no default case blocks forever. 5464</p> 5465 5466<pre> 5467var a []int 5468var c, c1, c2, c3, c4 chan int 5469var i1, i2 int 5470select { 5471case i1 = <-c1: 5472 print("received ", i1, " from c1\n") 5473case c2 <- i2: 5474 print("sent ", i2, " to c2\n") 5475case i3, ok := (<-c3): // same as: i3, ok := <-c3 5476 if ok { 5477 print("received ", i3, " from c3\n") 5478 } else { 5479 print("c3 is closed\n") 5480 } 5481case a[f()] = <-c4: 5482 // same as: 5483 // case t := <-c4 5484 // a[f()] = t 5485default: 5486 print("no communication\n") 5487} 5488 5489for { // send random sequence of bits to c 5490 select { 5491 case c <- 0: // note: no statement, no fallthrough, no folding of cases 5492 case c <- 1: 5493 } 5494} 5495 5496select {} // block forever 5497</pre> 5498 5499 5500<h3 id="Return_statements">Return statements</h3> 5501 5502<p> 5503A "return" statement in a function <code>F</code> terminates the execution 5504of <code>F</code>, and optionally provides one or more result values. 5505Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5506are executed before <code>F</code> returns to its caller. 5507</p> 5508 5509<pre class="ebnf"> 5510ReturnStmt = "return" [ ExpressionList ] . 5511</pre> 5512 5513<p> 5514In a function without a result type, a "return" statement must not 5515specify any result values. 5516</p> 5517<pre> 5518func noResult() { 5519 return 5520} 5521</pre> 5522 5523<p> 5524There are three ways to return values from a function with a result 5525type: 5526</p> 5527 5528<ol> 5529 <li>The return value or values may be explicitly listed 5530 in the "return" statement. Each expression must be single-valued 5531 and <a href="#Assignability">assignable</a> 5532 to the corresponding element of the function's result type. 5533<pre> 5534func simpleF() int { 5535 return 2 5536} 5537 5538func complexF1() (re float64, im float64) { 5539 return -7.0, -4.0 5540} 5541</pre> 5542 </li> 5543 <li>The expression list in the "return" statement may be a single 5544 call to a multi-valued function. The effect is as if each value 5545 returned from that function were assigned to a temporary 5546 variable with the type of the respective value, followed by a 5547 "return" statement listing these variables, at which point the 5548 rules of the previous case apply. 5549<pre> 5550func complexF2() (re float64, im float64) { 5551 return complexF1() 5552} 5553</pre> 5554 </li> 5555 <li>The expression list may be empty if the function's result 5556 type specifies names for its <a href="#Function_types">result parameters</a>. 5557 The result parameters act as ordinary local variables 5558 and the function may assign values to them as necessary. 5559 The "return" statement returns the values of these variables. 5560<pre> 5561func complexF3() (re float64, im float64) { 5562 re = 7.0 5563 im = 4.0 5564 return 5565} 5566 5567func (devnull) Write(p []byte) (n int, _ error) { 5568 n = len(p) 5569 return 5570} 5571</pre> 5572 </li> 5573</ol> 5574 5575<p> 5576Regardless of how they are declared, all the result values are initialized to 5577the <a href="#The_zero_value">zero values</a> for their type upon entry to the 5578function. A "return" statement that specifies results sets the result parameters before 5579any deferred functions are executed. 5580</p> 5581 5582<p> 5583Implementation restriction: A compiler may disallow an empty expression list 5584in a "return" statement if a different entity (constant, type, or variable) 5585with the same name as a result parameter is in 5586<a href="#Declarations_and_scope">scope</a> at the place of the return. 5587</p> 5588 5589<pre> 5590func f(n int) (res int, err error) { 5591 if _, err := f(n-1); err != nil { 5592 return // invalid return statement: err is shadowed 5593 } 5594 return 5595} 5596</pre> 5597 5598<h3 id="Break_statements">Break statements</h3> 5599 5600<p> 5601A "break" statement terminates execution of the innermost 5602<a href="#For_statements">"for"</a>, 5603<a href="#Switch_statements">"switch"</a>, or 5604<a href="#Select_statements">"select"</a> statement 5605within the same function. 5606</p> 5607 5608<pre class="ebnf"> 5609BreakStmt = "break" [ Label ] . 5610</pre> 5611 5612<p> 5613If there is a label, it must be that of an enclosing 5614"for", "switch", or "select" statement, 5615and that is the one whose execution terminates. 5616</p> 5617 5618<pre> 5619OuterLoop: 5620 for i = 0; i < n; i++ { 5621 for j = 0; j < m; j++ { 5622 switch a[i][j] { 5623 case nil: 5624 state = Error 5625 break OuterLoop 5626 case item: 5627 state = Found 5628 break OuterLoop 5629 } 5630 } 5631 } 5632</pre> 5633 5634<h3 id="Continue_statements">Continue statements</h3> 5635 5636<p> 5637A "continue" statement begins the next iteration of the 5638innermost <a href="#For_statements">"for" loop</a> at its post statement. 5639The "for" loop must be within the same function. 5640</p> 5641 5642<pre class="ebnf"> 5643ContinueStmt = "continue" [ Label ] . 5644</pre> 5645 5646<p> 5647If there is a label, it must be that of an enclosing 5648"for" statement, and that is the one whose execution 5649advances. 5650</p> 5651 5652<pre> 5653RowLoop: 5654 for y, row := range rows { 5655 for x, data := range row { 5656 if data == endOfRow { 5657 continue RowLoop 5658 } 5659 row[x] = data + bias(x, y) 5660 } 5661 } 5662</pre> 5663 5664<h3 id="Goto_statements">Goto statements</h3> 5665 5666<p> 5667A "goto" statement transfers control to the statement with the corresponding label 5668within the same function. 5669</p> 5670 5671<pre class="ebnf"> 5672GotoStmt = "goto" Label . 5673</pre> 5674 5675<pre> 5676goto Error 5677</pre> 5678 5679<p> 5680Executing the "goto" statement must not cause any variables to come into 5681<a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. 5682For instance, this example: 5683</p> 5684 5685<pre> 5686 goto L // BAD 5687 v := 3 5688L: 5689</pre> 5690 5691<p> 5692is erroneous because the jump to label <code>L</code> skips 5693the creation of <code>v</code>. 5694</p> 5695 5696<p> 5697A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. 5698For instance, this example: 5699</p> 5700 5701<pre> 5702if n%2 == 1 { 5703 goto L1 5704} 5705for n > 0 { 5706 f() 5707 n-- 5708L1: 5709 f() 5710 n-- 5711} 5712</pre> 5713 5714<p> 5715is erroneous because the label <code>L1</code> is inside 5716the "for" statement's block but the <code>goto</code> is not. 5717</p> 5718 5719<h3 id="Fallthrough_statements">Fallthrough statements</h3> 5720 5721<p> 5722A "fallthrough" statement transfers control to the first statement of the 5723next case clause in an <a href="#Expression_switches">expression "switch" statement</a>. 5724It may be used only as the final non-empty statement in such a clause. 5725</p> 5726 5727<pre class="ebnf"> 5728FallthroughStmt = "fallthrough" . 5729</pre> 5730 5731 5732<h3 id="Defer_statements">Defer statements</h3> 5733 5734<p> 5735A "defer" statement invokes a function whose execution is deferred 5736to the moment the surrounding function returns, either because the 5737surrounding function executed a <a href="#Return_statements">return statement</a>, 5738reached the end of its <a href="#Function_declarations">function body</a>, 5739or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>. 5740</p> 5741 5742<pre class="ebnf"> 5743DeferStmt = "defer" Expression . 5744</pre> 5745 5746<p> 5747The expression must be a function or method call; it cannot be parenthesized. 5748Calls of built-in functions are restricted as for 5749<a href="#Expression_statements">expression statements</a>. 5750</p> 5751 5752<p> 5753Each time a "defer" statement 5754executes, the function value and parameters to the call are 5755<a href="#Calls">evaluated as usual</a> 5756and saved anew but the actual function is not invoked. 5757Instead, deferred functions are invoked immediately before 5758the surrounding function returns, in the reverse order 5759they were deferred. That is, if the surrounding function 5760returns through an explicit <a href="#Return_statements">return statement</a>, 5761deferred functions are executed <i>after</i> any result parameters are set 5762by that return statement but <i>before</i> the function returns to its caller. 5763If a deferred function value evaluates 5764to <code>nil</code>, execution <a href="#Handling_panics">panics</a> 5765when the function is invoked, not when the "defer" statement is executed. 5766</p> 5767 5768<p> 5769For instance, if the deferred function is 5770a <a href="#Function_literals">function literal</a> and the surrounding 5771function has <a href="#Function_types">named result parameters</a> that 5772are in scope within the literal, the deferred function may access and modify 5773the result parameters before they are returned. 5774If the deferred function has any return values, they are discarded when 5775the function completes. 5776(See also the section on <a href="#Handling_panics">handling panics</a>.) 5777</p> 5778 5779<pre> 5780lock(l) 5781defer unlock(l) // unlocking happens before surrounding function returns 5782 5783// prints 3 2 1 0 before surrounding function returns 5784for i := 0; i <= 3; i++ { 5785 defer fmt.Print(i) 5786} 5787 5788// f returns 42 5789func f() (result int) { 5790 defer func() { 5791 // result is accessed after it was set to 6 by the return statement 5792 result *= 7 5793 }() 5794 return 6 5795} 5796</pre> 5797 5798<h2 id="Built-in_functions">Built-in functions</h2> 5799 5800<p> 5801Built-in functions are 5802<a href="#Predeclared_identifiers">predeclared</a>. 5803They are called like any other function but some of them 5804accept a type instead of an expression as the first argument. 5805</p> 5806 5807<p> 5808The built-in functions do not have standard Go types, 5809so they can only appear in <a href="#Calls">call expressions</a>; 5810they cannot be used as function values. 5811</p> 5812 5813<h3 id="Close">Close</h3> 5814 5815<p> 5816For a channel <code>c</code>, the built-in function <code>close(c)</code> 5817records that no more values will be sent on the channel. 5818It is an error if <code>c</code> is a receive-only channel. 5819Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. 5820Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>. 5821After calling <code>close</code>, and after any previously 5822sent values have been received, receive operations will return 5823the zero value for the channel's type without blocking. 5824The multi-valued <a href="#Receive_operator">receive operation</a> 5825returns a received value along with an indication of whether the channel is closed. 5826</p> 5827 5828 5829<h3 id="Length_and_capacity">Length and capacity</h3> 5830 5831<p> 5832The built-in functions <code>len</code> and <code>cap</code> take arguments 5833of various types and return a result of type <code>int</code>. 5834The implementation guarantees that the result always fits into an <code>int</code>. 5835</p> 5836 5837<pre class="grammar"> 5838Call Argument type Result 5839 5840len(s) string type string length in bytes 5841 [n]T, *[n]T array length (== n) 5842 []T slice length 5843 map[K]T map length (number of defined keys) 5844 chan T number of elements queued in channel buffer 5845 5846cap(s) [n]T, *[n]T array length (== n) 5847 []T slice capacity 5848 chan T channel buffer capacity 5849</pre> 5850 5851<p> 5852The capacity of a slice is the number of elements for which there is 5853space allocated in the underlying array. 5854At any time the following relationship holds: 5855</p> 5856 5857<pre> 58580 <= len(s) <= cap(s) 5859</pre> 5860 5861<p> 5862The length of a <code>nil</code> slice, map or channel is 0. 5863The capacity of a <code>nil</code> slice or channel is 0. 5864</p> 5865 5866<p> 5867The expression <code>len(s)</code> is <a href="#Constants">constant</a> if 5868<code>s</code> is a string constant. The expressions <code>len(s)</code> and 5869<code>cap(s)</code> are constants if the type of <code>s</code> is an array 5870or pointer to an array and the expression <code>s</code> does not contain 5871<a href="#Receive_operator">channel receives</a> or (non-constant) 5872<a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. 5873Otherwise, invocations of <code>len</code> and <code>cap</code> are not 5874constant and <code>s</code> is evaluated. 5875</p> 5876 5877<pre> 5878const ( 5879 c1 = imag(2i) // imag(2i) = 2.0 is a constant 5880 c2 = len([10]float64{2}) // [10]float64{2} contains no function calls 5881 c3 = len([10]float64{c1}) // [10]float64{c1} contains no function calls 5882 c4 = len([10]float64{imag(2i)}) // imag(2i) is a constant and no function call is issued 5883 c5 = len([10]float64{imag(z)}) // invalid: imag(z) is a (non-constant) function call 5884) 5885var z complex128 5886</pre> 5887 5888<h3 id="Allocation">Allocation</h3> 5889 5890<p> 5891The built-in function <code>new</code> takes a type <code>T</code>, 5892allocates storage for a <a href="#Variables">variable</a> of that type 5893at run time, and returns a value of type <code>*T</code> 5894<a href="#Pointer_types">pointing</a> to it. 5895The variable is initialized as described in the section on 5896<a href="#The_zero_value">initial values</a>. 5897</p> 5898 5899<pre class="grammar"> 5900new(T) 5901</pre> 5902 5903<p> 5904For instance 5905</p> 5906 5907<pre> 5908type S struct { a int; b float64 } 5909new(S) 5910</pre> 5911 5912<p> 5913allocates storage for a variable of type <code>S</code>, 5914initializes it (<code>a=0</code>, <code>b=0.0</code>), 5915and returns a value of type <code>*S</code> containing the address 5916of the location. 5917</p> 5918 5919<h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> 5920 5921<p> 5922The built-in function <code>make</code> takes a type <code>T</code>, 5923which must be a slice, map or channel type, 5924optionally followed by a type-specific list of expressions. 5925It returns a value of type <code>T</code> (not <code>*T</code>). 5926The memory is initialized as described in the section on 5927<a href="#The_zero_value">initial values</a>. 5928</p> 5929 5930<pre class="grammar"> 5931Call Type T Result 5932 5933make(T, n) slice slice of type T with length n and capacity n 5934make(T, n, m) slice slice of type T with length n and capacity m 5935 5936make(T) map map of type T 5937make(T, n) map map of type T with initial space for approximately n elements 5938 5939make(T) channel unbuffered channel of type T 5940make(T, n) channel buffered channel of type T, buffer size n 5941</pre> 5942 5943 5944<p> 5945Each of the size arguments <code>n</code> and <code>m</code> must be of integer type 5946or an untyped <a href="#Constants">constant</a>. 5947A constant size argument must be non-negative and <a href="#Representability">representable</a> 5948by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>. 5949If both <code>n</code> and <code>m</code> are provided and are constant, then 5950<code>n</code> must be no larger than <code>m</code>. 5951If <code>n</code> is negative or larger than <code>m</code> at run time, 5952a <a href="#Run_time_panics">run-time panic</a> occurs. 5953</p> 5954 5955<pre> 5956s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 5957s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000 5958s := make([]int, 1<<63) // illegal: len(s) is not representable by a value of type int 5959s := make([]int, 10, 0) // illegal: len(s) > cap(s) 5960c := make(chan int, 10) // channel with a buffer size of 10 5961m := make(map[string]int, 100) // map with initial space for approximately 100 elements 5962</pre> 5963 5964<p> 5965Calling <code>make</code> with a map type and size hint <code>n</code> will 5966create a map with initial space to hold <code>n</code> map elements. 5967The precise behavior is implementation-dependent. 5968</p> 5969 5970 5971<h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> 5972 5973<p> 5974The built-in functions <code>append</code> and <code>copy</code> assist in 5975common slice operations. 5976For both functions, the result is independent of whether the memory referenced 5977by the arguments overlaps. 5978</p> 5979 5980<p> 5981The <a href="#Function_types">variadic</a> function <code>append</code> 5982appends zero or more values <code>x</code> 5983to <code>s</code> of type <code>S</code>, which must be a slice type, and 5984returns the resulting slice, also of type <code>S</code>. 5985The values <code>x</code> are passed to a parameter of type <code>...T</code> 5986where <code>T</code> is the <a href="#Slice_types">element type</a> of 5987<code>S</code> and the respective 5988<a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. 5989As a special case, <code>append</code> also accepts a first argument 5990assignable to type <code>[]byte</code> with a second argument of 5991string type followed by <code>...</code>. This form appends the 5992bytes of the string. 5993</p> 5994 5995<pre class="grammar"> 5996append(s S, x ...T) S // T is the element type of S 5997</pre> 5998 5999<p> 6000If the capacity of <code>s</code> is not large enough to fit the additional 6001values, <code>append</code> allocates a new, sufficiently large underlying 6002array that fits both the existing slice elements and the additional values. 6003Otherwise, <code>append</code> re-uses the underlying array. 6004</p> 6005 6006<pre> 6007s0 := []int{0, 0} 6008s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} 6009s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} 6010s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} 6011s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0} 6012 6013var t []interface{} 6014t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"} 6015 6016var b []byte 6017b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' } 6018</pre> 6019 6020<p> 6021The function <code>copy</code> copies slice elements from 6022a source <code>src</code> to a destination <code>dst</code> and returns the 6023number of elements copied. 6024Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be 6025<a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. 6026The number of elements copied is the minimum of 6027<code>len(src)</code> and <code>len(dst)</code>. 6028As a special case, <code>copy</code> also accepts a destination argument assignable 6029to type <code>[]byte</code> with a source argument of a string type. 6030This form copies the bytes from the string into the byte slice. 6031</p> 6032 6033<pre class="grammar"> 6034copy(dst, src []T) int 6035copy(dst []byte, src string) int 6036</pre> 6037 6038<p> 6039Examples: 6040</p> 6041 6042<pre> 6043var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} 6044var s = make([]int, 6) 6045var b = make([]byte, 5) 6046n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} 6047n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} 6048n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") 6049</pre> 6050 6051 6052<h3 id="Deletion_of_map_elements">Deletion of map elements</h3> 6053 6054<p> 6055The built-in function <code>delete</code> removes the element with key 6056<code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The 6057type of <code>k</code> must be <a href="#Assignability">assignable</a> 6058to the key type of <code>m</code>. 6059</p> 6060 6061<pre class="grammar"> 6062delete(m, k) // remove element m[k] from map m 6063</pre> 6064 6065<p> 6066If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code> 6067does not exist, <code>delete</code> is a no-op. 6068</p> 6069 6070 6071<h3 id="Complex_numbers">Manipulating complex numbers</h3> 6072 6073<p> 6074Three functions assemble and disassemble complex numbers. 6075The built-in function <code>complex</code> constructs a complex 6076value from a floating-point real and imaginary part, while 6077<code>real</code> and <code>imag</code> 6078extract the real and imaginary parts of a complex value. 6079</p> 6080 6081<pre class="grammar"> 6082complex(realPart, imaginaryPart floatT) complexT 6083real(complexT) floatT 6084imag(complexT) floatT 6085</pre> 6086 6087<p> 6088The type of the arguments and return value correspond. 6089For <code>complex</code>, the two arguments must be of the same 6090floating-point type and the return type is the complex type 6091with the corresponding floating-point constituents: 6092<code>complex64</code> for <code>float32</code> arguments, and 6093<code>complex128</code> for <code>float64</code> arguments. 6094If one of the arguments evaluates to an untyped constant, it is first implicitly 6095<a href="#Conversions">converted</a> to the type of the other argument. 6096If both arguments evaluate to untyped constants, they must be non-complex 6097numbers or their imaginary parts must be zero, and the return value of 6098the function is an untyped complex constant. 6099</p> 6100 6101<p> 6102For <code>real</code> and <code>imag</code>, the argument must be 6103of complex type, and the return type is the corresponding floating-point 6104type: <code>float32</code> for a <code>complex64</code> argument, and 6105<code>float64</code> for a <code>complex128</code> argument. 6106If the argument evaluates to an untyped constant, it must be a number, 6107and the return value of the function is an untyped floating-point constant. 6108</p> 6109 6110<p> 6111The <code>real</code> and <code>imag</code> functions together form the inverse of 6112<code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>, 6113<code>z == Z(complex(real(z), imag(z)))</code>. 6114</p> 6115 6116<p> 6117If the operands of these functions are all constants, the return 6118value is a constant. 6119</p> 6120 6121<pre> 6122var a = complex(2, -2) // complex128 6123const b = complex(1.0, -1.4) // untyped complex constant 1 - 1.4i 6124x := float32(math.Cos(math.Pi/2)) // float32 6125var c64 = complex(5, -x) // complex64 6126var s int = complex(1, 0) // untyped complex constant 1 + 0i can be converted to int 6127_ = complex(1, 2<<s) // illegal: 2 assumes floating-point type, cannot shift 6128var rl = real(c64) // float32 6129var im = imag(a) // float64 6130const c = imag(b) // untyped constant -1.4 6131_ = imag(3 << s) // illegal: 3 assumes complex type, cannot shift 6132</pre> 6133 6134<h3 id="Handling_panics">Handling panics</h3> 6135 6136<p> Two built-in functions, <code>panic</code> and <code>recover</code>, 6137assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> 6138and program-defined error conditions. 6139</p> 6140 6141<pre class="grammar"> 6142func panic(interface{}) 6143func recover() interface{} 6144</pre> 6145 6146<p> 6147While executing a function <code>F</code>, 6148an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a> 6149terminates the execution of <code>F</code>. 6150Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 6151are then executed as usual. 6152Next, any deferred functions run by <code>F's</code> caller are run, 6153and so on up to any deferred by the top-level function in the executing goroutine. 6154At that point, the program is terminated and the error 6155condition is reported, including the value of the argument to <code>panic</code>. 6156This termination sequence is called <i>panicking</i>. 6157</p> 6158 6159<pre> 6160panic(42) 6161panic("unreachable") 6162panic(Error("cannot parse")) 6163</pre> 6164 6165<p> 6166The <code>recover</code> function allows a program to manage behavior 6167of a panicking goroutine. 6168Suppose a function <code>G</code> defers a function <code>D</code> that calls 6169<code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code> 6170is executing. 6171When the running of deferred functions reaches <code>D</code>, 6172the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>. 6173If <code>D</code> returns normally, without starting a new 6174<code>panic</code>, the panicking sequence stops. In that case, 6175the state of functions called between <code>G</code> and the call to <code>panic</code> 6176is discarded, and normal execution resumes. 6177Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s 6178execution terminates by returning to its caller. 6179</p> 6180 6181<p> 6182The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds: 6183</p> 6184<ul> 6185<li> 6186<code>panic</code>'s argument was <code>nil</code>; 6187</li> 6188<li> 6189the goroutine is not panicking; 6190</li> 6191<li> 6192<code>recover</code> was not called directly by a deferred function. 6193</li> 6194</ul> 6195 6196<p> 6197The <code>protect</code> function in the example below invokes 6198the function argument <code>g</code> and protects callers from 6199run-time panics raised by <code>g</code>. 6200</p> 6201 6202<pre> 6203func protect(g func()) { 6204 defer func() { 6205 log.Println("done") // Println executes normally even if there is a panic 6206 if x := recover(); x != nil { 6207 log.Printf("run time panic: %v", x) 6208 } 6209 }() 6210 log.Println("start") 6211 g() 6212} 6213</pre> 6214 6215 6216<h3 id="Bootstrapping">Bootstrapping</h3> 6217 6218<p> 6219Current implementations provide several built-in functions useful during 6220bootstrapping. These functions are documented for completeness but are not 6221guaranteed to stay in the language. They do not return a result. 6222</p> 6223 6224<pre class="grammar"> 6225Function Behavior 6226 6227print prints all arguments; formatting of arguments is implementation-specific 6228println like print but prints spaces between arguments and a newline at the end 6229</pre> 6230 6231<p> 6232Implementation restriction: <code>print</code> and <code>println</code> need not 6233accept arbitrary argument types, but printing of boolean, numeric, and string 6234<a href="#Types">types</a> must be supported. 6235</p> 6236 6237<h2 id="Packages">Packages</h2> 6238 6239<p> 6240Go programs are constructed by linking together <i>packages</i>. 6241A package in turn is constructed from one or more source files 6242that together declare constants, types, variables and functions 6243belonging to the package and which are accessible in all files 6244of the same package. Those elements may be 6245<a href="#Exported_identifiers">exported</a> and used in another package. 6246</p> 6247 6248<h3 id="Source_file_organization">Source file organization</h3> 6249 6250<p> 6251Each source file consists of a package clause defining the package 6252to which it belongs, followed by a possibly empty set of import 6253declarations that declare packages whose contents it wishes to use, 6254followed by a possibly empty set of declarations of functions, 6255types, variables, and constants. 6256</p> 6257 6258<pre class="ebnf"> 6259SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . 6260</pre> 6261 6262<h3 id="Package_clause">Package clause</h3> 6263 6264<p> 6265A package clause begins each source file and defines the package 6266to which the file belongs. 6267</p> 6268 6269<pre class="ebnf"> 6270PackageClause = "package" PackageName . 6271PackageName = identifier . 6272</pre> 6273 6274<p> 6275The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. 6276</p> 6277 6278<pre> 6279package math 6280</pre> 6281 6282<p> 6283A set of files sharing the same PackageName form the implementation of a package. 6284An implementation may require that all source files for a package inhabit the same directory. 6285</p> 6286 6287<h3 id="Import_declarations">Import declarations</h3> 6288 6289<p> 6290An import declaration states that the source file containing the declaration 6291depends on functionality of the <i>imported</i> package 6292(<a href="#Program_initialization_and_execution">§Program initialization and execution</a>) 6293and enables access to <a href="#Exported_identifiers">exported</a> identifiers 6294of that package. 6295The import names an identifier (PackageName) to be used for access and an ImportPath 6296that specifies the package to be imported. 6297</p> 6298 6299<pre class="ebnf"> 6300ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . 6301ImportSpec = [ "." | PackageName ] ImportPath . 6302ImportPath = string_lit . 6303</pre> 6304 6305<p> 6306The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> 6307to access exported identifiers of the package within the importing source file. 6308It is declared in the <a href="#Blocks">file block</a>. 6309If the PackageName is omitted, it defaults to the identifier specified in the 6310<a href="#Package_clause">package clause</a> of the imported package. 6311If an explicit period (<code>.</code>) appears instead of a name, all the 6312package's exported identifiers declared in that package's 6313<a href="#Blocks">package block</a> will be declared in the importing source 6314file's file block and must be accessed without a qualifier. 6315</p> 6316 6317<p> 6318The interpretation of the ImportPath is implementation-dependent but 6319it is typically a substring of the full file name of the compiled 6320package and may be relative to a repository of installed packages. 6321</p> 6322 6323<p> 6324Implementation restriction: A compiler may restrict ImportPaths to 6325non-empty strings using only characters belonging to 6326<a href="https://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a> 6327L, M, N, P, and S general categories (the Graphic characters without 6328spaces) and may also exclude the characters 6329<code>!"#$%&'()*,:;<=>?[\]^`{|}</code> 6330and the Unicode replacement character U+FFFD. 6331</p> 6332 6333<p> 6334Assume we have compiled a package containing the package clause 6335<code>package math</code>, which exports function <code>Sin</code>, and 6336installed the compiled package in the file identified by 6337<code>"lib/math"</code>. 6338This table illustrates how <code>Sin</code> is accessed in files 6339that import the package after the 6340various types of import declaration. 6341</p> 6342 6343<pre class="grammar"> 6344Import declaration Local name of Sin 6345 6346import "lib/math" math.Sin 6347import m "lib/math" m.Sin 6348import . "lib/math" Sin 6349</pre> 6350 6351<p> 6352An import declaration declares a dependency relation between 6353the importing and imported package. 6354It is illegal for a package to import itself, directly or indirectly, 6355or to directly import a package without 6356referring to any of its exported identifiers. To import a package solely for 6357its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> 6358identifier as explicit package name: 6359</p> 6360 6361<pre> 6362import _ "lib/math" 6363</pre> 6364 6365 6366<h3 id="An_example_package">An example package</h3> 6367 6368<p> 6369Here is a complete Go package that implements a concurrent prime sieve. 6370</p> 6371 6372<pre> 6373package main 6374 6375import "fmt" 6376 6377// Send the sequence 2, 3, 4, … to channel 'ch'. 6378func generate(ch chan<- int) { 6379 for i := 2; ; i++ { 6380 ch <- i // Send 'i' to channel 'ch'. 6381 } 6382} 6383 6384// Copy the values from channel 'src' to channel 'dst', 6385// removing those divisible by 'prime'. 6386func filter(src <-chan int, dst chan<- int, prime int) { 6387 for i := range src { // Loop over values received from 'src'. 6388 if i%prime != 0 { 6389 dst <- i // Send 'i' to channel 'dst'. 6390 } 6391 } 6392} 6393 6394// The prime sieve: Daisy-chain filter processes together. 6395func sieve() { 6396 ch := make(chan int) // Create a new channel. 6397 go generate(ch) // Start generate() as a subprocess. 6398 for { 6399 prime := <-ch 6400 fmt.Print(prime, "\n") 6401 ch1 := make(chan int) 6402 go filter(ch, ch1, prime) 6403 ch = ch1 6404 } 6405} 6406 6407func main() { 6408 sieve() 6409} 6410</pre> 6411 6412<h2 id="Program_initialization_and_execution">Program initialization and execution</h2> 6413 6414<h3 id="The_zero_value">The zero value</h3> 6415<p> 6416When storage is allocated for a <a href="#Variables">variable</a>, 6417either through a declaration or a call of <code>new</code>, or when 6418a new value is created, either through a composite literal or a call 6419of <code>make</code>, 6420and no explicit initialization is provided, the variable or value is 6421given a default value. Each element of such a variable or value is 6422set to the <i>zero value</i> for its type: <code>false</code> for booleans, 6423<code>0</code> for numeric types, <code>""</code> 6424for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. 6425This initialization is done recursively, so for instance each element of an 6426array of structs will have its fields zeroed if no value is specified. 6427</p> 6428<p> 6429These two simple declarations are equivalent: 6430</p> 6431 6432<pre> 6433var i int 6434var i int = 0 6435</pre> 6436 6437<p> 6438After 6439</p> 6440 6441<pre> 6442type T struct { i int; f float64; next *T } 6443t := new(T) 6444</pre> 6445 6446<p> 6447the following holds: 6448</p> 6449 6450<pre> 6451t.i == 0 6452t.f == 0.0 6453t.next == nil 6454</pre> 6455 6456<p> 6457The same would also be true after 6458</p> 6459 6460<pre> 6461var t T 6462</pre> 6463 6464<h3 id="Package_initialization">Package initialization</h3> 6465 6466<p> 6467Within a package, package-level variable initialization proceeds stepwise, 6468with each step selecting the variable earliest in <i>declaration order</i> 6469which has no dependencies on uninitialized variables. 6470</p> 6471 6472<p> 6473More precisely, a package-level variable is considered <i>ready for 6474initialization</i> if it is not yet initialized and either has 6475no <a href="#Variable_declarations">initialization expression</a> or 6476its initialization expression has no <i>dependencies</i> on uninitialized variables. 6477Initialization proceeds by repeatedly initializing the next package-level 6478variable that is earliest in declaration order and ready for initialization, 6479until there are no variables ready for initialization. 6480</p> 6481 6482<p> 6483If any variables are still uninitialized when this 6484process ends, those variables are part of one or more initialization cycles, 6485and the program is not valid. 6486</p> 6487 6488<p> 6489Multiple variables on the left-hand side of a variable declaration initialized 6490by single (multi-valued) expression on the right-hand side are initialized 6491together: If any of the variables on the left-hand side is initialized, all 6492those variables are initialized in the same step. 6493</p> 6494 6495<pre> 6496var x = a 6497var a, b = f() // a and b are initialized together, before x is initialized 6498</pre> 6499 6500<p> 6501For the purpose of package initialization, <a href="#Blank_identifier">blank</a> 6502variables are treated like any other variables in declarations. 6503</p> 6504 6505<p> 6506The declaration order of variables declared in multiple files is determined 6507by the order in which the files are presented to the compiler: Variables 6508declared in the first file are declared before any of the variables declared 6509in the second file, and so on. 6510</p> 6511 6512<p> 6513Dependency analysis does not rely on the actual values of the 6514variables, only on lexical <i>references</i> to them in the source, 6515analyzed transitively. For instance, if a variable <code>x</code>'s 6516initialization expression refers to a function whose body refers to 6517variable <code>y</code> then <code>x</code> depends on <code>y</code>. 6518Specifically: 6519</p> 6520 6521<ul> 6522<li> 6523A reference to a variable or function is an identifier denoting that 6524variable or function. 6525</li> 6526 6527<li> 6528A reference to a method <code>m</code> is a 6529<a href="#Method_values">method value</a> or 6530<a href="#Method_expressions">method expression</a> of the form 6531<code>t.m</code>, where the (static) type of <code>t</code> is 6532not an interface type, and the method <code>m</code> is in the 6533<a href="#Method_sets">method set</a> of <code>t</code>. 6534It is immaterial whether the resulting function value 6535<code>t.m</code> is invoked. 6536</li> 6537 6538<li> 6539A variable, function, or method <code>x</code> depends on a variable 6540<code>y</code> if <code>x</code>'s initialization expression or body 6541(for functions and methods) contains a reference to <code>y</code> 6542or to a function or method that depends on <code>y</code>. 6543</li> 6544</ul> 6545 6546<p> 6547For example, given the declarations 6548</p> 6549 6550<pre> 6551var ( 6552 a = c + b // == 9 6553 b = f() // == 4 6554 c = f() // == 5 6555 d = 3 // == 5 after initialization has finished 6556) 6557 6558func f() int { 6559 d++ 6560 return d 6561} 6562</pre> 6563 6564<p> 6565the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>. 6566Note that the order of subexpressions in initialization expressions is irrelevant: 6567<code>a = c + b</code> and <code>a = b + c</code> result in the same initialization 6568order in this example. 6569</p> 6570 6571<p> 6572Dependency analysis is performed per package; only references referring 6573to variables, functions, and (non-interface) methods declared in the current 6574package are considered. If other, hidden, data dependencies exists between 6575variables, the initialization order between those variables is unspecified. 6576</p> 6577 6578<p> 6579For instance, given the declarations 6580</p> 6581 6582<pre> 6583var x = I(T{}).ab() // x has an undetected, hidden dependency on a and b 6584var _ = sideEffect() // unrelated to x, a, or b 6585var a = b 6586var b = 42 6587 6588type I interface { ab() []int } 6589type T struct{} 6590func (T) ab() []int { return []int{a, b} } 6591</pre> 6592 6593<p> 6594the variable <code>a</code> will be initialized after <code>b</code> but 6595whether <code>x</code> is initialized before <code>b</code>, between 6596<code>b</code> and <code>a</code>, or after <code>a</code>, and 6597thus also the moment at which <code>sideEffect()</code> is called (before 6598or after <code>x</code> is initialized) is not specified. 6599</p> 6600 6601<p> 6602Variables may also be initialized using functions named <code>init</code> 6603declared in the package block, with no arguments and no result parameters. 6604</p> 6605 6606<pre> 6607func init() { … } 6608</pre> 6609 6610<p> 6611Multiple such functions may be defined per package, even within a single 6612source file. In the package block, the <code>init</code> identifier can 6613be used only to declare <code>init</code> functions, yet the identifier 6614itself is not <a href="#Declarations_and_scope">declared</a>. Thus 6615<code>init</code> functions cannot be referred to from anywhere 6616in a program. 6617</p> 6618 6619<p> 6620A package with no imports is initialized by assigning initial values 6621to all its package-level variables followed by calling all <code>init</code> 6622functions in the order they appear in the source, possibly in multiple files, 6623as presented to the compiler. 6624If a package has imports, the imported packages are initialized 6625before initializing the package itself. If multiple packages import 6626a package, the imported package will be initialized only once. 6627The importing of packages, by construction, guarantees that there 6628can be no cyclic initialization dependencies. 6629</p> 6630 6631<p> 6632Package initialization—variable initialization and the invocation of 6633<code>init</code> functions—happens in a single goroutine, 6634sequentially, one package at a time. 6635An <code>init</code> function may launch other goroutines, which can run 6636concurrently with the initialization code. However, initialization 6637always sequences 6638the <code>init</code> functions: it will not invoke the next one 6639until the previous one has returned. 6640</p> 6641 6642<p> 6643To ensure reproducible initialization behavior, build systems are encouraged 6644to present multiple files belonging to the same package in lexical file name 6645order to a compiler. 6646</p> 6647 6648 6649<h3 id="Program_execution">Program execution</h3> 6650<p> 6651A complete program is created by linking a single, unimported package 6652called the <i>main package</i> with all the packages it imports, transitively. 6653The main package must 6654have package name <code>main</code> and 6655declare a function <code>main</code> that takes no 6656arguments and returns no value. 6657</p> 6658 6659<pre> 6660func main() { … } 6661</pre> 6662 6663<p> 6664Program execution begins by initializing the main package and then 6665invoking the function <code>main</code>. 6666When that function invocation returns, the program exits. 6667It does not wait for other (non-<code>main</code>) goroutines to complete. 6668</p> 6669 6670<h2 id="Errors">Errors</h2> 6671 6672<p> 6673The predeclared type <code>error</code> is defined as 6674</p> 6675 6676<pre> 6677type error interface { 6678 Error() string 6679} 6680</pre> 6681 6682<p> 6683It is the conventional interface for representing an error condition, 6684with the nil value representing no error. 6685For instance, a function to read data from a file might be defined: 6686</p> 6687 6688<pre> 6689func Read(f *File, b []byte) (n int, err error) 6690</pre> 6691 6692<h2 id="Run_time_panics">Run-time panics</h2> 6693 6694<p> 6695Execution errors such as attempting to index an array out 6696of bounds trigger a <i>run-time panic</i> equivalent to a call of 6697the built-in function <a href="#Handling_panics"><code>panic</code></a> 6698with a value of the implementation-defined interface type <code>runtime.Error</code>. 6699That type satisfies the predeclared interface type 6700<a href="#Errors"><code>error</code></a>. 6701The exact error values that 6702represent distinct run-time error conditions are unspecified. 6703</p> 6704 6705<pre> 6706package runtime 6707 6708type Error interface { 6709 error 6710 // and perhaps other methods 6711} 6712</pre> 6713 6714<h2 id="System_considerations">System considerations</h2> 6715 6716<h3 id="Package_unsafe">Package <code>unsafe</code></h3> 6717 6718<p> 6719The built-in package <code>unsafe</code>, known to the compiler 6720and accessible through the <a href="#Import_declarations">import path</a> <code>"unsafe"</code>, 6721provides facilities for low-level programming including operations 6722that violate the type system. A package using <code>unsafe</code> 6723must be vetted manually for type safety and may not be portable. 6724The package provides the following interface: 6725</p> 6726 6727<pre class="grammar"> 6728package unsafe 6729 6730type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type 6731type Pointer *ArbitraryType 6732 6733func Alignof(variable ArbitraryType) uintptr 6734func Offsetof(selector ArbitraryType) uintptr 6735func Sizeof(variable ArbitraryType) uintptr 6736 6737type IntegerType int // shorthand for an integer type; it is not a real type 6738func Add(ptr Pointer, len IntegerType) Pointer 6739func Slice(ptr *ArbitraryType, len IntegerType) []ArbitraryType 6740</pre> 6741 6742<p> 6743A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code> 6744value may not be <a href="#Address_operators">dereferenced</a>. 6745Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to 6746a type of underlying type <code>Pointer</code> and vice versa. 6747The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined. 6748</p> 6749 6750<pre> 6751var f float64 6752bits = *(*uint64)(unsafe.Pointer(&f)) 6753 6754type ptr unsafe.Pointer 6755bits = *(*uint64)(ptr(&f)) 6756 6757var p ptr = nil 6758</pre> 6759 6760<p> 6761The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code> 6762of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code> 6763as if <code>v</code> was declared via <code>var v = x</code>. 6764</p> 6765<p> 6766The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a> 6767<code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code> 6768or <code>*s</code>, and returns the field offset in bytes relative to the struct's address. 6769If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable 6770without pointer indirections through fields of the struct. 6771For a struct <code>s</code> with field <code>f</code>: 6772</p> 6773 6774<pre> 6775uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) 6776</pre> 6777 6778<p> 6779Computer architectures may require memory addresses to be <i>aligned</i>; 6780that is, for addresses of a variable to be a multiple of a factor, 6781the variable's type's <i>alignment</i>. The function <code>Alignof</code> 6782takes an expression denoting a variable of any type and returns the 6783alignment of the (type of the) variable in bytes. For a variable 6784<code>x</code>: 6785</p> 6786 6787<pre> 6788uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 6789</pre> 6790 6791<p> 6792Calls to <code>Alignof</code>, <code>Offsetof</code>, and 6793<code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. 6794</p> 6795 6796<p> 6797The function <code>Add</code> adds <code>len</code> to <code>ptr</code> 6798and returns the updated pointer <code>unsafe.Pointer(uintptr(ptr) + uintptr(len))</code>. 6799The <code>len</code> argument must be of integer type or an untyped <a href="#Constants">constant</a>. 6800A constant <code>len</code> argument must be <a href="#Representability">representable</a> by a value of type <code>int</code>; 6801if it is an untyped constant it is given type <code>int</code>. 6802The rules for <a href="/pkg/unsafe#Pointer">valid uses</a> of <code>Pointer</code> still apply. 6803</p> 6804 6805<p> 6806The function <code>Slice</code> returns a slice whose underlying array starts at <code>ptr</code> 6807and whose length and capacity are <code>len</code>. 6808<code>Slice(ptr, len)</code> is equivalent to 6809</p> 6810 6811<pre> 6812(*[len]ArbitraryType)(unsafe.Pointer(ptr))[:] 6813</pre> 6814 6815<p> 6816except that, as a special case, if <code>ptr</code> 6817is <code>nil</code> and <code>len</code> is zero, 6818<code>Slice</code> returns <code>nil</code>. 6819</p> 6820 6821<p> 6822The <code>len</code> argument must be of integer type or an untyped <a href="#Constants">constant</a>. 6823A constant <code>len</code> argument must be non-negative and <a href="#Representability">representable</a> by a value of type <code>int</code>; 6824if it is an untyped constant it is given type <code>int</code>. 6825At run time, if <code>len</code> is negative, 6826or if <code>ptr</code> is <code>nil</code> and <code>len</code> is not zero, 6827a <a href="#Run_time_panics">run-time panic</a> occurs. 6828</p> 6829 6830<h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> 6831 6832<p> 6833For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed: 6834</p> 6835 6836<pre class="grammar"> 6837type size in bytes 6838 6839byte, uint8, int8 1 6840uint16, int16 2 6841uint32, int32, float32 4 6842uint64, int64, float64, complex64 8 6843complex128 16 6844</pre> 6845 6846<p> 6847The following minimal alignment properties are guaranteed: 6848</p> 6849<ol> 6850<li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. 6851</li> 6852 6853<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of 6854 all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. 6855</li> 6856 6857<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as 6858 the alignment of a variable of the array's element type. 6859</li> 6860</ol> 6861 6862<p> 6863A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory. 6864</p> 6865