1 //===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Pass to transform <256 x i32> load/store
10 /// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
11 /// provides simple operation on x86_amx. The basic elementwise operation
12 /// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
13 /// and only AMX intrinsics can operate on the type, we need transform
14 /// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
15 /// not be combined with load/store, we transform the bitcast to amx load/store
16 /// and <256 x i32> store/load.
17 ///
18 /// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
19 /// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
20 /// because that is necessary for AMX fast register allocation. (In Fast
21 /// registera allocation, register will be allocated before spill/reload, so
22 /// there is no additional register for amx to identify the step in spill.)
23 /// The volatileTileData() will handle this case.
24 /// e.g.
25 /// ----------------------------------------------------------
26 /// | def %td = ... |
27 /// | ... |
28 /// | "use %td" |
29 /// ----------------------------------------------------------
30 /// will transfer to -->
31 /// ----------------------------------------------------------
32 /// | def %td = ... |
33 /// | call void @llvm.x86.tilestored64.internal(mem, %td) |
34 /// | ... |
35 /// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
36 /// | "use %td2" |
37 /// ----------------------------------------------------------
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 #include "X86.h"
42 #include "llvm/ADT/PostOrderIterator.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallSet.h"
45 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/CodeGen/Passes.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/IntrinsicsX86.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
62 #include "llvm/Transforms/Utils/Local.h"
63
64 #include <map>
65
66 using namespace llvm;
67 using namespace PatternMatch;
68
69 #define DEBUG_TYPE "lower-amx-type"
70
isAMXCast(Instruction * II)71 static bool isAMXCast(Instruction *II) {
72 return match(II,
73 m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value())) ||
74 match(II, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(m_Value()));
75 }
76
isAMXIntrinsic(Value * I)77 static bool isAMXIntrinsic(Value *I) {
78 auto *II = dyn_cast<IntrinsicInst>(I);
79 if (!II)
80 return false;
81 if (isAMXCast(II))
82 return false;
83 // Check if return type or parameter is x86_amx. If it is x86_amx
84 // the intrinsic must be x86 amx intrinsics.
85 if (II->getType()->isX86_AMXTy())
86 return true;
87 for (Value *V : II->args()) {
88 if (V->getType()->isX86_AMXTy())
89 return true;
90 }
91
92 return false;
93 }
94
createAllocaInstAtEntry(IRBuilder<> & Builder,BasicBlock * BB,Type * Ty)95 static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder, BasicBlock *BB,
96 Type *Ty) {
97 Function &F = *BB->getParent();
98 Module *M = BB->getModule();
99 const DataLayout &DL = M->getDataLayout();
100
101 LLVMContext &Ctx = Builder.getContext();
102 auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
103 unsigned AllocaAS = DL.getAllocaAddrSpace();
104 AllocaInst *AllocaRes =
105 new AllocaInst(Ty, AllocaAS, "", &F.getEntryBlock().front());
106 AllocaRes->setAlignment(AllocaAlignment);
107 return AllocaRes;
108 }
109
getFirstNonAllocaInTheEntryBlock(Function & F)110 static Instruction *getFirstNonAllocaInTheEntryBlock(Function &F) {
111 for (Instruction &I : F.getEntryBlock())
112 if (!isa<AllocaInst>(&I))
113 return &I;
114 llvm_unreachable("No terminator in the entry block!");
115 }
116
getShape(IntrinsicInst * II,unsigned OpNo)117 static std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo) {
118 IRBuilder<> Builder(II);
119 Value *Row = nullptr, *Col = nullptr;
120 switch (II->getIntrinsicID()) {
121 default:
122 llvm_unreachable("Expect amx intrinsics");
123 case Intrinsic::x86_tileloadd64_internal:
124 case Intrinsic::x86_tileloaddt164_internal:
125 case Intrinsic::x86_tilestored64_internal: {
126 Row = II->getArgOperand(0);
127 Col = II->getArgOperand(1);
128 break;
129 }
130 // a * b + c
131 // The shape depends on which operand.
132 case Intrinsic::x86_tdpbssd_internal:
133 case Intrinsic::x86_tdpbsud_internal:
134 case Intrinsic::x86_tdpbusd_internal:
135 case Intrinsic::x86_tdpbuud_internal:
136 case Intrinsic::x86_tdpbf16ps_internal:
137 case Intrinsic::x86_tdpfp16ps_internal: {
138 switch (OpNo) {
139 case 3:
140 Row = II->getArgOperand(0);
141 Col = II->getArgOperand(1);
142 break;
143 case 4:
144 Row = II->getArgOperand(0);
145 Col = II->getArgOperand(2);
146 break;
147 case 5:
148 if (isa<ConstantInt>(II->getArgOperand(2)))
149 Row = Builder.getInt16(
150 (cast<ConstantInt>(II->getOperand(2))->getSExtValue()) / 4);
151 else if (isa<Instruction>(II->getArgOperand(2))) {
152 // When it is not a const value and it is not a function argument, we
153 // create Row after the definition of II->getOperand(2) instead of
154 // before II. For example, II is %118, we try to getshape for %117:
155 // %117 = call x86_amx @llvm.x86.cast.vector.to.tile.v256i32(<256 x
156 // i32> %115).
157 // %118 = call x86_amx @llvm.x86.tdpbf16ps.internal(i16
158 // %104, i16 %105, i16 %106, x86_amx %110, x86_amx %114, x86_amx
159 // %117).
160 // If we create %row = udiv i16 %106, 4 before %118(aka. II), then its
161 // definition is after its user(new tileload for %117).
162 // So, the best choice is to create %row right after the definition of
163 // %106.
164 Builder.SetInsertPoint(cast<Instruction>(II->getOperand(2)));
165 Row = Builder.CreateUDiv(II->getOperand(2), Builder.getInt16(4));
166 cast<Instruction>(Row)->moveAfter(cast<Instruction>(II->getOperand(2)));
167 } else {
168 // When it is not a const value and it is a function argument, we create
169 // Row at the entry bb.
170 IRBuilder<> NewBuilder(
171 getFirstNonAllocaInTheEntryBlock(*II->getFunction()));
172 Row = NewBuilder.CreateUDiv(II->getOperand(2), NewBuilder.getInt16(4));
173 }
174 Col = II->getArgOperand(1);
175 break;
176 }
177 break;
178 }
179 }
180
181 return std::make_pair(Row, Col);
182 }
183
getShape(PHINode * Phi)184 static std::pair<Value *, Value *> getShape(PHINode *Phi) {
185 Use &U = *(Phi->use_begin());
186 unsigned OpNo = U.getOperandNo();
187 User *V = U.getUser();
188 // TODO We don't traverse all users. To make the algorithm simple, here we
189 // just traverse the first user. If we can find shape, then return the shape,
190 // otherwise just return nullptr and the optimization for undef/zero will be
191 // abandoned.
192 while (V) {
193 if (isAMXCast(dyn_cast<Instruction>(V))) {
194 if (V->use_empty())
195 break;
196 Use &U = *(V->use_begin());
197 OpNo = U.getOperandNo();
198 V = U.getUser();
199 } else if (isAMXIntrinsic(V)) {
200 return getShape(cast<IntrinsicInst>(V), OpNo);
201 } else if (isa<PHINode>(V)) {
202 if (V->use_empty())
203 break;
204 Use &U = *(V->use_begin());
205 V = U.getUser();
206 } else {
207 break;
208 }
209 }
210
211 return std::make_pair(nullptr, nullptr);
212 }
213
214 namespace {
215 class X86LowerAMXType {
216 Function &Func;
217
218 // In AMX intrinsics we let Shape = {Row, Col}, but the
219 // RealCol = Col / ElementSize. We may use the RealCol
220 // as a new Row for other new created AMX intrinsics.
221 std::map<Value *, Value *> Col2Row;
222
223 public:
X86LowerAMXType(Function & F)224 X86LowerAMXType(Function &F) : Func(F) {}
225 bool visit();
226 void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
227 void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
228 bool transformBitcast(BitCastInst *Bitcast);
229 };
230
231 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
232 // %2 = bitcast <256 x i32> %src to x86_amx
233 // -->
234 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
235 // i8* %addr, i64 %stride64)
combineLoadBitcast(LoadInst * LD,BitCastInst * Bitcast)236 void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
237 Value *Row = nullptr, *Col = nullptr;
238 Use &U = *(Bitcast->use_begin());
239 unsigned OpNo = U.getOperandNo();
240 auto *II = cast<IntrinsicInst>(U.getUser());
241 std::tie(Row, Col) = getShape(II, OpNo);
242 IRBuilder<> Builder(Bitcast);
243 // Use the maximun column as stride.
244 Value *Stride = Builder.getInt64(64);
245 Value *I8Ptr =
246 Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
247 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
248
249 Value *NewInst = Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal,
250 std::nullopt, Args);
251 Bitcast->replaceAllUsesWith(NewInst);
252 }
253
254 // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
255 // %stride);
256 // %13 = bitcast x86_amx %src to <256 x i32>
257 // store <256 x i32> %13, <256 x i32>* %addr, align 64
258 // -->
259 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
260 // %stride64, %13)
combineBitcastStore(BitCastInst * Bitcast,StoreInst * ST)261 void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {
262
263 Value *Tile = Bitcast->getOperand(0);
264 auto *II = cast<IntrinsicInst>(Tile);
265 // Tile is output from AMX intrinsic. The first operand of the
266 // intrinsic is row, the second operand of the intrinsic is column.
267 Value *Row = II->getOperand(0);
268 Value *Col = II->getOperand(1);
269 IRBuilder<> Builder(ST);
270 // Use the maximum column as stride. It must be the same with load
271 // stride.
272 Value *Stride = Builder.getInt64(64);
273 Value *I8Ptr =
274 Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
275 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
276 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, std::nullopt,
277 Args);
278 if (Bitcast->hasOneUse())
279 return;
280 // %13 = bitcast x86_amx %src to <256 x i32>
281 // store <256 x i32> %13, <256 x i32>* %addr, align 64
282 // %add = <256 x i32> %13, <256 x i32> %src2
283 // -->
284 // %13 = bitcast x86_amx %src to <256 x i32>
285 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
286 // %stride64, %13)
287 // %14 = load <256 x i32>, %addr
288 // %add = <256 x i32> %14, <256 x i32> %src2
289 Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
290 Bitcast->replaceAllUsesWith(Vec);
291 }
292
293 // transform bitcast to <store, load> instructions.
transformBitcast(BitCastInst * Bitcast)294 bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
295 IRBuilder<> Builder(Bitcast);
296 AllocaInst *AllocaAddr;
297 Value *I8Ptr, *Stride;
298 auto *Src = Bitcast->getOperand(0);
299
300 auto Prepare = [&](Type *MemTy) {
301 AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent(), MemTy);
302 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
303 Stride = Builder.getInt64(64);
304 };
305
306 if (Bitcast->getType()->isX86_AMXTy()) {
307 // %2 = bitcast <256 x i32> %src to x86_amx
308 // -->
309 // %addr = alloca <256 x i32>, align 64
310 // store <256 x i32> %src, <256 x i32>* %addr, align 64
311 // %addr2 = bitcast <256 x i32>* to i8*
312 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
313 // i8* %addr2,
314 // i64 64)
315 Use &U = *(Bitcast->use_begin());
316 unsigned OpNo = U.getOperandNo();
317 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
318 if (!II)
319 return false; // May be bitcast from x86amx to <256 x i32>.
320 Prepare(Bitcast->getOperand(0)->getType());
321 Builder.CreateStore(Src, AllocaAddr);
322 // TODO we can pick an constant operand for the shape.
323 Value *Row = nullptr, *Col = nullptr;
324 std::tie(Row, Col) = getShape(II, OpNo);
325 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
326 Value *NewInst = Builder.CreateIntrinsic(
327 Intrinsic::x86_tileloadd64_internal, std::nullopt, Args);
328 Bitcast->replaceAllUsesWith(NewInst);
329 } else {
330 // %2 = bitcast x86_amx %src to <256 x i32>
331 // -->
332 // %addr = alloca <256 x i32>, align 64
333 // %addr2 = bitcast <256 x i32>* to i8*
334 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
335 // i8* %addr2, i64 %stride)
336 // %2 = load <256 x i32>, <256 x i32>* %addr, align 64
337 auto *II = dyn_cast<IntrinsicInst>(Src);
338 if (!II)
339 return false; // May be bitcast from <256 x i32> to x86amx.
340 Prepare(Bitcast->getType());
341 Value *Row = II->getOperand(0);
342 Value *Col = II->getOperand(1);
343 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
344 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, std::nullopt,
345 Args);
346 Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
347 Bitcast->replaceAllUsesWith(NewInst);
348 }
349
350 return true;
351 }
352
visit()353 bool X86LowerAMXType::visit() {
354 SmallVector<Instruction *, 8> DeadInsts;
355 Col2Row.clear();
356
357 for (BasicBlock *BB : post_order(&Func)) {
358 for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*BB))) {
359 auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
360 if (!Bitcast)
361 continue;
362
363 Value *Src = Bitcast->getOperand(0);
364 if (Bitcast->getType()->isX86_AMXTy()) {
365 if (Bitcast->user_empty()) {
366 DeadInsts.push_back(Bitcast);
367 continue;
368 }
369 LoadInst *LD = dyn_cast<LoadInst>(Src);
370 if (!LD) {
371 if (transformBitcast(Bitcast))
372 DeadInsts.push_back(Bitcast);
373 continue;
374 }
375 // If load has mutli-user, duplicate a vector load.
376 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
377 // %2 = bitcast <256 x i32> %src to x86_amx
378 // %add = add <256 x i32> %src, <256 x i32> %src2
379 // -->
380 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
381 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
382 // i8* %addr, i64 %stride64)
383 // %add = add <256 x i32> %src, <256 x i32> %src2
384
385 // If load has one user, the load will be eliminated in DAG ISel.
386 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
387 // %2 = bitcast <256 x i32> %src to x86_amx
388 // -->
389 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
390 // i8* %addr, i64 %stride64)
391 combineLoadBitcast(LD, Bitcast);
392 DeadInsts.push_back(Bitcast);
393 if (LD->hasOneUse())
394 DeadInsts.push_back(LD);
395 } else if (Src->getType()->isX86_AMXTy()) {
396 if (Bitcast->user_empty()) {
397 DeadInsts.push_back(Bitcast);
398 continue;
399 }
400 StoreInst *ST = nullptr;
401 for (Use &U : Bitcast->uses()) {
402 ST = dyn_cast<StoreInst>(U.getUser());
403 if (ST)
404 break;
405 }
406 if (!ST) {
407 if (transformBitcast(Bitcast))
408 DeadInsts.push_back(Bitcast);
409 continue;
410 }
411 // If bitcast (%13) has one use, combine bitcast and store to amx store.
412 // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
413 // %stride);
414 // %13 = bitcast x86_amx %src to <256 x i32>
415 // store <256 x i32> %13, <256 x i32>* %addr, align 64
416 // -->
417 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
418 // %stride64, %13)
419 //
420 // If bitcast (%13) has multi-use, transform as below.
421 // %13 = bitcast x86_amx %src to <256 x i32>
422 // store <256 x i32> %13, <256 x i32>* %addr, align 64
423 // %add = <256 x i32> %13, <256 x i32> %src2
424 // -->
425 // %13 = bitcast x86_amx %src to <256 x i32>
426 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
427 // %stride64, %13)
428 // %14 = load <256 x i32>, %addr
429 // %add = <256 x i32> %14, <256 x i32> %src2
430 //
431 combineBitcastStore(Bitcast, ST);
432 // Delete user first.
433 DeadInsts.push_back(ST);
434 DeadInsts.push_back(Bitcast);
435 }
436 }
437 }
438
439 bool C = !DeadInsts.empty();
440
441 for (auto *Inst : DeadInsts)
442 Inst->eraseFromParent();
443
444 return C;
445 }
446 } // anonymous namespace
447
getAllocaPos(BasicBlock * BB)448 static Value *getAllocaPos(BasicBlock *BB) {
449 Module *M = BB->getModule();
450 Function *F = BB->getParent();
451 IRBuilder<> Builder(&F->getEntryBlock().front());
452 const DataLayout &DL = M->getDataLayout();
453 unsigned AllocaAS = DL.getAllocaAddrSpace();
454 Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
455 AllocaInst *AllocaRes =
456 new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
457 BasicBlock::iterator Iter = AllocaRes->getIterator();
458 ++Iter;
459 Builder.SetInsertPoint(&*Iter);
460 Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
461 return I8Ptr;
462 }
463
createTileStore(Instruction * TileDef,Value * Ptr)464 static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
465 assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!");
466 auto *II = cast<IntrinsicInst>(TileDef);
467 assert(II && "Not tile intrinsic!");
468 Value *Row = II->getOperand(0);
469 Value *Col = II->getOperand(1);
470
471 BasicBlock *BB = TileDef->getParent();
472 BasicBlock::iterator Iter = TileDef->getIterator();
473 IRBuilder<> Builder(BB, ++Iter);
474 Value *Stride = Builder.getInt64(64);
475 std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};
476
477 Instruction *TileStore = Builder.CreateIntrinsic(
478 Intrinsic::x86_tilestored64_internal, std::nullopt, Args);
479 return TileStore;
480 }
481
replaceWithTileLoad(Use & U,Value * Ptr,bool IsPHI=false)482 static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
483 Value *V = U.get();
484 assert(V->getType()->isX86_AMXTy() && "Not define tile!");
485
486 // Get tile shape.
487 IntrinsicInst *II = nullptr;
488 if (IsPHI) {
489 Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
490 II = cast<IntrinsicInst>(PhiOp);
491 } else {
492 II = cast<IntrinsicInst>(V);
493 }
494 Value *Row = II->getOperand(0);
495 Value *Col = II->getOperand(1);
496
497 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
498 IRBuilder<> Builder(UserI);
499 Value *Stride = Builder.getInt64(64);
500 std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};
501
502 Value *TileLoad = Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal,
503 std::nullopt, Args);
504 UserI->replaceUsesOfWith(V, TileLoad);
505 }
506
isIncomingOfPHI(Instruction * I)507 static bool isIncomingOfPHI(Instruction *I) {
508 for (Use &U : I->uses()) {
509 User *V = U.getUser();
510 if (isa<PHINode>(V))
511 return true;
512 }
513 return false;
514 }
515
516 // Let all AMX tile data become volatile data, shorten the life range
517 // of each tile register before fast register allocation.
518 namespace {
519 class X86VolatileTileData {
520 Function &F;
521
522 public:
X86VolatileTileData(Function & Func)523 X86VolatileTileData(Function &Func) : F(Func) {}
524 Value *updatePhiIncomings(BasicBlock *BB,
525 SmallVector<Instruction *, 2> &Incomings);
526 void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
527 bool volatileTileData();
528 void volatileTilePHI(PHINode *Inst);
529 void volatileTileNonPHI(Instruction *I);
530 };
531
updatePhiIncomings(BasicBlock * BB,SmallVector<Instruction *,2> & Incomings)532 Value *X86VolatileTileData::updatePhiIncomings(
533 BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
534 Value *I8Ptr = getAllocaPos(BB);
535
536 for (auto *I : Incomings) {
537 User *Store = createTileStore(I, I8Ptr);
538
539 // All its uses (except phi) should load from stored mem.
540 for (Use &U : I->uses()) {
541 User *V = U.getUser();
542 if (isa<PHINode>(V) || V == Store)
543 continue;
544 replaceWithTileLoad(U, I8Ptr);
545 }
546 }
547 return I8Ptr;
548 }
549
replacePhiDefWithLoad(Instruction * PHI,Value * StorePtr)550 void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
551 Value *StorePtr) {
552 for (Use &U : PHI->uses())
553 replaceWithTileLoad(U, StorePtr, true);
554 PHI->eraseFromParent();
555 }
556
557 // Smilar with volatileTileNonPHI, this function only handle PHI Nodes
558 // and their related AMX intrinsics.
559 // 1) PHI Def should change to tileload.
560 // 2) PHI Incoming Values should tilestored in just after their def.
561 // 3) The mem of these tileload and tilestores should be same.
562 // e.g.
563 // ------------------------------------------------------
564 // bb_dom:
565 // ...
566 // br i1 %bool.cond, label %if.else, label %if.then
567 //
568 // if.then:
569 // def %t0 = ...
570 // ...
571 // use %t0
572 // ...
573 // br label %if.end
574 //
575 // if.else:
576 // def %t1 = ...
577 // br label %if.end
578 //
579 // if.end:
580 // %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
581 // ...
582 // use %td
583 // ------------------------------------------------------
584 // -->
585 // ------------------------------------------------------
586 // bb_entry:
587 // %mem = alloca <256 x i32>, align 1024 *
588 // ...
589 // bb_dom:
590 // ...
591 // br i1 %bool.cond, label %if.else, label %if.then
592 //
593 // if.then:
594 // def %t0 = ...
595 // call void @llvm.x86.tilestored64.internal(mem, %t0) *
596 // ...
597 // %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
598 // use %t0` *
599 // ...
600 // br label %if.end
601 //
602 // if.else:
603 // def %t1 = ...
604 // call void @llvm.x86.tilestored64.internal(mem, %t1) *
605 // br label %if.end
606 //
607 // if.end:
608 // ...
609 // %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
610 // use %td
611 // ------------------------------------------------------
volatileTilePHI(PHINode * PHI)612 void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
613 BasicBlock *BB = PHI->getParent();
614 SmallVector<Instruction *, 2> Incomings;
615
616 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
617 Value *Op = PHI->getIncomingValue(I);
618 Instruction *Inst = dyn_cast<Instruction>(Op);
619 assert(Inst && "We shouldn't fold AMX instrution!");
620 Incomings.push_back(Inst);
621 }
622
623 Value *StorePtr = updatePhiIncomings(BB, Incomings);
624 replacePhiDefWithLoad(PHI, StorePtr);
625 }
626
627 // Store the defined tile and load it before use.
628 // All its users are not PHI.
629 // e.g.
630 // ------------------------------------------------------
631 // def %td = ...
632 // ...
633 // "use %td"
634 // ------------------------------------------------------
635 // -->
636 // ------------------------------------------------------
637 // def %td = ...
638 // call void @llvm.x86.tilestored64.internal(mem, %td)
639 // ...
640 // %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
641 // "use %td2"
642 // ------------------------------------------------------
volatileTileNonPHI(Instruction * I)643 void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
644 BasicBlock *BB = I->getParent();
645 Value *I8Ptr = getAllocaPos(BB);
646 User *Store = createTileStore(I, I8Ptr);
647
648 // All its uses should load from stored mem.
649 for (Use &U : I->uses()) {
650 User *V = U.getUser();
651 assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!");
652 if (V != Store)
653 replaceWithTileLoad(U, I8Ptr);
654 }
655 }
656
657 // Volatile Tile Model:
658 // 1) All the uses of tile data comes from tileload in time.
659 // 2) All the defs of tile data tilestore into mem immediately.
660 // For example:
661 // --------------------------------------------------------------------------
662 // %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
663 // %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
664 // %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
665 // %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
666 // call void @llvm.x86.tilestored64.internal(... td) area
667 // --------------------------------------------------------------------------
668 // 3) No terminator, call or other amx instructions in the key amx area.
volatileTileData()669 bool X86VolatileTileData::volatileTileData() {
670 bool Changed = false;
671 for (BasicBlock &BB : F) {
672 SmallVector<Instruction *, 2> PHIInsts;
673 SmallVector<Instruction *, 8> AMXDefInsts;
674
675 for (Instruction &I : BB) {
676 if (!I.getType()->isX86_AMXTy())
677 continue;
678 if (isa<PHINode>(&I))
679 PHIInsts.push_back(&I);
680 else
681 AMXDefInsts.push_back(&I);
682 }
683
684 // First we "volatile" the non-phi related amx intrinsics.
685 for (Instruction *I : AMXDefInsts) {
686 if (isIncomingOfPHI(I))
687 continue;
688 volatileTileNonPHI(I);
689 Changed = true;
690 }
691
692 for (Instruction *I : PHIInsts) {
693 volatileTilePHI(dyn_cast<PHINode>(I));
694 Changed = true;
695 }
696 }
697 return Changed;
698 }
699
700 } // anonymous namespace
701
702 namespace {
703
704 class X86LowerAMXCast {
705 Function &Func;
706 std::unique_ptr<DominatorTree> DT;
707
708 public:
X86LowerAMXCast(Function & F)709 X86LowerAMXCast(Function &F) : Func(F), DT(nullptr) {}
710 void combineCastStore(IntrinsicInst *Cast, StoreInst *ST);
711 bool combineLoadCast(IntrinsicInst *Cast, LoadInst *LD);
712 bool combineLdSt(SmallVectorImpl<Instruction *> &Casts);
713 bool combineAMXcast(TargetLibraryInfo *TLI);
714 bool transformAMXCast(IntrinsicInst *AMXCast);
715 bool transformAllAMXCast();
716 bool optimizeAMXCastFromPhi(IntrinsicInst *CI, PHINode *PN,
717 SmallSetVector<Instruction *, 16> &DeadInst);
718 };
719
DCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const TargetLibraryInfo * TLI)720 static bool DCEInstruction(Instruction *I,
721 SmallSetVector<Instruction *, 16> &WorkList,
722 const TargetLibraryInfo *TLI) {
723 if (isInstructionTriviallyDead(I, TLI)) {
724 salvageDebugInfo(*I);
725 salvageKnowledge(I);
726
727 // Null out all of the instruction's operands to see if any operand becomes
728 // dead as we go.
729 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
730 Value *OpV = I->getOperand(i);
731 I->setOperand(i, nullptr);
732
733 if (!OpV->use_empty() || I == OpV)
734 continue;
735
736 // If the operand is an instruction that became dead as we nulled out the
737 // operand, and if it is 'trivially' dead, delete it in a future loop
738 // iteration.
739 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) {
740 if (isInstructionTriviallyDead(OpI, TLI)) {
741 WorkList.insert(OpI);
742 }
743 }
744 }
745 I->eraseFromParent();
746 return true;
747 }
748 return false;
749 }
750
751 /// This function handles following case
752 ///
753 /// A -> B amxcast
754 /// PHI
755 /// B -> A amxcast
756 ///
757 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
758 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeAMXCastFromPhi(IntrinsicInst * CI,PHINode * PN,SmallSetVector<Instruction *,16> & DeadInst)759 bool X86LowerAMXCast::optimizeAMXCastFromPhi(
760 IntrinsicInst *CI, PHINode *PN,
761 SmallSetVector<Instruction *, 16> &DeadInst) {
762 IRBuilder<> Builder(CI);
763 Value *Src = CI->getOperand(0);
764 Type *SrcTy = Src->getType(); // Type B
765 Type *DestTy = CI->getType(); // Type A
766
767 SmallVector<PHINode *, 4> PhiWorklist;
768 SmallSetVector<PHINode *, 4> OldPhiNodes;
769
770 // Find all of the A->B casts and PHI nodes.
771 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
772 // OldPhiNodes is used to track all known PHI nodes, before adding a new
773 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
774 PhiWorklist.push_back(PN);
775 OldPhiNodes.insert(PN);
776 while (!PhiWorklist.empty()) {
777 auto *OldPN = PhiWorklist.pop_back_val();
778 for (unsigned I = 0; I < OldPN->getNumOperands(); ++I) {
779 Value *IncValue = OldPN->getIncomingValue(I);
780 // TODO: currently, We ignore cases where it is a const. In the future, we
781 // might support const.
782 if (isa<Constant>(IncValue)) {
783 auto *IncConst = dyn_cast<Constant>(IncValue);
784 if (!isa<UndefValue>(IncValue) && !IncConst->isZeroValue())
785 return false;
786 Value *Row = nullptr, *Col = nullptr;
787 std::tie(Row, Col) = getShape(OldPN);
788 // TODO: If it is not constant the Row and Col must domoniate tilezero
789 // that we are going to create.
790 if (!Row || !Col || !isa<Constant>(Row) || !isa<Constant>(Col))
791 return false;
792 // Create tilezero at the end of incoming block.
793 auto *Block = OldPN->getIncomingBlock(I);
794 BasicBlock::iterator Iter = Block->getTerminator()->getIterator();
795 Instruction *NewInst = Builder.CreateIntrinsic(
796 Intrinsic::x86_tilezero_internal, std::nullopt, {Row, Col});
797 NewInst->moveBefore(&*Iter);
798 NewInst = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector,
799 {IncValue->getType()}, {NewInst});
800 NewInst->moveBefore(&*Iter);
801 // Replace InValue with new Value.
802 OldPN->setIncomingValue(I, NewInst);
803 IncValue = NewInst;
804 }
805
806 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
807 if (OldPhiNodes.insert(PNode))
808 PhiWorklist.push_back(PNode);
809 continue;
810 }
811 Instruction *ACI = dyn_cast<Instruction>(IncValue);
812 if (ACI && isAMXCast(ACI)) {
813 // Verify it's a A->B cast.
814 Type *TyA = ACI->getOperand(0)->getType();
815 Type *TyB = ACI->getType();
816 if (TyA != DestTy || TyB != SrcTy)
817 return false;
818 continue;
819 }
820 return false;
821 }
822 }
823
824 // Check that each user of each old PHI node is something that we can
825 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
826 for (auto *OldPN : OldPhiNodes) {
827 for (User *V : OldPN->users()) {
828 Instruction *ACI = dyn_cast<Instruction>(V);
829 if (ACI && isAMXCast(ACI)) {
830 // Verify it's a B->A cast.
831 Type *TyB = ACI->getOperand(0)->getType();
832 Type *TyA = ACI->getType();
833 if (TyA != DestTy || TyB != SrcTy)
834 return false;
835 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
836 // As long as the user is another old PHI node, then even if we don't
837 // rewrite it, the PHI web we're considering won't have any users
838 // outside itself, so it'll be dead.
839 // example:
840 // bb.0:
841 // %0 = amxcast ...
842 // bb.1:
843 // %1 = amxcast ...
844 // bb.2:
845 // %goodphi = phi %0, %1
846 // %3 = amxcast %goodphi
847 // bb.3:
848 // %goodphi2 = phi %0, %goodphi
849 // %4 = amxcast %goodphi2
850 // When optimizeAMXCastFromPhi process %3 and %goodphi, %goodphi2 is
851 // outside the phi-web, so the combination stop When
852 // optimizeAMXCastFromPhi process %4 and %goodphi2, the optimization
853 // will be done.
854 if (OldPhiNodes.count(PHI) == 0)
855 return false;
856 } else
857 return false;
858 }
859 }
860
861 // For each old PHI node, create a corresponding new PHI node with a type A.
862 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
863 for (auto *OldPN : OldPhiNodes) {
864 Builder.SetInsertPoint(OldPN);
865 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
866 NewPNodes[OldPN] = NewPN;
867 }
868
869 // Fill in the operands of new PHI nodes.
870 for (auto *OldPN : OldPhiNodes) {
871 PHINode *NewPN = NewPNodes[OldPN];
872 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
873 Value *V = OldPN->getOperand(j);
874 Value *NewV = nullptr;
875 Instruction *ACI = dyn_cast<Instruction>(V);
876 // There should not be a AMXcast from a const.
877 if (ACI && isAMXCast(ACI))
878 NewV = ACI->getOperand(0);
879 else if (auto *PrevPN = dyn_cast<PHINode>(V))
880 NewV = NewPNodes[PrevPN];
881 assert(NewV);
882 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
883 }
884 }
885
886 // Traverse all accumulated PHI nodes and process its users,
887 // which are Stores and BitcCasts. Without this processing
888 // NewPHI nodes could be replicated and could lead to extra
889 // moves generated after DeSSA.
890 // If there is a store with type B, change it to type A.
891
892 // Replace users of BitCast B->A with NewPHI. These will help
893 // later to get rid of a closure formed by OldPHI nodes.
894 for (auto *OldPN : OldPhiNodes) {
895 PHINode *NewPN = NewPNodes[OldPN];
896 for (User *V : make_early_inc_range(OldPN->users())) {
897 Instruction *ACI = dyn_cast<Instruction>(V);
898 if (ACI && isAMXCast(ACI)) {
899 Type *TyB = ACI->getOperand(0)->getType();
900 Type *TyA = ACI->getType();
901 assert(TyA == DestTy && TyB == SrcTy);
902 (void)TyA;
903 (void)TyB;
904 ACI->replaceAllUsesWith(NewPN);
905 DeadInst.insert(ACI);
906 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
907 // We don't need to push PHINode into DeadInst since they are operands
908 // of rootPN DCE can safely delete rootPN's operands if rootPN is dead.
909 assert(OldPhiNodes.contains(PHI));
910 (void)PHI;
911 } else
912 llvm_unreachable("all uses should be handled");
913 }
914 }
915 return true;
916 }
917
918 // %43 = call <256 x i32> @llvm.x86.cast.tile.to.vector.v256i32(x86_amx %42)
919 // store <256 x i32> %43, <256 x i32>* %p, align 64
920 // -->
921 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col, i8* %p,
922 // i64 64, x86_amx %42)
combineCastStore(IntrinsicInst * Cast,StoreInst * ST)923 void X86LowerAMXCast::combineCastStore(IntrinsicInst *Cast, StoreInst *ST) {
924 Value *Tile = Cast->getOperand(0);
925 // TODO: If it is cast intrinsic or phi node, we can propagate the
926 // shape information through def-use chain.
927 if (!isAMXIntrinsic(Tile))
928 return;
929 auto *II = cast<IntrinsicInst>(Tile);
930 // Tile is output from AMX intrinsic. The first operand of the
931 // intrinsic is row, the second operand of the intrinsic is column.
932 Value *Row = II->getOperand(0);
933 Value *Col = II->getOperand(1);
934 IRBuilder<> Builder(ST);
935 // Use the maximum column as stride. It must be the same with load
936 // stride.
937 Value *Stride = Builder.getInt64(64);
938 Value *I8Ptr =
939 Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
940 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
941 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, std::nullopt,
942 Args);
943 }
944
945 // %65 = load <256 x i32>, <256 x i32>* %p, align 64
946 // %66 = call x86_amx @llvm.x86.cast.vector.to.tile(<256 x i32> %65)
947 // -->
948 // %66 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
949 // i8* %p, i64 64)
combineLoadCast(IntrinsicInst * Cast,LoadInst * LD)950 bool X86LowerAMXCast::combineLoadCast(IntrinsicInst *Cast, LoadInst *LD) {
951 bool EraseLoad = true;
952 Value *Row = nullptr, *Col = nullptr;
953 Use &U = *(Cast->use_begin());
954 unsigned OpNo = U.getOperandNo();
955 auto *II = cast<IntrinsicInst>(U.getUser());
956 // TODO: If it is cast intrinsic or phi node, we can propagate the
957 // shape information through def-use chain.
958 if (!isAMXIntrinsic(II))
959 return false;
960 std::tie(Row, Col) = getShape(II, OpNo);
961 IRBuilder<> Builder(LD);
962 // Use the maximun column as stride.
963 Value *Stride = Builder.getInt64(64);
964 Value *I8Ptr;
965
966 // To save compiling time, we create doninator tree when it is really
967 // needed.
968 if (!DT)
969 DT.reset(new DominatorTree(Func));
970 if (!DT->dominates(Row, LD) || !DT->dominates(Col, LD)) {
971 // store the value to stack and reload it from stack before cast.
972 auto *AllocaAddr =
973 createAllocaInstAtEntry(Builder, Cast->getParent(), LD->getType());
974 Builder.SetInsertPoint(&*std::next(LD->getIterator()));
975 Builder.CreateStore(LD, AllocaAddr);
976
977 Builder.SetInsertPoint(Cast);
978 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
979 EraseLoad = false;
980 } else {
981 I8Ptr = Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
982 }
983 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
984
985 Value *NewInst = Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal,
986 std::nullopt, Args);
987 Cast->replaceAllUsesWith(NewInst);
988
989 return EraseLoad;
990 }
991
combineLdSt(SmallVectorImpl<Instruction * > & Casts)992 bool X86LowerAMXCast::combineLdSt(SmallVectorImpl<Instruction *> &Casts) {
993 bool Change = false;
994 for (auto *Cast : Casts) {
995 auto *II = cast<IntrinsicInst>(Cast);
996 // %43 = call <256 x i32> @llvm.x86.cast.tile.to.vector(x86_amx %42)
997 // store <256 x i32> %43, <256 x i32>* %p, align 64
998 // -->
999 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col, i8* %p,
1000 // i64 64, x86_amx %42)
1001 if (II->getIntrinsicID() == Intrinsic::x86_cast_tile_to_vector) {
1002 SmallVector<Instruction *, 2> DeadStores;
1003 for (User *U : Cast->users()) {
1004 StoreInst *Store = dyn_cast<StoreInst>(U);
1005 if (!Store)
1006 continue;
1007 combineCastStore(cast<IntrinsicInst>(Cast), Store);
1008 DeadStores.push_back(Store);
1009 Change = true;
1010 }
1011 for (auto *Store : DeadStores)
1012 Store->eraseFromParent();
1013 } else { // x86_cast_vector_to_tile
1014 SmallVector<Instruction *, 2> DeadLoads;
1015 auto *Load = dyn_cast<LoadInst>(Cast->getOperand(0));
1016 if (!Load || !Load->hasOneUse())
1017 continue;
1018 // %65 = load <256 x i32>, <256 x i32>* %p, align 64
1019 // %66 = call x86_amx @llvm.x86.cast.vector.to.tile(<256 x i32> %65)
1020 // -->
1021 // %66 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
1022 // i8* %p, i64 64)
1023 if (combineLoadCast(cast<IntrinsicInst>(Cast), Load)) {
1024 // Set the operand is null so that load instruction can be erased.
1025 Cast->setOperand(0, nullptr);
1026 Load->eraseFromParent();
1027 }
1028 }
1029 }
1030 return Change;
1031 }
1032
combineAMXcast(TargetLibraryInfo * TLI)1033 bool X86LowerAMXCast::combineAMXcast(TargetLibraryInfo *TLI) {
1034 bool Change = false;
1035 // Collect tile cast instruction.
1036 SmallVector<Instruction *, 8> Vec2TileInsts;
1037 SmallVector<Instruction *, 8> Tile2VecInsts;
1038 SmallVector<Instruction *, 8> PhiCastWorkList;
1039 SmallSetVector<Instruction *, 16> DeadInst;
1040 for (BasicBlock &BB : Func) {
1041 for (Instruction &I : BB) {
1042 Value *Vec;
1043 if (match(&I,
1044 m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value(Vec))))
1045 Vec2TileInsts.push_back(&I);
1046 else if (match(&I, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(
1047 m_Value(Vec))))
1048 Tile2VecInsts.push_back(&I);
1049 }
1050 }
1051
1052 auto Convert = [&](SmallVectorImpl<Instruction *> &Insts, Intrinsic::ID IID) {
1053 for (auto *Inst : Insts) {
1054 for (User *U : Inst->users()) {
1055 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1056 if (!II || II->getIntrinsicID() != IID)
1057 continue;
1058 // T1 = vec2tile V0
1059 // V2 = tile2vec T1
1060 // V3 = OP V2
1061 // -->
1062 // T1 = vec2tile V0
1063 // V2 = tile2vec T1
1064 // V3 = OP V0
1065 II->replaceAllUsesWith(Inst->getOperand(0));
1066 Change = true;
1067 }
1068 }
1069 };
1070
1071 Convert(Vec2TileInsts, Intrinsic::x86_cast_tile_to_vector);
1072 Convert(Tile2VecInsts, Intrinsic::x86_cast_vector_to_tile);
1073
1074 SmallVector<Instruction *, 8> LiveCasts;
1075 auto EraseInst = [&](SmallVectorImpl<Instruction *> &Insts) {
1076 for (auto *Inst : Insts) {
1077 if (Inst->use_empty()) {
1078 Inst->eraseFromParent();
1079 Change = true;
1080 } else {
1081 LiveCasts.push_back(Inst);
1082 }
1083 }
1084 };
1085
1086 EraseInst(Vec2TileInsts);
1087 EraseInst(Tile2VecInsts);
1088 Change |= combineLdSt(LiveCasts);
1089 EraseInst(LiveCasts);
1090
1091 // Handle the A->B->A cast, and there is an intervening PHI node.
1092 for (BasicBlock &BB : Func) {
1093 for (Instruction &I : BB) {
1094 if (isAMXCast(&I)) {
1095 if (isa<PHINode>(I.getOperand(0)))
1096 PhiCastWorkList.push_back(&I);
1097 }
1098 }
1099 }
1100 for (auto *I : PhiCastWorkList) {
1101 // We skip the dead Amxcast.
1102 if (DeadInst.contains(I))
1103 continue;
1104 PHINode *PN = cast<PHINode>(I->getOperand(0));
1105 if (optimizeAMXCastFromPhi(cast<IntrinsicInst>(I), PN, DeadInst)) {
1106 DeadInst.insert(PN);
1107 Change = true;
1108 }
1109 }
1110
1111 // Since we create new phi and merge AMXCast, some old phis and AMXCast might
1112 // have no uses. We do some DeadCodeElimination for them.
1113 while (!DeadInst.empty()) {
1114 Instruction *I = DeadInst.pop_back_val();
1115 Change |= DCEInstruction(I, DeadInst, TLI);
1116 }
1117 return Change;
1118 }
1119
1120 // There might be remaining AMXcast after combineAMXcast and they should be
1121 // handled elegantly.
transformAMXCast(IntrinsicInst * AMXCast)1122 bool X86LowerAMXCast::transformAMXCast(IntrinsicInst *AMXCast) {
1123 IRBuilder<> Builder(AMXCast);
1124 AllocaInst *AllocaAddr;
1125 Value *I8Ptr, *Stride;
1126 auto *Src = AMXCast->getOperand(0);
1127
1128 auto Prepare = [&](Type *MemTy) {
1129 AllocaAddr = createAllocaInstAtEntry(Builder, AMXCast->getParent(), MemTy);
1130 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
1131 Stride = Builder.getInt64(64);
1132 };
1133
1134 if (AMXCast->getType()->isX86_AMXTy()) {
1135 // %2 = amxcast <225 x i32> %src to x86_amx
1136 // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
1137 // i8* %addr3, i64 60, x86_amx %2)
1138 // -->
1139 // %addr = alloca <225 x i32>, align 64
1140 // store <225 x i32> %src, <225 x i32>* %addr, align 64
1141 // %addr2 = bitcast <225 x i32>* %addr to i8*
1142 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 15, i16 60,
1143 // i8* %addr2,
1144 // i64 60)
1145 // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
1146 // i8* %addr3, i64 60, x86_amx %2)
1147 if (AMXCast->use_empty()) {
1148 AMXCast->eraseFromParent();
1149 return true;
1150 }
1151 Use &U = *(AMXCast->use_begin());
1152 unsigned OpNo = U.getOperandNo();
1153 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1154 if (!II)
1155 return false; // May be bitcast from x86amx to <256 x i32>.
1156 Prepare(AMXCast->getOperand(0)->getType());
1157 Builder.CreateStore(Src, AllocaAddr);
1158 // TODO we can pick an constant operand for the shape.
1159 Value *Row = nullptr, *Col = nullptr;
1160 std::tie(Row, Col) = getShape(II, OpNo);
1161 std::array<Value *, 4> Args = {
1162 Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty())};
1163 Value *NewInst = Builder.CreateIntrinsic(
1164 Intrinsic::x86_tileloadd64_internal, std::nullopt, Args);
1165 AMXCast->replaceAllUsesWith(NewInst);
1166 AMXCast->eraseFromParent();
1167 } else {
1168 // %2 = amxcast x86_amx %src to <225 x i32>
1169 // -->
1170 // %addr = alloca <225 x i32>, align 64
1171 // %addr2 = bitcast <225 x i32>* to i8*
1172 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
1173 // i8* %addr2, i64 %stride)
1174 // %2 = load <225 x i32>, <225 x i32>* %addr, align 64
1175 auto *II = dyn_cast<IntrinsicInst>(Src);
1176 if (!II)
1177 return false; // May be bitcast from <256 x i32> to x86amx.
1178 Prepare(AMXCast->getType());
1179 Value *Row = II->getOperand(0);
1180 Value *Col = II->getOperand(1);
1181 std::array<Value *, 5> Args = {
1182 Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty()), Src};
1183 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, std::nullopt,
1184 Args);
1185 Value *NewInst = Builder.CreateLoad(AMXCast->getType(), AllocaAddr);
1186 AMXCast->replaceAllUsesWith(NewInst);
1187 AMXCast->eraseFromParent();
1188 }
1189
1190 return true;
1191 }
1192
transformAllAMXCast()1193 bool X86LowerAMXCast::transformAllAMXCast() {
1194 bool Change = false;
1195 // Collect tile cast instruction.
1196 SmallVector<Instruction *, 8> WorkLists;
1197 for (BasicBlock &BB : Func) {
1198 for (Instruction &I : BB) {
1199 if (isAMXCast(&I))
1200 WorkLists.push_back(&I);
1201 }
1202 }
1203
1204 for (auto *Inst : WorkLists) {
1205 Change |= transformAMXCast(cast<IntrinsicInst>(Inst));
1206 }
1207
1208 return Change;
1209 }
1210
1211 } // anonymous namespace
1212
1213 namespace {
1214
1215 class X86LowerAMXTypeLegacyPass : public FunctionPass {
1216 public:
1217 static char ID;
1218
X86LowerAMXTypeLegacyPass()1219 X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
1220 initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
1221 }
1222
runOnFunction(Function & F)1223 bool runOnFunction(Function &F) override {
1224 bool C = false;
1225 TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
1226 TargetLibraryInfo *TLI =
1227 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1228
1229 X86LowerAMXCast LAC(F);
1230 C |= LAC.combineAMXcast(TLI);
1231 // There might be remaining AMXcast after combineAMXcast and they should be
1232 // handled elegantly.
1233 C |= LAC.transformAllAMXCast();
1234
1235 X86LowerAMXType LAT(F);
1236 C |= LAT.visit();
1237
1238 // Prepare for fast register allocation at O0.
1239 // Todo: May better check the volatile model of AMX code, not just
1240 // by checking Attribute::OptimizeNone and CodeGenOpt::None.
1241 if (TM->getOptLevel() == CodeGenOpt::None) {
1242 // If Front End not use O0 but the Mid/Back end use O0, (e.g.
1243 // "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
1244 // sure the amx data is volatile, that is nessary for AMX fast
1245 // register allocation.
1246 if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
1247 X86VolatileTileData VTD(F);
1248 C = VTD.volatileTileData() || C;
1249 }
1250 }
1251
1252 return C;
1253 }
1254
getAnalysisUsage(AnalysisUsage & AU) const1255 void getAnalysisUsage(AnalysisUsage &AU) const override {
1256 AU.setPreservesCFG();
1257 AU.addRequired<TargetPassConfig>();
1258 AU.addRequired<TargetLibraryInfoWrapperPass>();
1259 }
1260 };
1261
1262 } // anonymous namespace
1263
1264 static const char PassName[] = "Lower AMX type for load/store";
1265 char X86LowerAMXTypeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass,DEBUG_TYPE,PassName,false,false)1266 INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
1267 false)
1268 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1269 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1270 INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
1271 false)
1272
1273 FunctionPass *llvm::createX86LowerAMXTypePass() {
1274 return new X86LowerAMXTypeLegacyPass();
1275 }
1276