1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements the Sparse Conditional Constant Propagation (SCCP)
11 // utility.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/SCCPSolver.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueLattice.h"
19 #include "llvm/Analysis/ValueLatticeUtils.h"
20 #include "llvm/IR/InstVisitor.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include <cassert>
27 #include <utility>
28 #include <vector>
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "sccp"
33
34 // The maximum number of range extensions allowed for operations requiring
35 // widening.
36 static const unsigned MaxNumRangeExtensions = 10;
37
38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
getMaxWidenStepsOpts()39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40 return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41 MaxNumRangeExtensions);
42 }
43
44 namespace llvm {
45
isConstant(const ValueLatticeElement & LV)46 bool SCCPSolver::isConstant(const ValueLatticeElement &LV) {
47 return LV.isConstant() ||
48 (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
49 }
50
isOverdefined(const ValueLatticeElement & LV)51 bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) {
52 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
53 }
54
canRemoveInstruction(Instruction * I)55 static bool canRemoveInstruction(Instruction *I) {
56 if (wouldInstructionBeTriviallyDead(I))
57 return true;
58
59 // Some instructions can be handled but are rejected above. Catch
60 // those cases by falling through to here.
61 // TODO: Mark globals as being constant earlier, so
62 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
63 // TODO: are safe to remove.
64 return isa<LoadInst>(I);
65 }
66
tryToReplaceWithConstant(Value * V)67 bool SCCPSolver::tryToReplaceWithConstant(Value *V) {
68 Constant *Const = nullptr;
69 if (V->getType()->isStructTy()) {
70 std::vector<ValueLatticeElement> IVs = getStructLatticeValueFor(V);
71 if (llvm::any_of(IVs, isOverdefined))
72 return false;
73 std::vector<Constant *> ConstVals;
74 auto *ST = cast<StructType>(V->getType());
75 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
76 ValueLatticeElement V = IVs[i];
77 ConstVals.push_back(SCCPSolver::isConstant(V)
78 ? getConstant(V)
79 : UndefValue::get(ST->getElementType(i)));
80 }
81 Const = ConstantStruct::get(ST, ConstVals);
82 } else {
83 const ValueLatticeElement &IV = getLatticeValueFor(V);
84 if (isOverdefined(IV))
85 return false;
86
87 Const = SCCPSolver::isConstant(IV) ? getConstant(IV)
88 : UndefValue::get(V->getType());
89 }
90 assert(Const && "Constant is nullptr here!");
91
92 // Replacing `musttail` instructions with constant breaks `musttail` invariant
93 // unless the call itself can be removed.
94 // Calls with "clang.arc.attachedcall" implicitly use the return value and
95 // those uses cannot be updated with a constant.
96 CallBase *CB = dyn_cast<CallBase>(V);
97 if (CB && ((CB->isMustTailCall() &&
98 !canRemoveInstruction(CB)) ||
99 CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
100 Function *F = CB->getCalledFunction();
101
102 // Don't zap returns of the callee
103 if (F)
104 addToMustPreserveReturnsInFunctions(F);
105
106 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
107 << " as a constant\n");
108 return false;
109 }
110
111 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
112
113 // Replaces all of the uses of a variable with uses of the constant.
114 V->replaceAllUsesWith(Const);
115 return true;
116 }
117
118 /// Try to replace signed instructions with their unsigned equivalent.
replaceSignedInst(SCCPSolver & Solver,SmallPtrSetImpl<Value * > & InsertedValues,Instruction & Inst)119 static bool replaceSignedInst(SCCPSolver &Solver,
120 SmallPtrSetImpl<Value *> &InsertedValues,
121 Instruction &Inst) {
122 // Determine if a signed value is known to be >= 0.
123 auto isNonNegative = [&Solver](Value *V) {
124 // If this value was constant-folded, it may not have a solver entry.
125 // Handle integers. Otherwise, return false.
126 if (auto *C = dyn_cast<Constant>(V)) {
127 auto *CInt = dyn_cast<ConstantInt>(C);
128 return CInt && !CInt->isNegative();
129 }
130 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
131 return IV.isConstantRange(/*UndefAllowed=*/false) &&
132 IV.getConstantRange().isAllNonNegative();
133 };
134
135 Instruction *NewInst = nullptr;
136 switch (Inst.getOpcode()) {
137 // Note: We do not fold sitofp -> uitofp here because that could be more
138 // expensive in codegen and may not be reversible in the backend.
139 case Instruction::SExt: {
140 // If the source value is not negative, this is a zext.
141 Value *Op0 = Inst.getOperand(0);
142 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
143 return false;
144 NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst);
145 break;
146 }
147 case Instruction::AShr: {
148 // If the shifted value is not negative, this is a logical shift right.
149 Value *Op0 = Inst.getOperand(0);
150 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
151 return false;
152 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst);
153 break;
154 }
155 case Instruction::SDiv:
156 case Instruction::SRem: {
157 // If both operands are not negative, this is the same as udiv/urem.
158 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
159 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
160 !isNonNegative(Op0) || !isNonNegative(Op1))
161 return false;
162 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
163 : Instruction::URem;
164 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst);
165 break;
166 }
167 default:
168 return false;
169 }
170
171 // Wire up the new instruction and update state.
172 assert(NewInst && "Expected replacement instruction");
173 NewInst->takeName(&Inst);
174 InsertedValues.insert(NewInst);
175 Inst.replaceAllUsesWith(NewInst);
176 Solver.removeLatticeValueFor(&Inst);
177 Inst.eraseFromParent();
178 return true;
179 }
180
simplifyInstsInBlock(BasicBlock & BB,SmallPtrSetImpl<Value * > & InsertedValues,Statistic & InstRemovedStat,Statistic & InstReplacedStat)181 bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB,
182 SmallPtrSetImpl<Value *> &InsertedValues,
183 Statistic &InstRemovedStat,
184 Statistic &InstReplacedStat) {
185 bool MadeChanges = false;
186 for (Instruction &Inst : make_early_inc_range(BB)) {
187 if (Inst.getType()->isVoidTy())
188 continue;
189 if (tryToReplaceWithConstant(&Inst)) {
190 if (canRemoveInstruction(&Inst))
191 Inst.eraseFromParent();
192
193 MadeChanges = true;
194 ++InstRemovedStat;
195 } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
196 MadeChanges = true;
197 ++InstReplacedStat;
198 }
199 }
200 return MadeChanges;
201 }
202
removeNonFeasibleEdges(BasicBlock * BB,DomTreeUpdater & DTU,BasicBlock * & NewUnreachableBB) const203 bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
204 BasicBlock *&NewUnreachableBB) const {
205 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
206 bool HasNonFeasibleEdges = false;
207 for (BasicBlock *Succ : successors(BB)) {
208 if (isEdgeFeasible(BB, Succ))
209 FeasibleSuccessors.insert(Succ);
210 else
211 HasNonFeasibleEdges = true;
212 }
213
214 // All edges feasible, nothing to do.
215 if (!HasNonFeasibleEdges)
216 return false;
217
218 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
219 Instruction *TI = BB->getTerminator();
220 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
221 isa<IndirectBrInst>(TI)) &&
222 "Terminator must be a br, switch or indirectbr");
223
224 if (FeasibleSuccessors.size() == 0) {
225 // Branch on undef/poison, replace with unreachable.
226 SmallPtrSet<BasicBlock *, 8> SeenSuccs;
227 SmallVector<DominatorTree::UpdateType, 8> Updates;
228 for (BasicBlock *Succ : successors(BB)) {
229 Succ->removePredecessor(BB);
230 if (SeenSuccs.insert(Succ).second)
231 Updates.push_back({DominatorTree::Delete, BB, Succ});
232 }
233 TI->eraseFromParent();
234 new UnreachableInst(BB->getContext(), BB);
235 DTU.applyUpdatesPermissive(Updates);
236 } else if (FeasibleSuccessors.size() == 1) {
237 // Replace with an unconditional branch to the only feasible successor.
238 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
239 SmallVector<DominatorTree::UpdateType, 8> Updates;
240 bool HaveSeenOnlyFeasibleSuccessor = false;
241 for (BasicBlock *Succ : successors(BB)) {
242 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
243 // Don't remove the edge to the only feasible successor the first time
244 // we see it. We still do need to remove any multi-edges to it though.
245 HaveSeenOnlyFeasibleSuccessor = true;
246 continue;
247 }
248
249 Succ->removePredecessor(BB);
250 Updates.push_back({DominatorTree::Delete, BB, Succ});
251 }
252
253 BranchInst::Create(OnlyFeasibleSuccessor, BB);
254 TI->eraseFromParent();
255 DTU.applyUpdatesPermissive(Updates);
256 } else if (FeasibleSuccessors.size() > 1) {
257 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
258 SmallVector<DominatorTree::UpdateType, 8> Updates;
259
260 // If the default destination is unfeasible it will never be taken. Replace
261 // it with a new block with a single Unreachable instruction.
262 BasicBlock *DefaultDest = SI->getDefaultDest();
263 if (!FeasibleSuccessors.contains(DefaultDest)) {
264 if (!NewUnreachableBB) {
265 NewUnreachableBB =
266 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
267 DefaultDest->getParent(), DefaultDest);
268 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
269 }
270
271 SI->setDefaultDest(NewUnreachableBB);
272 Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
273 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
274 }
275
276 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
277 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
278 ++CI;
279 continue;
280 }
281
282 BasicBlock *Succ = CI->getCaseSuccessor();
283 Succ->removePredecessor(BB);
284 Updates.push_back({DominatorTree::Delete, BB, Succ});
285 SI.removeCase(CI);
286 // Don't increment CI, as we removed a case.
287 }
288
289 DTU.applyUpdatesPermissive(Updates);
290 } else {
291 llvm_unreachable("Must have at least one feasible successor");
292 }
293 return true;
294 }
295
296 /// Helper class for SCCPSolver. This implements the instruction visitor and
297 /// holds all the state.
298 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
299 const DataLayout &DL;
300 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
301 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
302 DenseMap<Value *, ValueLatticeElement>
303 ValueState; // The state each value is in.
304
305 /// StructValueState - This maintains ValueState for values that have
306 /// StructType, for example for formal arguments, calls, insertelement, etc.
307 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
308
309 /// GlobalValue - If we are tracking any values for the contents of a global
310 /// variable, we keep a mapping from the constant accessor to the element of
311 /// the global, to the currently known value. If the value becomes
312 /// overdefined, it's entry is simply removed from this map.
313 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
314
315 /// TrackedRetVals - If we are tracking arguments into and the return
316 /// value out of a function, it will have an entry in this map, indicating
317 /// what the known return value for the function is.
318 MapVector<Function *, ValueLatticeElement> TrackedRetVals;
319
320 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
321 /// that return multiple values.
322 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
323 TrackedMultipleRetVals;
324
325 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
326 /// represented here for efficient lookup.
327 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
328
329 /// A list of functions whose return cannot be modified.
330 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
331
332 /// TrackingIncomingArguments - This is the set of functions for whose
333 /// arguments we make optimistic assumptions about and try to prove as
334 /// constants.
335 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
336
337 /// The reason for two worklists is that overdefined is the lowest state
338 /// on the lattice, and moving things to overdefined as fast as possible
339 /// makes SCCP converge much faster.
340 ///
341 /// By having a separate worklist, we accomplish this because everything
342 /// possibly overdefined will become overdefined at the soonest possible
343 /// point.
344 SmallVector<Value *, 64> OverdefinedInstWorkList;
345 SmallVector<Value *, 64> InstWorkList;
346
347 // The BasicBlock work list
348 SmallVector<BasicBlock *, 64> BBWorkList;
349
350 /// KnownFeasibleEdges - Entries in this set are edges which have already had
351 /// PHI nodes retriggered.
352 using Edge = std::pair<BasicBlock *, BasicBlock *>;
353 DenseSet<Edge> KnownFeasibleEdges;
354
355 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
356 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
357
358 LLVMContext &Ctx;
359
360 private:
getConstantInt(const ValueLatticeElement & IV) const361 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
362 return dyn_cast_or_null<ConstantInt>(getConstant(IV));
363 }
364
365 // pushToWorkList - Helper for markConstant/markOverdefined
366 void pushToWorkList(ValueLatticeElement &IV, Value *V);
367
368 // Helper to push \p V to the worklist, after updating it to \p IV. Also
369 // prints a debug message with the updated value.
370 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
371
372 // markConstant - Make a value be marked as "constant". If the value
373 // is not already a constant, add it to the instruction work list so that
374 // the users of the instruction are updated later.
375 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
376 bool MayIncludeUndef = false);
377
markConstant(Value * V,Constant * C)378 bool markConstant(Value *V, Constant *C) {
379 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
380 return markConstant(ValueState[V], V, C);
381 }
382
383 // markOverdefined - Make a value be marked as "overdefined". If the
384 // value is not already overdefined, add it to the overdefined instruction
385 // work list so that the users of the instruction are updated later.
386 bool markOverdefined(ValueLatticeElement &IV, Value *V);
387
388 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
389 /// changes.
390 bool mergeInValue(ValueLatticeElement &IV, Value *V,
391 ValueLatticeElement MergeWithV,
392 ValueLatticeElement::MergeOptions Opts = {
393 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
394
mergeInValue(Value * V,ValueLatticeElement MergeWithV,ValueLatticeElement::MergeOptions Opts={ false, false})395 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
396 ValueLatticeElement::MergeOptions Opts = {
397 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
398 assert(!V->getType()->isStructTy() &&
399 "non-structs should use markConstant");
400 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
401 }
402
403 /// getValueState - Return the ValueLatticeElement object that corresponds to
404 /// the value. This function handles the case when the value hasn't been seen
405 /// yet by properly seeding constants etc.
getValueState(Value * V)406 ValueLatticeElement &getValueState(Value *V) {
407 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
408
409 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
410 ValueLatticeElement &LV = I.first->second;
411
412 if (!I.second)
413 return LV; // Common case, already in the map.
414
415 if (auto *C = dyn_cast<Constant>(V))
416 LV.markConstant(C); // Constants are constant
417
418 // All others are unknown by default.
419 return LV;
420 }
421
422 /// getStructValueState - Return the ValueLatticeElement object that
423 /// corresponds to the value/field pair. This function handles the case when
424 /// the value hasn't been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)425 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
426 assert(V->getType()->isStructTy() && "Should use getValueState");
427 assert(i < cast<StructType>(V->getType())->getNumElements() &&
428 "Invalid element #");
429
430 auto I = StructValueState.insert(
431 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
432 ValueLatticeElement &LV = I.first->second;
433
434 if (!I.second)
435 return LV; // Common case, already in the map.
436
437 if (auto *C = dyn_cast<Constant>(V)) {
438 Constant *Elt = C->getAggregateElement(i);
439
440 if (!Elt)
441 LV.markOverdefined(); // Unknown sort of constant.
442 else
443 LV.markConstant(Elt); // Constants are constant.
444 }
445
446 // All others are underdefined by default.
447 return LV;
448 }
449
450 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
451 /// work list if it is not already executable.
452 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
453
454 // getFeasibleSuccessors - Return a vector of booleans to indicate which
455 // successors are reachable from a given terminator instruction.
456 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
457
458 // OperandChangedState - This method is invoked on all of the users of an
459 // instruction that was just changed state somehow. Based on this
460 // information, we need to update the specified user of this instruction.
operandChangedState(Instruction * I)461 void operandChangedState(Instruction *I) {
462 if (BBExecutable.count(I->getParent())) // Inst is executable?
463 visit(*I);
464 }
465
466 // Add U as additional user of V.
addAdditionalUser(Value * V,User * U)467 void addAdditionalUser(Value *V, User *U) {
468 auto Iter = AdditionalUsers.insert({V, {}});
469 Iter.first->second.insert(U);
470 }
471
472 // Mark I's users as changed, including AdditionalUsers.
markUsersAsChanged(Value * I)473 void markUsersAsChanged(Value *I) {
474 // Functions include their arguments in the use-list. Changed function
475 // values mean that the result of the function changed. We only need to
476 // update the call sites with the new function result and do not have to
477 // propagate the call arguments.
478 if (isa<Function>(I)) {
479 for (User *U : I->users()) {
480 if (auto *CB = dyn_cast<CallBase>(U))
481 handleCallResult(*CB);
482 }
483 } else {
484 for (User *U : I->users())
485 if (auto *UI = dyn_cast<Instruction>(U))
486 operandChangedState(UI);
487 }
488
489 auto Iter = AdditionalUsers.find(I);
490 if (Iter != AdditionalUsers.end()) {
491 // Copy additional users before notifying them of changes, because new
492 // users may be added, potentially invalidating the iterator.
493 SmallVector<Instruction *, 2> ToNotify;
494 for (User *U : Iter->second)
495 if (auto *UI = dyn_cast<Instruction>(U))
496 ToNotify.push_back(UI);
497 for (Instruction *UI : ToNotify)
498 operandChangedState(UI);
499 }
500 }
501 void handleCallOverdefined(CallBase &CB);
502 void handleCallResult(CallBase &CB);
503 void handleCallArguments(CallBase &CB);
504 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
505 const WithOverflowInst *WO, unsigned Idx);
506
507 private:
508 friend class InstVisitor<SCCPInstVisitor>;
509
510 // visit implementations - Something changed in this instruction. Either an
511 // operand made a transition, or the instruction is newly executable. Change
512 // the value type of I to reflect these changes if appropriate.
513 void visitPHINode(PHINode &I);
514
515 // Terminators
516
517 void visitReturnInst(ReturnInst &I);
518 void visitTerminator(Instruction &TI);
519
520 void visitCastInst(CastInst &I);
521 void visitSelectInst(SelectInst &I);
522 void visitUnaryOperator(Instruction &I);
523 void visitBinaryOperator(Instruction &I);
524 void visitCmpInst(CmpInst &I);
525 void visitExtractValueInst(ExtractValueInst &EVI);
526 void visitInsertValueInst(InsertValueInst &IVI);
527
visitCatchSwitchInst(CatchSwitchInst & CPI)528 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
529 markOverdefined(&CPI);
530 visitTerminator(CPI);
531 }
532
533 // Instructions that cannot be folded away.
534
535 void visitStoreInst(StoreInst &I);
536 void visitLoadInst(LoadInst &I);
537 void visitGetElementPtrInst(GetElementPtrInst &I);
538
visitInvokeInst(InvokeInst & II)539 void visitInvokeInst(InvokeInst &II) {
540 visitCallBase(II);
541 visitTerminator(II);
542 }
543
visitCallBrInst(CallBrInst & CBI)544 void visitCallBrInst(CallBrInst &CBI) {
545 visitCallBase(CBI);
546 visitTerminator(CBI);
547 }
548
549 void visitCallBase(CallBase &CB);
visitResumeInst(ResumeInst & I)550 void visitResumeInst(ResumeInst &I) { /*returns void*/
551 }
visitUnreachableInst(UnreachableInst & I)552 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
553 }
visitFenceInst(FenceInst & I)554 void visitFenceInst(FenceInst &I) { /*returns void*/
555 }
556
557 void visitInstruction(Instruction &I);
558
559 public:
addAnalysis(Function & F,AnalysisResultsForFn A)560 void addAnalysis(Function &F, AnalysisResultsForFn A) {
561 AnalysisResults.insert({&F, std::move(A)});
562 }
563
visitCallInst(CallInst & I)564 void visitCallInst(CallInst &I) { visitCallBase(I); }
565
566 bool markBlockExecutable(BasicBlock *BB);
567
getPredicateInfoFor(Instruction * I)568 const PredicateBase *getPredicateInfoFor(Instruction *I) {
569 auto A = AnalysisResults.find(I->getParent()->getParent());
570 if (A == AnalysisResults.end())
571 return nullptr;
572 return A->second.PredInfo->getPredicateInfoFor(I);
573 }
574
getLoopInfo(Function & F)575 const LoopInfo &getLoopInfo(Function &F) {
576 auto A = AnalysisResults.find(&F);
577 assert(A != AnalysisResults.end() && A->second.LI &&
578 "Need LoopInfo analysis results for function.");
579 return *A->second.LI;
580 }
581
getDTU(Function & F)582 DomTreeUpdater getDTU(Function &F) {
583 auto A = AnalysisResults.find(&F);
584 assert(A != AnalysisResults.end() && "Need analysis results for function.");
585 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
586 }
587
SCCPInstVisitor(const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,LLVMContext & Ctx)588 SCCPInstVisitor(const DataLayout &DL,
589 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
590 LLVMContext &Ctx)
591 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
592
trackValueOfGlobalVariable(GlobalVariable * GV)593 void trackValueOfGlobalVariable(GlobalVariable *GV) {
594 // We only track the contents of scalar globals.
595 if (GV->getValueType()->isSingleValueType()) {
596 ValueLatticeElement &IV = TrackedGlobals[GV];
597 IV.markConstant(GV->getInitializer());
598 }
599 }
600
addTrackedFunction(Function * F)601 void addTrackedFunction(Function *F) {
602 // Add an entry, F -> undef.
603 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
604 MRVFunctionsTracked.insert(F);
605 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
606 TrackedMultipleRetVals.insert(
607 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
608 } else if (!F->getReturnType()->isVoidTy())
609 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
610 }
611
addToMustPreserveReturnsInFunctions(Function * F)612 void addToMustPreserveReturnsInFunctions(Function *F) {
613 MustPreserveReturnsInFunctions.insert(F);
614 }
615
mustPreserveReturn(Function * F)616 bool mustPreserveReturn(Function *F) {
617 return MustPreserveReturnsInFunctions.count(F);
618 }
619
addArgumentTrackedFunction(Function * F)620 void addArgumentTrackedFunction(Function *F) {
621 TrackingIncomingArguments.insert(F);
622 }
623
isArgumentTrackedFunction(Function * F)624 bool isArgumentTrackedFunction(Function *F) {
625 return TrackingIncomingArguments.count(F);
626 }
627
628 void solve();
629
630 bool resolvedUndefsIn(Function &F);
631
isBlockExecutable(BasicBlock * BB) const632 bool isBlockExecutable(BasicBlock *BB) const {
633 return BBExecutable.count(BB);
634 }
635
636 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
637
getStructLatticeValueFor(Value * V) const638 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
639 std::vector<ValueLatticeElement> StructValues;
640 auto *STy = dyn_cast<StructType>(V->getType());
641 assert(STy && "getStructLatticeValueFor() can be called only on structs");
642 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
643 auto I = StructValueState.find(std::make_pair(V, i));
644 assert(I != StructValueState.end() && "Value not in valuemap!");
645 StructValues.push_back(I->second);
646 }
647 return StructValues;
648 }
649
removeLatticeValueFor(Value * V)650 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
651
getLatticeValueFor(Value * V) const652 const ValueLatticeElement &getLatticeValueFor(Value *V) const {
653 assert(!V->getType()->isStructTy() &&
654 "Should use getStructLatticeValueFor");
655 DenseMap<Value *, ValueLatticeElement>::const_iterator I =
656 ValueState.find(V);
657 assert(I != ValueState.end() &&
658 "V not found in ValueState nor Paramstate map!");
659 return I->second;
660 }
661
getTrackedRetVals()662 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
663 return TrackedRetVals;
664 }
665
getTrackedGlobals()666 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
667 return TrackedGlobals;
668 }
669
getMRVFunctionsTracked()670 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
671 return MRVFunctionsTracked;
672 }
673
markOverdefined(Value * V)674 void markOverdefined(Value *V) {
675 if (auto *STy = dyn_cast<StructType>(V->getType()))
676 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
677 markOverdefined(getStructValueState(V, i), V);
678 else
679 markOverdefined(ValueState[V], V);
680 }
681
682 bool isStructLatticeConstant(Function *F, StructType *STy);
683
684 Constant *getConstant(const ValueLatticeElement &LV) const;
685 ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty) const;
686
getArgumentTrackedFunctions()687 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
688 return TrackingIncomingArguments;
689 }
690
691 void markArgInFuncSpecialization(Function *F,
692 const SmallVectorImpl<ArgInfo> &Args);
693
markFunctionUnreachable(Function * F)694 void markFunctionUnreachable(Function *F) {
695 for (auto &BB : *F)
696 BBExecutable.erase(&BB);
697 }
698
solveWhileResolvedUndefsIn(Module & M)699 void solveWhileResolvedUndefsIn(Module &M) {
700 bool ResolvedUndefs = true;
701 while (ResolvedUndefs) {
702 solve();
703 ResolvedUndefs = false;
704 for (Function &F : M)
705 ResolvedUndefs |= resolvedUndefsIn(F);
706 }
707 }
708
solveWhileResolvedUndefsIn(SmallVectorImpl<Function * > & WorkList)709 void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
710 bool ResolvedUndefs = true;
711 while (ResolvedUndefs) {
712 solve();
713 ResolvedUndefs = false;
714 for (Function *F : WorkList)
715 ResolvedUndefs |= resolvedUndefsIn(*F);
716 }
717 }
718 };
719
720 } // namespace llvm
721
markBlockExecutable(BasicBlock * BB)722 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
723 if (!BBExecutable.insert(BB).second)
724 return false;
725 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
726 BBWorkList.push_back(BB); // Add the block to the work list!
727 return true;
728 }
729
pushToWorkList(ValueLatticeElement & IV,Value * V)730 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
731 if (IV.isOverdefined())
732 return OverdefinedInstWorkList.push_back(V);
733 InstWorkList.push_back(V);
734 }
735
pushToWorkListMsg(ValueLatticeElement & IV,Value * V)736 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
737 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
738 pushToWorkList(IV, V);
739 }
740
markConstant(ValueLatticeElement & IV,Value * V,Constant * C,bool MayIncludeUndef)741 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
742 Constant *C, bool MayIncludeUndef) {
743 if (!IV.markConstant(C, MayIncludeUndef))
744 return false;
745 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
746 pushToWorkList(IV, V);
747 return true;
748 }
749
markOverdefined(ValueLatticeElement & IV,Value * V)750 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
751 if (!IV.markOverdefined())
752 return false;
753
754 LLVM_DEBUG(dbgs() << "markOverdefined: ";
755 if (auto *F = dyn_cast<Function>(V)) dbgs()
756 << "Function '" << F->getName() << "'\n";
757 else dbgs() << *V << '\n');
758 // Only instructions go on the work list
759 pushToWorkList(IV, V);
760 return true;
761 }
762
isStructLatticeConstant(Function * F,StructType * STy)763 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
764 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
765 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
766 assert(It != TrackedMultipleRetVals.end());
767 ValueLatticeElement LV = It->second;
768 if (!SCCPSolver::isConstant(LV))
769 return false;
770 }
771 return true;
772 }
773
getConstant(const ValueLatticeElement & LV) const774 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
775 if (LV.isConstant())
776 return LV.getConstant();
777
778 if (LV.isConstantRange()) {
779 const auto &CR = LV.getConstantRange();
780 if (CR.getSingleElement())
781 return ConstantInt::get(Ctx, *CR.getSingleElement());
782 }
783 return nullptr;
784 }
785
786 ConstantRange
getConstantRange(const ValueLatticeElement & LV,Type * Ty) const787 SCCPInstVisitor::getConstantRange(const ValueLatticeElement &LV,
788 Type *Ty) const {
789 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
790 if (LV.isConstantRange())
791 return LV.getConstantRange();
792 return ConstantRange::getFull(Ty->getScalarSizeInBits());
793 }
794
markArgInFuncSpecialization(Function * F,const SmallVectorImpl<ArgInfo> & Args)795 void SCCPInstVisitor::markArgInFuncSpecialization(
796 Function *F, const SmallVectorImpl<ArgInfo> &Args) {
797 assert(!Args.empty() && "Specialization without arguments");
798 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
799 "Functions should have the same number of arguments");
800
801 auto Iter = Args.begin();
802 Argument *NewArg = F->arg_begin();
803 Argument *OldArg = Args[0].Formal->getParent()->arg_begin();
804 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
805
806 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
807 << NewArg->getNameOrAsOperand() << "\n");
808
809 if (Iter != Args.end() && OldArg == Iter->Formal) {
810 // Mark the argument constants in the new function.
811 markConstant(NewArg, Iter->Actual);
812 ++Iter;
813 } else if (ValueState.count(OldArg)) {
814 // For the remaining arguments in the new function, copy the lattice state
815 // over from the old function.
816 //
817 // Note: This previously looked like this:
818 // ValueState[NewArg] = ValueState[OldArg];
819 // This is incorrect because the DenseMap class may resize the underlying
820 // memory when inserting `NewArg`, which will invalidate the reference to
821 // `OldArg`. Instead, we make sure `NewArg` exists before setting it.
822 auto &NewValue = ValueState[NewArg];
823 NewValue = ValueState[OldArg];
824 pushToWorkList(NewValue, NewArg);
825 }
826 }
827 }
828
visitInstruction(Instruction & I)829 void SCCPInstVisitor::visitInstruction(Instruction &I) {
830 // All the instructions we don't do any special handling for just
831 // go to overdefined.
832 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
833 markOverdefined(&I);
834 }
835
mergeInValue(ValueLatticeElement & IV,Value * V,ValueLatticeElement MergeWithV,ValueLatticeElement::MergeOptions Opts)836 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
837 ValueLatticeElement MergeWithV,
838 ValueLatticeElement::MergeOptions Opts) {
839 if (IV.mergeIn(MergeWithV, Opts)) {
840 pushToWorkList(IV, V);
841 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
842 << IV << "\n");
843 return true;
844 }
845 return false;
846 }
847
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)848 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
849 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
850 return false; // This edge is already known to be executable!
851
852 if (!markBlockExecutable(Dest)) {
853 // If the destination is already executable, we just made an *edge*
854 // feasible that wasn't before. Revisit the PHI nodes in the block
855 // because they have potentially new operands.
856 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
857 << " -> " << Dest->getName() << '\n');
858
859 for (PHINode &PN : Dest->phis())
860 visitPHINode(PN);
861 }
862 return true;
863 }
864
865 // getFeasibleSuccessors - Return a vector of booleans to indicate which
866 // successors are reachable from a given terminator instruction.
getFeasibleSuccessors(Instruction & TI,SmallVectorImpl<bool> & Succs)867 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
868 SmallVectorImpl<bool> &Succs) {
869 Succs.resize(TI.getNumSuccessors());
870 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
871 if (BI->isUnconditional()) {
872 Succs[0] = true;
873 return;
874 }
875
876 ValueLatticeElement BCValue = getValueState(BI->getCondition());
877 ConstantInt *CI = getConstantInt(BCValue);
878 if (!CI) {
879 // Overdefined condition variables, and branches on unfoldable constant
880 // conditions, mean the branch could go either way.
881 if (!BCValue.isUnknownOrUndef())
882 Succs[0] = Succs[1] = true;
883 return;
884 }
885
886 // Constant condition variables mean the branch can only go a single way.
887 Succs[CI->isZero()] = true;
888 return;
889 }
890
891 // Unwinding instructions successors are always executable.
892 if (TI.isExceptionalTerminator()) {
893 Succs.assign(TI.getNumSuccessors(), true);
894 return;
895 }
896
897 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
898 if (!SI->getNumCases()) {
899 Succs[0] = true;
900 return;
901 }
902 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
903 if (ConstantInt *CI = getConstantInt(SCValue)) {
904 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
905 return;
906 }
907
908 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
909 // is ready.
910 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
911 const ConstantRange &Range = SCValue.getConstantRange();
912 for (const auto &Case : SI->cases()) {
913 const APInt &CaseValue = Case.getCaseValue()->getValue();
914 if (Range.contains(CaseValue))
915 Succs[Case.getSuccessorIndex()] = true;
916 }
917
918 // TODO: Determine whether default case is reachable.
919 Succs[SI->case_default()->getSuccessorIndex()] = true;
920 return;
921 }
922
923 // Overdefined or unknown condition? All destinations are executable!
924 if (!SCValue.isUnknownOrUndef())
925 Succs.assign(TI.getNumSuccessors(), true);
926 return;
927 }
928
929 // In case of indirect branch and its address is a blockaddress, we mark
930 // the target as executable.
931 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
932 // Casts are folded by visitCastInst.
933 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
934 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
935 if (!Addr) { // Overdefined or unknown condition?
936 // All destinations are executable!
937 if (!IBRValue.isUnknownOrUndef())
938 Succs.assign(TI.getNumSuccessors(), true);
939 return;
940 }
941
942 BasicBlock *T = Addr->getBasicBlock();
943 assert(Addr->getFunction() == T->getParent() &&
944 "Block address of a different function ?");
945 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
946 // This is the target.
947 if (IBR->getDestination(i) == T) {
948 Succs[i] = true;
949 return;
950 }
951 }
952
953 // If we didn't find our destination in the IBR successor list, then we
954 // have undefined behavior. Its ok to assume no successor is executable.
955 return;
956 }
957
958 // In case of callbr, we pessimistically assume that all successors are
959 // feasible.
960 if (isa<CallBrInst>(&TI)) {
961 Succs.assign(TI.getNumSuccessors(), true);
962 return;
963 }
964
965 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
966 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
967 }
968
969 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
970 // block to the 'To' basic block is currently feasible.
isEdgeFeasible(BasicBlock * From,BasicBlock * To) const971 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
972 // Check if we've called markEdgeExecutable on the edge yet. (We could
973 // be more aggressive and try to consider edges which haven't been marked
974 // yet, but there isn't any need.)
975 return KnownFeasibleEdges.count(Edge(From, To));
976 }
977
978 // visit Implementations - Something changed in this instruction, either an
979 // operand made a transition, or the instruction is newly executable. Change
980 // the value type of I to reflect these changes if appropriate. This method
981 // makes sure to do the following actions:
982 //
983 // 1. If a phi node merges two constants in, and has conflicting value coming
984 // from different branches, or if the PHI node merges in an overdefined
985 // value, then the PHI node becomes overdefined.
986 // 2. If a phi node merges only constants in, and they all agree on value, the
987 // PHI node becomes a constant value equal to that.
988 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
989 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
990 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
991 // 6. If a conditional branch has a value that is constant, make the selected
992 // destination executable
993 // 7. If a conditional branch has a value that is overdefined, make all
994 // successors executable.
visitPHINode(PHINode & PN)995 void SCCPInstVisitor::visitPHINode(PHINode &PN) {
996 // If this PN returns a struct, just mark the result overdefined.
997 // TODO: We could do a lot better than this if code actually uses this.
998 if (PN.getType()->isStructTy())
999 return (void)markOverdefined(&PN);
1000
1001 if (getValueState(&PN).isOverdefined())
1002 return; // Quick exit
1003
1004 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1005 // and slow us down a lot. Just mark them overdefined.
1006 if (PN.getNumIncomingValues() > 64)
1007 return (void)markOverdefined(&PN);
1008
1009 unsigned NumActiveIncoming = 0;
1010
1011 // Look at all of the executable operands of the PHI node. If any of them
1012 // are overdefined, the PHI becomes overdefined as well. If they are all
1013 // constant, and they agree with each other, the PHI becomes the identical
1014 // constant. If they are constant and don't agree, the PHI is a constant
1015 // range. If there are no executable operands, the PHI remains unknown.
1016 ValueLatticeElement PhiState = getValueState(&PN);
1017 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1018 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1019 continue;
1020
1021 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1022 PhiState.mergeIn(IV);
1023 NumActiveIncoming++;
1024 if (PhiState.isOverdefined())
1025 break;
1026 }
1027
1028 // We allow up to 1 range extension per active incoming value and one
1029 // additional extension. Note that we manually adjust the number of range
1030 // extensions to match the number of active incoming values. This helps to
1031 // limit multiple extensions caused by the same incoming value, if other
1032 // incoming values are equal.
1033 mergeInValue(&PN, PhiState,
1034 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1035 NumActiveIncoming + 1));
1036 ValueLatticeElement &PhiStateRef = getValueState(&PN);
1037 PhiStateRef.setNumRangeExtensions(
1038 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1039 }
1040
visitReturnInst(ReturnInst & I)1041 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1042 if (I.getNumOperands() == 0)
1043 return; // ret void
1044
1045 Function *F = I.getParent()->getParent();
1046 Value *ResultOp = I.getOperand(0);
1047
1048 // If we are tracking the return value of this function, merge it in.
1049 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1050 auto TFRVI = TrackedRetVals.find(F);
1051 if (TFRVI != TrackedRetVals.end()) {
1052 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1053 return;
1054 }
1055 }
1056
1057 // Handle functions that return multiple values.
1058 if (!TrackedMultipleRetVals.empty()) {
1059 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1060 if (MRVFunctionsTracked.count(F))
1061 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1062 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1063 getStructValueState(ResultOp, i));
1064 }
1065 }
1066
visitTerminator(Instruction & TI)1067 void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1068 SmallVector<bool, 16> SuccFeasible;
1069 getFeasibleSuccessors(TI, SuccFeasible);
1070
1071 BasicBlock *BB = TI.getParent();
1072
1073 // Mark all feasible successors executable.
1074 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1075 if (SuccFeasible[i])
1076 markEdgeExecutable(BB, TI.getSuccessor(i));
1077 }
1078
visitCastInst(CastInst & I)1079 void SCCPInstVisitor::visitCastInst(CastInst &I) {
1080 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1081 // discover a concrete value later.
1082 if (ValueState[&I].isOverdefined())
1083 return;
1084
1085 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1086 if (OpSt.isUnknownOrUndef())
1087 return;
1088
1089 if (Constant *OpC = getConstant(OpSt)) {
1090 // Fold the constant as we build.
1091 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
1092 markConstant(&I, C);
1093 } else if (I.getDestTy()->isIntegerTy() &&
1094 I.getSrcTy()->isIntOrIntVectorTy()) {
1095 auto &LV = getValueState(&I);
1096 ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1097
1098 Type *DestTy = I.getDestTy();
1099 // Vectors where all elements have the same known constant range are treated
1100 // as a single constant range in the lattice. When bitcasting such vectors,
1101 // there is a mis-match between the width of the lattice value (single
1102 // constant range) and the original operands (vector). Go to overdefined in
1103 // that case.
1104 if (I.getOpcode() == Instruction::BitCast &&
1105 I.getOperand(0)->getType()->isVectorTy() &&
1106 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1107 return (void)markOverdefined(&I);
1108
1109 ConstantRange Res =
1110 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1111 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1112 } else
1113 markOverdefined(&I);
1114 }
1115
handleExtractOfWithOverflow(ExtractValueInst & EVI,const WithOverflowInst * WO,unsigned Idx)1116 void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1117 const WithOverflowInst *WO,
1118 unsigned Idx) {
1119 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1120 ValueLatticeElement L = getValueState(LHS);
1121 ValueLatticeElement R = getValueState(RHS);
1122 addAdditionalUser(LHS, &EVI);
1123 addAdditionalUser(RHS, &EVI);
1124 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1125 return; // Wait to resolve.
1126
1127 Type *Ty = LHS->getType();
1128 ConstantRange LR = getConstantRange(L, Ty);
1129 ConstantRange RR = getConstantRange(R, Ty);
1130 if (Idx == 0) {
1131 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1132 mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1133 } else {
1134 assert(Idx == 1 && "Index can only be 0 or 1");
1135 ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1136 WO->getBinaryOp(), RR, WO->getNoWrapKind());
1137 if (NWRegion.contains(LR))
1138 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1139 markOverdefined(&EVI);
1140 }
1141 }
1142
visitExtractValueInst(ExtractValueInst & EVI)1143 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1144 // If this returns a struct, mark all elements over defined, we don't track
1145 // structs in structs.
1146 if (EVI.getType()->isStructTy())
1147 return (void)markOverdefined(&EVI);
1148
1149 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1150 // discover a concrete value later.
1151 if (ValueState[&EVI].isOverdefined())
1152 return (void)markOverdefined(&EVI);
1153
1154 // If this is extracting from more than one level of struct, we don't know.
1155 if (EVI.getNumIndices() != 1)
1156 return (void)markOverdefined(&EVI);
1157
1158 Value *AggVal = EVI.getAggregateOperand();
1159 if (AggVal->getType()->isStructTy()) {
1160 unsigned i = *EVI.idx_begin();
1161 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1162 return handleExtractOfWithOverflow(EVI, WO, i);
1163 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1164 mergeInValue(getValueState(&EVI), &EVI, EltVal);
1165 } else {
1166 // Otherwise, must be extracting from an array.
1167 return (void)markOverdefined(&EVI);
1168 }
1169 }
1170
visitInsertValueInst(InsertValueInst & IVI)1171 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1172 auto *STy = dyn_cast<StructType>(IVI.getType());
1173 if (!STy)
1174 return (void)markOverdefined(&IVI);
1175
1176 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1177 // discover a concrete value later.
1178 if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1179 return (void)markOverdefined(&IVI);
1180
1181 // If this has more than one index, we can't handle it, drive all results to
1182 // undef.
1183 if (IVI.getNumIndices() != 1)
1184 return (void)markOverdefined(&IVI);
1185
1186 Value *Aggr = IVI.getAggregateOperand();
1187 unsigned Idx = *IVI.idx_begin();
1188
1189 // Compute the result based on what we're inserting.
1190 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1191 // This passes through all values that aren't the inserted element.
1192 if (i != Idx) {
1193 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1194 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1195 continue;
1196 }
1197
1198 Value *Val = IVI.getInsertedValueOperand();
1199 if (Val->getType()->isStructTy())
1200 // We don't track structs in structs.
1201 markOverdefined(getStructValueState(&IVI, i), &IVI);
1202 else {
1203 ValueLatticeElement InVal = getValueState(Val);
1204 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1205 }
1206 }
1207 }
1208
visitSelectInst(SelectInst & I)1209 void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1210 // If this select returns a struct, just mark the result overdefined.
1211 // TODO: We could do a lot better than this if code actually uses this.
1212 if (I.getType()->isStructTy())
1213 return (void)markOverdefined(&I);
1214
1215 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1216 // discover a concrete value later.
1217 if (ValueState[&I].isOverdefined())
1218 return (void)markOverdefined(&I);
1219
1220 ValueLatticeElement CondValue = getValueState(I.getCondition());
1221 if (CondValue.isUnknownOrUndef())
1222 return;
1223
1224 if (ConstantInt *CondCB = getConstantInt(CondValue)) {
1225 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1226 mergeInValue(&I, getValueState(OpVal));
1227 return;
1228 }
1229
1230 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1231 // See if we can produce something better than overdefined based on the T/F
1232 // value.
1233 ValueLatticeElement TVal = getValueState(I.getTrueValue());
1234 ValueLatticeElement FVal = getValueState(I.getFalseValue());
1235
1236 bool Changed = ValueState[&I].mergeIn(TVal);
1237 Changed |= ValueState[&I].mergeIn(FVal);
1238 if (Changed)
1239 pushToWorkListMsg(ValueState[&I], &I);
1240 }
1241
1242 // Handle Unary Operators.
visitUnaryOperator(Instruction & I)1243 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1244 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1245
1246 ValueLatticeElement &IV = ValueState[&I];
1247 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1248 // discover a concrete value later.
1249 if (SCCPSolver::isOverdefined(IV))
1250 return (void)markOverdefined(&I);
1251
1252 // If something is unknown/undef, wait for it to resolve.
1253 if (V0State.isUnknownOrUndef())
1254 return;
1255
1256 if (SCCPSolver::isConstant(V0State))
1257 if (Constant *C = ConstantFoldUnaryOpOperand(I.getOpcode(),
1258 getConstant(V0State), DL))
1259 return (void)markConstant(IV, &I, C);
1260
1261 markOverdefined(&I);
1262 }
1263
1264 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)1265 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1266 ValueLatticeElement V1State = getValueState(I.getOperand(0));
1267 ValueLatticeElement V2State = getValueState(I.getOperand(1));
1268
1269 ValueLatticeElement &IV = ValueState[&I];
1270 if (IV.isOverdefined())
1271 return;
1272
1273 // If something is undef, wait for it to resolve.
1274 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1275 return;
1276
1277 if (V1State.isOverdefined() && V2State.isOverdefined())
1278 return (void)markOverdefined(&I);
1279
1280 // If either of the operands is a constant, try to fold it to a constant.
1281 // TODO: Use information from notconstant better.
1282 if ((V1State.isConstant() || V2State.isConstant())) {
1283 Value *V1 = SCCPSolver::isConstant(V1State) ? getConstant(V1State)
1284 : I.getOperand(0);
1285 Value *V2 = SCCPSolver::isConstant(V2State) ? getConstant(V2State)
1286 : I.getOperand(1);
1287 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1288 auto *C = dyn_cast_or_null<Constant>(R);
1289 if (C) {
1290 // Conservatively assume that the result may be based on operands that may
1291 // be undef. Note that we use mergeInValue to combine the constant with
1292 // the existing lattice value for I, as different constants might be found
1293 // after one of the operands go to overdefined, e.g. due to one operand
1294 // being a special floating value.
1295 ValueLatticeElement NewV;
1296 NewV.markConstant(C, /*MayIncludeUndef=*/true);
1297 return (void)mergeInValue(&I, NewV);
1298 }
1299 }
1300
1301 // Only use ranges for binary operators on integers.
1302 if (!I.getType()->isIntegerTy())
1303 return markOverdefined(&I);
1304
1305 // Try to simplify to a constant range.
1306 ConstantRange A = getConstantRange(V1State, I.getType());
1307 ConstantRange B = getConstantRange(V2State, I.getType());
1308 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1309 mergeInValue(&I, ValueLatticeElement::getRange(R));
1310
1311 // TODO: Currently we do not exploit special values that produce something
1312 // better than overdefined with an overdefined operand for vector or floating
1313 // point types, like and <4 x i32> overdefined, zeroinitializer.
1314 }
1315
1316 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)1317 void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1318 // Do not cache this lookup, getValueState calls later in the function might
1319 // invalidate the reference.
1320 if (SCCPSolver::isOverdefined(ValueState[&I]))
1321 return (void)markOverdefined(&I);
1322
1323 Value *Op1 = I.getOperand(0);
1324 Value *Op2 = I.getOperand(1);
1325
1326 // For parameters, use ParamState which includes constant range info if
1327 // available.
1328 auto V1State = getValueState(Op1);
1329 auto V2State = getValueState(Op2);
1330
1331 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1332 if (C) {
1333 ValueLatticeElement CV;
1334 CV.markConstant(C);
1335 mergeInValue(&I, CV);
1336 return;
1337 }
1338
1339 // If operands are still unknown, wait for it to resolve.
1340 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1341 !SCCPSolver::isConstant(ValueState[&I]))
1342 return;
1343
1344 markOverdefined(&I);
1345 }
1346
1347 // Handle getelementptr instructions. If all operands are constants then we
1348 // can turn this into a getelementptr ConstantExpr.
visitGetElementPtrInst(GetElementPtrInst & I)1349 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1350 if (SCCPSolver::isOverdefined(ValueState[&I]))
1351 return (void)markOverdefined(&I);
1352
1353 SmallVector<Constant *, 8> Operands;
1354 Operands.reserve(I.getNumOperands());
1355
1356 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1357 ValueLatticeElement State = getValueState(I.getOperand(i));
1358 if (State.isUnknownOrUndef())
1359 return; // Operands are not resolved yet.
1360
1361 if (SCCPSolver::isOverdefined(State))
1362 return (void)markOverdefined(&I);
1363
1364 if (Constant *C = getConstant(State)) {
1365 Operands.push_back(C);
1366 continue;
1367 }
1368
1369 return (void)markOverdefined(&I);
1370 }
1371
1372 Constant *Ptr = Operands[0];
1373 auto Indices = ArrayRef(Operands.begin() + 1, Operands.end());
1374 Constant *C =
1375 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1376 markConstant(&I, C);
1377 }
1378
visitStoreInst(StoreInst & SI)1379 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1380 // If this store is of a struct, ignore it.
1381 if (SI.getOperand(0)->getType()->isStructTy())
1382 return;
1383
1384 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1385 return;
1386
1387 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1388 auto I = TrackedGlobals.find(GV);
1389 if (I == TrackedGlobals.end())
1390 return;
1391
1392 // Get the value we are storing into the global, then merge it.
1393 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1394 ValueLatticeElement::MergeOptions().setCheckWiden(false));
1395 if (I->second.isOverdefined())
1396 TrackedGlobals.erase(I); // No need to keep tracking this!
1397 }
1398
getValueFromMetadata(const Instruction * I)1399 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1400 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1401 if (I->getType()->isIntegerTy())
1402 return ValueLatticeElement::getRange(
1403 getConstantRangeFromMetadata(*Ranges));
1404 if (I->hasMetadata(LLVMContext::MD_nonnull))
1405 return ValueLatticeElement::getNot(
1406 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1407 return ValueLatticeElement::getOverdefined();
1408 }
1409
1410 // Handle load instructions. If the operand is a constant pointer to a constant
1411 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1412 void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1413 // If this load is of a struct or the load is volatile, just mark the result
1414 // as overdefined.
1415 if (I.getType()->isStructTy() || I.isVolatile())
1416 return (void)markOverdefined(&I);
1417
1418 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1419 // discover a concrete value later.
1420 if (ValueState[&I].isOverdefined())
1421 return (void)markOverdefined(&I);
1422
1423 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1424 if (PtrVal.isUnknownOrUndef())
1425 return; // The pointer is not resolved yet!
1426
1427 ValueLatticeElement &IV = ValueState[&I];
1428
1429 if (SCCPSolver::isConstant(PtrVal)) {
1430 Constant *Ptr = getConstant(PtrVal);
1431
1432 // load null is undefined.
1433 if (isa<ConstantPointerNull>(Ptr)) {
1434 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1435 return (void)markOverdefined(IV, &I);
1436 else
1437 return;
1438 }
1439
1440 // Transform load (constant global) into the value loaded.
1441 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1442 if (!TrackedGlobals.empty()) {
1443 // If we are tracking this global, merge in the known value for it.
1444 auto It = TrackedGlobals.find(GV);
1445 if (It != TrackedGlobals.end()) {
1446 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1447 return;
1448 }
1449 }
1450 }
1451
1452 // Transform load from a constant into a constant if possible.
1453 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1454 return (void)markConstant(IV, &I, C);
1455 }
1456
1457 // Fall back to metadata.
1458 mergeInValue(&I, getValueFromMetadata(&I));
1459 }
1460
visitCallBase(CallBase & CB)1461 void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1462 handleCallResult(CB);
1463 handleCallArguments(CB);
1464 }
1465
handleCallOverdefined(CallBase & CB)1466 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1467 Function *F = CB.getCalledFunction();
1468
1469 // Void return and not tracking callee, just bail.
1470 if (CB.getType()->isVoidTy())
1471 return;
1472
1473 // Always mark struct return as overdefined.
1474 if (CB.getType()->isStructTy())
1475 return (void)markOverdefined(&CB);
1476
1477 // Otherwise, if we have a single return value case, and if the function is
1478 // a declaration, maybe we can constant fold it.
1479 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1480 SmallVector<Constant *, 8> Operands;
1481 for (const Use &A : CB.args()) {
1482 if (A.get()->getType()->isStructTy())
1483 return markOverdefined(&CB); // Can't handle struct args.
1484 if (A.get()->getType()->isMetadataTy())
1485 continue; // Carried in CB, not allowed in Operands.
1486 ValueLatticeElement State = getValueState(A);
1487
1488 if (State.isUnknownOrUndef())
1489 return; // Operands are not resolved yet.
1490 if (SCCPSolver::isOverdefined(State))
1491 return (void)markOverdefined(&CB);
1492 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1493 Operands.push_back(getConstant(State));
1494 }
1495
1496 if (SCCPSolver::isOverdefined(getValueState(&CB)))
1497 return (void)markOverdefined(&CB);
1498
1499 // If we can constant fold this, mark the result of the call as a
1500 // constant.
1501 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1502 return (void)markConstant(&CB, C);
1503 }
1504
1505 // Fall back to metadata.
1506 mergeInValue(&CB, getValueFromMetadata(&CB));
1507 }
1508
handleCallArguments(CallBase & CB)1509 void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1510 Function *F = CB.getCalledFunction();
1511 // If this is a local function that doesn't have its address taken, mark its
1512 // entry block executable and merge in the actual arguments to the call into
1513 // the formal arguments of the function.
1514 if (TrackingIncomingArguments.count(F)) {
1515 markBlockExecutable(&F->front());
1516
1517 // Propagate information from this call site into the callee.
1518 auto CAI = CB.arg_begin();
1519 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1520 ++AI, ++CAI) {
1521 // If this argument is byval, and if the function is not readonly, there
1522 // will be an implicit copy formed of the input aggregate.
1523 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1524 markOverdefined(&*AI);
1525 continue;
1526 }
1527
1528 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1529 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1530 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1531 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1532 getMaxWidenStepsOpts());
1533 }
1534 } else
1535 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1536 }
1537 }
1538 }
1539
handleCallResult(CallBase & CB)1540 void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1541 Function *F = CB.getCalledFunction();
1542
1543 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1544 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1545 if (ValueState[&CB].isOverdefined())
1546 return;
1547
1548 Value *CopyOf = CB.getOperand(0);
1549 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1550 const auto *PI = getPredicateInfoFor(&CB);
1551 assert(PI && "Missing predicate info for ssa.copy");
1552
1553 const std::optional<PredicateConstraint> &Constraint =
1554 PI->getConstraint();
1555 if (!Constraint) {
1556 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1557 return;
1558 }
1559
1560 CmpInst::Predicate Pred = Constraint->Predicate;
1561 Value *OtherOp = Constraint->OtherOp;
1562
1563 // Wait until OtherOp is resolved.
1564 if (getValueState(OtherOp).isUnknown()) {
1565 addAdditionalUser(OtherOp, &CB);
1566 return;
1567 }
1568
1569 ValueLatticeElement CondVal = getValueState(OtherOp);
1570 ValueLatticeElement &IV = ValueState[&CB];
1571 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1572 auto ImposedCR =
1573 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1574
1575 // Get the range imposed by the condition.
1576 if (CondVal.isConstantRange())
1577 ImposedCR = ConstantRange::makeAllowedICmpRegion(
1578 Pred, CondVal.getConstantRange());
1579
1580 // Combine range info for the original value with the new range from the
1581 // condition.
1582 auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1583 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1584 // If the existing information is != x, do not use the information from
1585 // a chained predicate, as the != x information is more likely to be
1586 // helpful in practice.
1587 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1588 NewCR = CopyOfCR;
1589
1590 // The new range is based on a branch condition. That guarantees that
1591 // neither of the compare operands can be undef in the branch targets,
1592 // unless we have conditions that are always true/false (e.g. icmp ule
1593 // i32, %a, i32_max). For the latter overdefined/empty range will be
1594 // inferred, but the branch will get folded accordingly anyways.
1595 addAdditionalUser(OtherOp, &CB);
1596 mergeInValue(
1597 IV, &CB,
1598 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1599 return;
1600 } else if (Pred == CmpInst::ICMP_EQ &&
1601 (CondVal.isConstant() || CondVal.isNotConstant())) {
1602 // For non-integer values or integer constant expressions, only
1603 // propagate equal constants or not-constants.
1604 addAdditionalUser(OtherOp, &CB);
1605 mergeInValue(IV, &CB, CondVal);
1606 return;
1607 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1608 // Propagate inequalities.
1609 addAdditionalUser(OtherOp, &CB);
1610 mergeInValue(IV, &CB,
1611 ValueLatticeElement::getNot(CondVal.getConstant()));
1612 return;
1613 }
1614
1615 return (void)mergeInValue(IV, &CB, CopyOfVal);
1616 }
1617
1618 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1619 // Compute result range for intrinsics supported by ConstantRange.
1620 // Do this even if we don't know a range for all operands, as we may
1621 // still know something about the result range, e.g. of abs(x).
1622 SmallVector<ConstantRange, 2> OpRanges;
1623 for (Value *Op : II->args()) {
1624 const ValueLatticeElement &State = getValueState(Op);
1625 OpRanges.push_back(getConstantRange(State, Op->getType()));
1626 }
1627
1628 ConstantRange Result =
1629 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1630 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1631 }
1632 }
1633
1634 // The common case is that we aren't tracking the callee, either because we
1635 // are not doing interprocedural analysis or the callee is indirect, or is
1636 // external. Handle these cases first.
1637 if (!F || F->isDeclaration())
1638 return handleCallOverdefined(CB);
1639
1640 // If this is a single/zero retval case, see if we're tracking the function.
1641 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1642 if (!MRVFunctionsTracked.count(F))
1643 return handleCallOverdefined(CB); // Not tracking this callee.
1644
1645 // If we are tracking this callee, propagate the result of the function
1646 // into this call site.
1647 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1648 mergeInValue(getStructValueState(&CB, i), &CB,
1649 TrackedMultipleRetVals[std::make_pair(F, i)],
1650 getMaxWidenStepsOpts());
1651 } else {
1652 auto TFRVI = TrackedRetVals.find(F);
1653 if (TFRVI == TrackedRetVals.end())
1654 return handleCallOverdefined(CB); // Not tracking this callee.
1655
1656 // If so, propagate the return value of the callee into this call result.
1657 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1658 }
1659 }
1660
solve()1661 void SCCPInstVisitor::solve() {
1662 // Process the work lists until they are empty!
1663 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1664 !OverdefinedInstWorkList.empty()) {
1665 // Process the overdefined instruction's work list first, which drives other
1666 // things to overdefined more quickly.
1667 while (!OverdefinedInstWorkList.empty()) {
1668 Value *I = OverdefinedInstWorkList.pop_back_val();
1669
1670 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1671
1672 // "I" got into the work list because it either made the transition from
1673 // bottom to constant, or to overdefined.
1674 //
1675 // Anything on this worklist that is overdefined need not be visited
1676 // since all of its users will have already been marked as overdefined
1677 // Update all of the users of this instruction's value.
1678 //
1679 markUsersAsChanged(I);
1680 }
1681
1682 // Process the instruction work list.
1683 while (!InstWorkList.empty()) {
1684 Value *I = InstWorkList.pop_back_val();
1685
1686 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1687
1688 // "I" got into the work list because it made the transition from undef to
1689 // constant.
1690 //
1691 // Anything on this worklist that is overdefined need not be visited
1692 // since all of its users will have already been marked as overdefined.
1693 // Update all of the users of this instruction's value.
1694 //
1695 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1696 markUsersAsChanged(I);
1697 }
1698
1699 // Process the basic block work list.
1700 while (!BBWorkList.empty()) {
1701 BasicBlock *BB = BBWorkList.pop_back_val();
1702
1703 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1704
1705 // Notify all instructions in this basic block that they are newly
1706 // executable.
1707 visit(BB);
1708 }
1709 }
1710 }
1711
1712 /// While solving the dataflow for a function, we don't compute a result for
1713 /// operations with an undef operand, to allow undef to be lowered to a
1714 /// constant later. For example, constant folding of "zext i8 undef to i16"
1715 /// would result in "i16 0", and if undef is later lowered to "i8 1", then the
1716 /// zext result would become "i16 1" and would result into an overdefined
1717 /// lattice value once merged with the previous result. Not computing the
1718 /// result of the zext (treating undef the same as unknown) allows us to handle
1719 /// a later undef->constant lowering more optimally.
1720 ///
1721 /// However, if the operand remains undef when the solver returns, we do need
1722 /// to assign some result to the instruction (otherwise we would treat it as
1723 /// unreachable). For simplicity, we mark any instructions that are still
1724 /// unknown as overdefined.
resolvedUndefsIn(Function & F)1725 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1726 bool MadeChange = false;
1727 for (BasicBlock &BB : F) {
1728 if (!BBExecutable.count(&BB))
1729 continue;
1730
1731 for (Instruction &I : BB) {
1732 // Look for instructions which produce undef values.
1733 if (I.getType()->isVoidTy())
1734 continue;
1735
1736 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1737 // Only a few things that can be structs matter for undef.
1738
1739 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1740 if (auto *CB = dyn_cast<CallBase>(&I))
1741 if (Function *F = CB->getCalledFunction())
1742 if (MRVFunctionsTracked.count(F))
1743 continue;
1744
1745 // extractvalue and insertvalue don't need to be marked; they are
1746 // tracked as precisely as their operands.
1747 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1748 continue;
1749 // Send the results of everything else to overdefined. We could be
1750 // more precise than this but it isn't worth bothering.
1751 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1752 ValueLatticeElement &LV = getStructValueState(&I, i);
1753 if (LV.isUnknown()) {
1754 markOverdefined(LV, &I);
1755 MadeChange = true;
1756 }
1757 }
1758 continue;
1759 }
1760
1761 ValueLatticeElement &LV = getValueState(&I);
1762 if (!LV.isUnknown())
1763 continue;
1764
1765 // There are two reasons a call can have an undef result
1766 // 1. It could be tracked.
1767 // 2. It could be constant-foldable.
1768 // Because of the way we solve return values, tracked calls must
1769 // never be marked overdefined in resolvedUndefsIn.
1770 if (auto *CB = dyn_cast<CallBase>(&I))
1771 if (Function *F = CB->getCalledFunction())
1772 if (TrackedRetVals.count(F))
1773 continue;
1774
1775 if (isa<LoadInst>(I)) {
1776 // A load here means one of two things: a load of undef from a global,
1777 // a load from an unknown pointer. Either way, having it return undef
1778 // is okay.
1779 continue;
1780 }
1781
1782 markOverdefined(&I);
1783 MadeChange = true;
1784 }
1785 }
1786
1787 LLVM_DEBUG(if (MadeChange) dbgs()
1788 << "\nResolved undefs in " << F.getName() << '\n');
1789
1790 return MadeChange;
1791 }
1792
1793 //===----------------------------------------------------------------------===//
1794 //
1795 // SCCPSolver implementations
1796 //
SCCPSolver(const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,LLVMContext & Ctx)1797 SCCPSolver::SCCPSolver(
1798 const DataLayout &DL,
1799 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1800 LLVMContext &Ctx)
1801 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1802
1803 SCCPSolver::~SCCPSolver() = default;
1804
addAnalysis(Function & F,AnalysisResultsForFn A)1805 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1806 return Visitor->addAnalysis(F, std::move(A));
1807 }
1808
markBlockExecutable(BasicBlock * BB)1809 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1810 return Visitor->markBlockExecutable(BB);
1811 }
1812
getPredicateInfoFor(Instruction * I)1813 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1814 return Visitor->getPredicateInfoFor(I);
1815 }
1816
getLoopInfo(Function & F)1817 const LoopInfo &SCCPSolver::getLoopInfo(Function &F) {
1818 return Visitor->getLoopInfo(F);
1819 }
1820
getDTU(Function & F)1821 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1822
trackValueOfGlobalVariable(GlobalVariable * GV)1823 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1824 Visitor->trackValueOfGlobalVariable(GV);
1825 }
1826
addTrackedFunction(Function * F)1827 void SCCPSolver::addTrackedFunction(Function *F) {
1828 Visitor->addTrackedFunction(F);
1829 }
1830
addToMustPreserveReturnsInFunctions(Function * F)1831 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1832 Visitor->addToMustPreserveReturnsInFunctions(F);
1833 }
1834
mustPreserveReturn(Function * F)1835 bool SCCPSolver::mustPreserveReturn(Function *F) {
1836 return Visitor->mustPreserveReturn(F);
1837 }
1838
addArgumentTrackedFunction(Function * F)1839 void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1840 Visitor->addArgumentTrackedFunction(F);
1841 }
1842
isArgumentTrackedFunction(Function * F)1843 bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1844 return Visitor->isArgumentTrackedFunction(F);
1845 }
1846
solve()1847 void SCCPSolver::solve() { Visitor->solve(); }
1848
resolvedUndefsIn(Function & F)1849 bool SCCPSolver::resolvedUndefsIn(Function &F) {
1850 return Visitor->resolvedUndefsIn(F);
1851 }
1852
solveWhileResolvedUndefsIn(Module & M)1853 void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) {
1854 Visitor->solveWhileResolvedUndefsIn(M);
1855 }
1856
1857 void
solveWhileResolvedUndefsIn(SmallVectorImpl<Function * > & WorkList)1858 SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
1859 Visitor->solveWhileResolvedUndefsIn(WorkList);
1860 }
1861
isBlockExecutable(BasicBlock * BB) const1862 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1863 return Visitor->isBlockExecutable(BB);
1864 }
1865
isEdgeFeasible(BasicBlock * From,BasicBlock * To) const1866 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1867 return Visitor->isEdgeFeasible(From, To);
1868 }
1869
1870 std::vector<ValueLatticeElement>
getStructLatticeValueFor(Value * V) const1871 SCCPSolver::getStructLatticeValueFor(Value *V) const {
1872 return Visitor->getStructLatticeValueFor(V);
1873 }
1874
removeLatticeValueFor(Value * V)1875 void SCCPSolver::removeLatticeValueFor(Value *V) {
1876 return Visitor->removeLatticeValueFor(V);
1877 }
1878
getLatticeValueFor(Value * V) const1879 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1880 return Visitor->getLatticeValueFor(V);
1881 }
1882
1883 const MapVector<Function *, ValueLatticeElement> &
getTrackedRetVals()1884 SCCPSolver::getTrackedRetVals() {
1885 return Visitor->getTrackedRetVals();
1886 }
1887
1888 const DenseMap<GlobalVariable *, ValueLatticeElement> &
getTrackedGlobals()1889 SCCPSolver::getTrackedGlobals() {
1890 return Visitor->getTrackedGlobals();
1891 }
1892
getMRVFunctionsTracked()1893 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1894 return Visitor->getMRVFunctionsTracked();
1895 }
1896
markOverdefined(Value * V)1897 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1898
isStructLatticeConstant(Function * F,StructType * STy)1899 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1900 return Visitor->isStructLatticeConstant(F, STy);
1901 }
1902
getConstant(const ValueLatticeElement & LV) const1903 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1904 return Visitor->getConstant(LV);
1905 }
1906
getArgumentTrackedFunctions()1907 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
1908 return Visitor->getArgumentTrackedFunctions();
1909 }
1910
markArgInFuncSpecialization(Function * F,const SmallVectorImpl<ArgInfo> & Args)1911 void SCCPSolver::markArgInFuncSpecialization(
1912 Function *F, const SmallVectorImpl<ArgInfo> &Args) {
1913 Visitor->markArgInFuncSpecialization(F, Args);
1914 }
1915
markFunctionUnreachable(Function * F)1916 void SCCPSolver::markFunctionUnreachable(Function *F) {
1917 Visitor->markFunctionUnreachable(F);
1918 }
1919
visit(Instruction * I)1920 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
1921
visitCall(CallInst & I)1922 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
1923