xref: /aosp_15_r20/external/swiftshader/third_party/llvm-10.0/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for peeling loops
10 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
11 // unrolling loops with compile-time constant trip counts.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <limits>
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-unroll"
53 
54 STATISTIC(NumPeeled, "Number of loops peeled");
55 
56 static cl::opt<unsigned> UnrollPeelMaxCount(
57     "unroll-peel-max-count", cl::init(7), cl::Hidden,
58     cl::desc("Max average trip count which will cause loop peeling."));
59 
60 static cl::opt<unsigned> UnrollForcePeelCount(
61     "unroll-force-peel-count", cl::init(0), cl::Hidden,
62     cl::desc("Force a peel count regardless of profiling information."));
63 
64 static cl::opt<bool> UnrollPeelMultiDeoptExit(
65     "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
66     cl::desc("Allow peeling of loops with multiple deopt exits."));
67 
68 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
69 
70 // Designates that a Phi is estimated to become invariant after an "infinite"
71 // number of loop iterations (i.e. only may become an invariant if the loop is
72 // fully unrolled).
73 static const unsigned InfiniteIterationsToInvariance =
74     std::numeric_limits<unsigned>::max();
75 
76 // Check whether we are capable of peeling this loop.
canPeel(Loop * L)77 bool llvm::canPeel(Loop *L) {
78   // Make sure the loop is in simplified form
79   if (!L->isLoopSimplifyForm())
80     return false;
81 
82   if (UnrollPeelMultiDeoptExit) {
83     SmallVector<BasicBlock *, 4> Exits;
84     L->getUniqueNonLatchExitBlocks(Exits);
85 
86     if (!Exits.empty()) {
87       // Latch's terminator is a conditional branch, Latch is exiting and
88       // all non Latch exits ends up with deoptimize.
89       const BasicBlock *Latch = L->getLoopLatch();
90       const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
91       return T && T->isConditional() && L->isLoopExiting(Latch) &&
92              all_of(Exits, [](const BasicBlock *BB) {
93                return BB->getTerminatingDeoptimizeCall();
94              });
95     }
96   }
97 
98   // Only peel loops that contain a single exit
99   if (!L->getExitingBlock() || !L->getUniqueExitBlock())
100     return false;
101 
102   // Don't try to peel loops where the latch is not the exiting block.
103   // This can be an indication of two different things:
104   // 1) The loop is not rotated.
105   // 2) The loop contains irreducible control flow that involves the latch.
106   if (L->getLoopLatch() != L->getExitingBlock())
107     return false;
108 
109   return true;
110 }
111 
112 // This function calculates the number of iterations after which the given Phi
113 // becomes an invariant. The pre-calculated values are memorized in the map. The
114 // function (shortcut is I) is calculated according to the following definition:
115 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
116 //   If %y is a loop invariant, then I(%x) = 1.
117 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
118 //   Otherwise, I(%x) is infinite.
119 // TODO: Actually if %y is an expression that depends only on Phi %z and some
120 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
121 //       looks like:
122 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
123 //         %y = phi(0, 5),
124 //         %a = %y + 1.
calculateIterationsToInvariance(PHINode * Phi,Loop * L,BasicBlock * BackEdge,SmallDenseMap<PHINode *,unsigned> & IterationsToInvariance)125 static unsigned calculateIterationsToInvariance(
126     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
127     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
128   assert(Phi->getParent() == L->getHeader() &&
129          "Non-loop Phi should not be checked for turning into invariant.");
130   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
131   // If we already know the answer, take it from the map.
132   auto I = IterationsToInvariance.find(Phi);
133   if (I != IterationsToInvariance.end())
134     return I->second;
135 
136   // Otherwise we need to analyze the input from the back edge.
137   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
138   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
139   // cycles can never stop on an invariant.
140   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
141   unsigned ToInvariance = InfiniteIterationsToInvariance;
142 
143   if (L->isLoopInvariant(Input))
144     ToInvariance = 1u;
145   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
146     // Only consider Phis in header block.
147     if (IncPhi->getParent() != L->getHeader())
148       return InfiniteIterationsToInvariance;
149     // If the input becomes an invariant after X iterations, then our Phi
150     // becomes an invariant after X + 1 iterations.
151     unsigned InputToInvariance = calculateIterationsToInvariance(
152         IncPhi, L, BackEdge, IterationsToInvariance);
153     if (InputToInvariance != InfiniteIterationsToInvariance)
154       ToInvariance = InputToInvariance + 1u;
155   }
156 
157   // If we found that this Phi lies in an invariant chain, update the map.
158   if (ToInvariance != InfiniteIterationsToInvariance)
159     IterationsToInvariance[Phi] = ToInvariance;
160   return ToInvariance;
161 }
162 
163 // Return the number of iterations to peel off that make conditions in the
164 // body true/false. For example, if we peel 2 iterations off the loop below,
165 // the condition i < 2 can be evaluated at compile time.
166 //  for (i = 0; i < n; i++)
167 //    if (i < 2)
168 //      ..
169 //    else
170 //      ..
171 //   }
countToEliminateCompares(Loop & L,unsigned MaxPeelCount,ScalarEvolution & SE)172 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
173                                          ScalarEvolution &SE) {
174   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
175   unsigned DesiredPeelCount = 0;
176 
177   for (auto *BB : L.blocks()) {
178     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
179     if (!BI || BI->isUnconditional())
180       continue;
181 
182     // Ignore loop exit condition.
183     if (L.getLoopLatch() == BB)
184       continue;
185 
186     Value *Condition = BI->getCondition();
187     Value *LeftVal, *RightVal;
188     CmpInst::Predicate Pred;
189     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
190       continue;
191 
192     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
193     const SCEV *RightSCEV = SE.getSCEV(RightVal);
194 
195     // Do not consider predicates that are known to be true or false
196     // independently of the loop iteration.
197     if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
198         SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
199                             RightSCEV))
200       continue;
201 
202     // Check if we have a condition with one AddRec and one non AddRec
203     // expression. Normalize LeftSCEV to be the AddRec.
204     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
205       if (isa<SCEVAddRecExpr>(RightSCEV)) {
206         std::swap(LeftSCEV, RightSCEV);
207         Pred = ICmpInst::getSwappedPredicate(Pred);
208       } else
209         continue;
210     }
211 
212     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
213 
214     // Avoid huge SCEV computations in the loop below, make sure we only
215     // consider AddRecs of the loop we are trying to peel.
216     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
217       continue;
218     bool Increasing;
219     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
220         !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
221       continue;
222     (void)Increasing;
223 
224     // Check if extending the current DesiredPeelCount lets us evaluate Pred
225     // or !Pred in the loop body statically.
226     unsigned NewPeelCount = DesiredPeelCount;
227 
228     const SCEV *IterVal = LeftAR->evaluateAtIteration(
229         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
230 
231     // If the original condition is not known, get the negated predicate
232     // (which holds on the else branch) and check if it is known. This allows
233     // us to peel of iterations that make the original condition false.
234     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
235       Pred = ICmpInst::getInversePredicate(Pred);
236 
237     const SCEV *Step = LeftAR->getStepRecurrence(SE);
238     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
239     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
240                                  &NewPeelCount]() {
241       IterVal = NextIterVal;
242       NextIterVal = SE.getAddExpr(IterVal, Step);
243       NewPeelCount++;
244     };
245 
246     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
247       return NewPeelCount < MaxPeelCount;
248     };
249 
250     while (CanPeelOneMoreIteration() &&
251            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
252       PeelOneMoreIteration();
253 
254     // With *that* peel count, does the predicate !Pred become known in the
255     // first iteration of the loop body after peeling?
256     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
257                              RightSCEV))
258       continue; // If not, give up.
259 
260     // However, for equality comparisons, that isn't always sufficient to
261     // eliminate the comparsion in loop body, we may need to peel one more
262     // iteration. See if that makes !Pred become unknown again.
263     if (ICmpInst::isEquality(Pred) &&
264         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
265                              RightSCEV)) {
266       assert(!SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
267              SE.isKnownPredicate(Pred, NextIterVal, RightSCEV) &&
268              "Expected Pred to go from known to unknown.");
269       if (!CanPeelOneMoreIteration())
270         continue; // Need to peel one more iteration, but can't. Give up.
271       PeelOneMoreIteration(); // Great!
272     }
273 
274     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
275   }
276 
277   return DesiredPeelCount;
278 }
279 
280 // Return the number of iterations we want to peel off.
computePeelCount(Loop * L,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,unsigned & TripCount,ScalarEvolution & SE)281 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
282                             TargetTransformInfo::UnrollingPreferences &UP,
283                             unsigned &TripCount, ScalarEvolution &SE) {
284   assert(LoopSize > 0 && "Zero loop size is not allowed!");
285   // Save the UP.PeelCount value set by the target in
286   // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
287   unsigned TargetPeelCount = UP.PeelCount;
288   UP.PeelCount = 0;
289   if (!canPeel(L))
290     return;
291 
292   // Only try to peel innermost loops.
293   if (!L->empty())
294     return;
295 
296   // If the user provided a peel count, use that.
297   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
298   if (UserPeelCount) {
299     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
300                       << " iterations.\n");
301     UP.PeelCount = UnrollForcePeelCount;
302     UP.PeelProfiledIterations = true;
303     return;
304   }
305 
306   // Skip peeling if it's disabled.
307   if (!UP.AllowPeeling)
308     return;
309 
310   unsigned AlreadyPeeled = 0;
311   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
312     AlreadyPeeled = *Peeled;
313   // Stop if we already peeled off the maximum number of iterations.
314   if (AlreadyPeeled >= UnrollPeelMaxCount)
315     return;
316 
317   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
318   // iterations of the loop. For this we compute the number for iterations after
319   // which every Phi is guaranteed to become an invariant, and try to peel the
320   // maximum number of iterations among these values, thus turning all those
321   // Phis into invariants.
322   // First, check that we can peel at least one iteration.
323   if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
324     // Store the pre-calculated values here.
325     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
326     // Now go through all Phis to calculate their the number of iterations they
327     // need to become invariants.
328     // Start the max computation with the UP.PeelCount value set by the target
329     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
330     unsigned DesiredPeelCount = TargetPeelCount;
331     BasicBlock *BackEdge = L->getLoopLatch();
332     assert(BackEdge && "Loop is not in simplified form?");
333     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
334       PHINode *Phi = cast<PHINode>(&*BI);
335       unsigned ToInvariance = calculateIterationsToInvariance(
336           Phi, L, BackEdge, IterationsToInvariance);
337       if (ToInvariance != InfiniteIterationsToInvariance)
338         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
339     }
340 
341     // Pay respect to limitations implied by loop size and the max peel count.
342     unsigned MaxPeelCount = UnrollPeelMaxCount;
343     MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
344 
345     DesiredPeelCount = std::max(DesiredPeelCount,
346                                 countToEliminateCompares(*L, MaxPeelCount, SE));
347 
348     if (DesiredPeelCount > 0) {
349       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
350       // Consider max peel count limitation.
351       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
352       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
353         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
354                           << " iteration(s) to turn"
355                           << " some Phis into invariants.\n");
356         UP.PeelCount = DesiredPeelCount;
357         UP.PeelProfiledIterations = false;
358         return;
359       }
360     }
361   }
362 
363   // Bail if we know the statically calculated trip count.
364   // In this case we rather prefer partial unrolling.
365   if (TripCount)
366     return;
367 
368   // Do not apply profile base peeling if it is disabled.
369   if (!UP.PeelProfiledIterations)
370     return;
371   // If we don't know the trip count, but have reason to believe the average
372   // trip count is low, peeling should be beneficial, since we will usually
373   // hit the peeled section.
374   // We only do this in the presence of profile information, since otherwise
375   // our estimates of the trip count are not reliable enough.
376   if (L->getHeader()->getParent()->hasProfileData()) {
377     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
378     if (!PeelCount)
379       return;
380 
381     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
382                       << "\n");
383 
384     if (*PeelCount) {
385       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
386           (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
387         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
388                           << " iterations.\n");
389         UP.PeelCount = *PeelCount;
390         return;
391       }
392       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
393       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
394       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
395       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
396                         << "\n");
397       LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
398     }
399   }
400 }
401 
402 /// Update the branch weights of the latch of a peeled-off loop
403 /// iteration.
404 /// This sets the branch weights for the latch of the recently peeled off loop
405 /// iteration correctly.
406 /// Let F is a weight of the edge from latch to header.
407 /// Let E is a weight of the edge from latch to exit.
408 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
409 /// go to exit.
410 /// Then, Estimated TripCount = F / E.
411 /// For I-th (counting from 0) peeled off iteration we set the the weights for
412 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
413 /// The probability to go to exit 1/(TC-I) increases. At the same time
414 /// the estimated trip count of remaining loop reduces by I.
415 /// To avoid dealing with division rounding we can just multiple both part
416 /// of weights to E and use weight as (F - I * E, E).
417 ///
418 /// \param Header The copy of the header block that belongs to next iteration.
419 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
420 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
421 /// header before peeling (in) and after peeled off one iteration (out).
updateBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t & FallThroughWeight)422 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
423                                 uint64_t ExitWeight,
424                                 uint64_t &FallThroughWeight) {
425   // FallThroughWeight is 0 means that there is no branch weights on original
426   // latch block or estimated trip count is zero.
427   if (!FallThroughWeight)
428     return;
429 
430   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
431   MDBuilder MDB(LatchBR->getContext());
432   MDNode *WeightNode =
433       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
434                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
435   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
436   FallThroughWeight =
437       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
438 }
439 
440 /// Initialize the weights.
441 ///
442 /// \param Header The header block.
443 /// \param LatchBR The latch branch.
444 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
445 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
initBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t & ExitWeight,uint64_t & FallThroughWeight)446 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
447                               uint64_t &ExitWeight,
448                               uint64_t &FallThroughWeight) {
449   uint64_t TrueWeight, FalseWeight;
450   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
451     return;
452   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
453   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
454   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
455 }
456 
457 /// Update the weights of original Latch block after peeling off all iterations.
458 ///
459 /// \param Header The header block.
460 /// \param LatchBR The latch branch.
461 /// \param ExitWeight The weight of the edge from Latch to Exit.
462 /// \param FallThroughWeight The weight of the edge from Latch to Header.
fixupBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t FallThroughWeight)463 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
464                                uint64_t ExitWeight,
465                                uint64_t FallThroughWeight) {
466   // FallThroughWeight is 0 means that there is no branch weights on original
467   // latch block or estimated trip count is zero.
468   if (!FallThroughWeight)
469     return;
470 
471   // Sets the branch weights on the loop exit.
472   MDBuilder MDB(LatchBR->getContext());
473   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
474   MDNode *WeightNode =
475       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
476                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
477   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
478 }
479 
480 /// Clones the body of the loop L, putting it between \p InsertTop and \p
481 /// InsertBot.
482 /// \param IterNumber The serial number of the iteration currently being
483 /// peeled off.
484 /// \param ExitEdges The exit edges of the original loop.
485 /// \param[out] NewBlocks A list of the blocks in the newly created clone
486 /// \param[out] VMap The value map between the loop and the new clone.
487 /// \param LoopBlocks A helper for DFS-traversal of the loop.
488 /// \param LVMap A value-map that maps instructions from the original loop to
489 /// instructions in the last peeled-off iteration.
cloneLoopBlocks(Loop * L,unsigned IterNumber,BasicBlock * InsertTop,BasicBlock * InsertBot,SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & ExitEdges,SmallVectorImpl<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,DominatorTree * DT,LoopInfo * LI)490 static void cloneLoopBlocks(
491     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
492     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
493     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
494     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
495     LoopInfo *LI) {
496   BasicBlock *Header = L->getHeader();
497   BasicBlock *Latch = L->getLoopLatch();
498   BasicBlock *PreHeader = L->getLoopPreheader();
499 
500   Function *F = Header->getParent();
501   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
502   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
503   Loop *ParentLoop = L->getParentLoop();
504 
505   // For each block in the original loop, create a new copy,
506   // and update the value map with the newly created values.
507   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
508     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
509     NewBlocks.push_back(NewBB);
510 
511     if (ParentLoop)
512       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
513 
514     VMap[*BB] = NewBB;
515 
516     // If dominator tree is available, insert nodes to represent cloned blocks.
517     if (DT) {
518       if (Header == *BB)
519         DT->addNewBlock(NewBB, InsertTop);
520       else {
521         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
522         // VMap must contain entry for IDom, as the iteration order is RPO.
523         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
524       }
525     }
526   }
527 
528   // Hook-up the control flow for the newly inserted blocks.
529   // The new header is hooked up directly to the "top", which is either
530   // the original loop preheader (for the first iteration) or the previous
531   // iteration's exiting block (for every other iteration)
532   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
533 
534   // Similarly, for the latch:
535   // The original exiting edge is still hooked up to the loop exit.
536   // The backedge now goes to the "bottom", which is either the loop's real
537   // header (for the last peeled iteration) or the copied header of the next
538   // iteration (for every other iteration)
539   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
540   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
541   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
542     if (LatchBR->getSuccessor(idx) == Header) {
543       LatchBR->setSuccessor(idx, InsertBot);
544       break;
545     }
546   if (DT)
547     DT->changeImmediateDominator(InsertBot, NewLatch);
548 
549   // The new copy of the loop body starts with a bunch of PHI nodes
550   // that pick an incoming value from either the preheader, or the previous
551   // loop iteration. Since this copy is no longer part of the loop, we
552   // resolve this statically:
553   // For the first iteration, we use the value from the preheader directly.
554   // For any other iteration, we replace the phi with the value generated by
555   // the immediately preceding clone of the loop body (which represents
556   // the previous iteration).
557   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
558     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
559     if (IterNumber == 0) {
560       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
561     } else {
562       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
563       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
564       if (LatchInst && L->contains(LatchInst))
565         VMap[&*I] = LVMap[LatchInst];
566       else
567         VMap[&*I] = LatchVal;
568     }
569     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
570   }
571 
572   // Fix up the outgoing values - we need to add a value for the iteration
573   // we've just created. Note that this must happen *after* the incoming
574   // values are adjusted, since the value going out of the latch may also be
575   // a value coming into the header.
576   for (auto Edge : ExitEdges)
577     for (PHINode &PHI : Edge.second->phis()) {
578       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
579       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
580       if (LatchInst && L->contains(LatchInst))
581         LatchVal = VMap[LatchVal];
582       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
583     }
584 
585   // LastValueMap is updated with the values for the current loop
586   // which are used the next time this function is called.
587   for (auto KV : VMap)
588     LVMap[KV.first] = KV.second;
589 }
590 
591 /// Peel off the first \p PeelCount iterations of loop \p L.
592 ///
593 /// Note that this does not peel them off as a single straight-line block.
594 /// Rather, each iteration is peeled off separately, and needs to check the
595 /// exit condition.
596 /// For loops that dynamically execute \p PeelCount iterations or less
597 /// this provides a benefit, since the peeled off iterations, which account
598 /// for the bulk of dynamic execution, can be further simplified by scalar
599 /// optimizations.
peelLoop(Loop * L,unsigned PeelCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)600 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
601                     ScalarEvolution *SE, DominatorTree *DT,
602                     AssumptionCache *AC, bool PreserveLCSSA) {
603   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
604   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
605 
606   LoopBlocksDFS LoopBlocks(L);
607   LoopBlocks.perform(LI);
608 
609   BasicBlock *Header = L->getHeader();
610   BasicBlock *PreHeader = L->getLoopPreheader();
611   BasicBlock *Latch = L->getLoopLatch();
612   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
613   L->getExitEdges(ExitEdges);
614 
615   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
616   if (DT) {
617     // We'd like to determine the idom of exit block after peeling one
618     // iteration.
619     // Let Exit is exit block.
620     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
621     // blocks.
622     // Let Latch' and ExitingSet' are copies after a peeling.
623     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
624     // It is an evident that idom'(Exit) will be the nearest common dominator
625     // of ExitingSet and ExitingSet'.
626     // idom(Exit) is a nearest common dominator of ExitingSet.
627     // idom(Exit)' is a nearest common dominator of ExitingSet'.
628     // Taking into account that we have a single Latch, Latch' will dominate
629     // Header and idom(Exit).
630     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
631     // All these basic blocks are in the same loop, so what we find is
632     // (nearest common dominator of idom(Exit) and Latch)'.
633     // In the loop below we remember nearest common dominator of idom(Exit) and
634     // Latch to update idom of Exit later.
635     assert(L->hasDedicatedExits() && "No dedicated exits?");
636     for (auto Edge : ExitEdges) {
637       if (ExitIDom.count(Edge.second))
638         continue;
639       BasicBlock *BB = DT->findNearestCommonDominator(
640           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
641       assert(L->contains(BB) && "IDom is not in a loop");
642       ExitIDom[Edge.second] = BB;
643     }
644   }
645 
646   Function *F = Header->getParent();
647 
648   // Set up all the necessary basic blocks. It is convenient to split the
649   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
650   // body, and a new preheader for the "real" loop.
651 
652   // Peeling the first iteration transforms.
653   //
654   // PreHeader:
655   // ...
656   // Header:
657   //   LoopBody
658   //   If (cond) goto Header
659   // Exit:
660   //
661   // into
662   //
663   // InsertTop:
664   //   LoopBody
665   //   If (!cond) goto Exit
666   // InsertBot:
667   // NewPreHeader:
668   // ...
669   // Header:
670   //  LoopBody
671   //  If (cond) goto Header
672   // Exit:
673   //
674   // Each following iteration will split the current bottom anchor in two,
675   // and put the new copy of the loop body between these two blocks. That is,
676   // after peeling another iteration from the example above, we'll split
677   // InsertBot, and get:
678   //
679   // InsertTop:
680   //   LoopBody
681   //   If (!cond) goto Exit
682   // InsertBot:
683   //   LoopBody
684   //   If (!cond) goto Exit
685   // InsertBot.next:
686   // NewPreHeader:
687   // ...
688   // Header:
689   //  LoopBody
690   //  If (cond) goto Header
691   // Exit:
692 
693   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
694   BasicBlock *InsertBot =
695       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
696   BasicBlock *NewPreHeader =
697       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
698 
699   InsertTop->setName(Header->getName() + ".peel.begin");
700   InsertBot->setName(Header->getName() + ".peel.next");
701   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
702 
703   ValueToValueMapTy LVMap;
704 
705   // If we have branch weight information, we'll want to update it for the
706   // newly created branches.
707   BranchInst *LatchBR =
708       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
709   uint64_t ExitWeight = 0, FallThroughWeight = 0;
710   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
711 
712   // For each peeled-off iteration, make a copy of the loop.
713   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
714     SmallVector<BasicBlock *, 8> NewBlocks;
715     ValueToValueMapTy VMap;
716 
717     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
718                     LoopBlocks, VMap, LVMap, DT, LI);
719 
720     // Remap to use values from the current iteration instead of the
721     // previous one.
722     remapInstructionsInBlocks(NewBlocks, VMap);
723 
724     if (DT) {
725       // Latches of the cloned loops dominate over the loop exit, so idom of the
726       // latter is the first cloned loop body, as original PreHeader dominates
727       // the original loop body.
728       if (Iter == 0)
729         for (auto Exit : ExitIDom)
730           DT->changeImmediateDominator(Exit.first,
731                                        cast<BasicBlock>(LVMap[Exit.second]));
732 #ifdef EXPENSIVE_CHECKS
733       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
734 #endif
735     }
736 
737     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
738     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
739     // Remove Loop metadata from the latch branch instruction
740     // because it is not the Loop's latch branch anymore.
741     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
742 
743     InsertTop = InsertBot;
744     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
745     InsertBot->setName(Header->getName() + ".peel.next");
746 
747     F->getBasicBlockList().splice(InsertTop->getIterator(),
748                                   F->getBasicBlockList(),
749                                   NewBlocks[0]->getIterator(), F->end());
750   }
751 
752   // Now adjust the phi nodes in the loop header to get their initial values
753   // from the last peeled-off iteration instead of the preheader.
754   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
755     PHINode *PHI = cast<PHINode>(I);
756     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
757     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
758     if (LatchInst && L->contains(LatchInst))
759       NewVal = LVMap[LatchInst];
760 
761     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
762   }
763 
764   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
765 
766   // Update Metadata for count of peeled off iterations.
767   unsigned AlreadyPeeled = 0;
768   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
769     AlreadyPeeled = *Peeled;
770   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
771 
772   if (Loop *ParentLoop = L->getParentLoop())
773     L = ParentLoop;
774 
775   // We modified the loop, update SE.
776   SE->forgetTopmostLoop(L);
777 
778   // Finally DomtTree must be correct.
779   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
780 
781   // FIXME: Incrementally update loop-simplify
782   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
783 
784   NumPeeled++;
785 
786   return true;
787 }
788