1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/crash_dump.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 LPFC_UNKNOWN_IOCB,
61 LPFC_UNSOL_IOCB,
62 LPFC_SOL_IOCB,
63 LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65
66
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *
73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
74 struct lpfc_iocbq *rspiocbq);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_queue *eq,
85 struct lpfc_eqe *eqe,
86 enum lpfc_poll_mode poll_mode);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
91 struct lpfc_queue *cq,
92 struct lpfc_cqe *cqe);
93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
94 struct lpfc_iocbq *pwqeq,
95 struct lpfc_sglq *sglq);
96
97 union lpfc_wqe128 lpfc_iread_cmd_template;
98 union lpfc_wqe128 lpfc_iwrite_cmd_template;
99 union lpfc_wqe128 lpfc_icmnd_cmd_template;
100
101 /* Setup WQE templates for IOs */
lpfc_wqe_cmd_template(void)102 void lpfc_wqe_cmd_template(void)
103 {
104 union lpfc_wqe128 *wqe;
105
106 /* IREAD template */
107 wqe = &lpfc_iread_cmd_template;
108 memset(wqe, 0, sizeof(union lpfc_wqe128));
109
110 /* Word 0, 1, 2 - BDE is variable */
111
112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
113
114 /* Word 4 - total_xfer_len is variable */
115
116 /* Word 5 - is zero */
117
118 /* Word 6 - ctxt_tag, xri_tag is variable */
119
120 /* Word 7 */
121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
125
126 /* Word 8 - abort_tag is variable */
127
128 /* Word 9 - reqtag is variable */
129
130 /* Word 10 - dbde, wqes is variable */
131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
136
137 /* Word 11 - pbde is variable */
138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
141
142 /* Word 12 - is zero */
143
144 /* Word 13, 14, 15 - PBDE is variable */
145
146 /* IWRITE template */
147 wqe = &lpfc_iwrite_cmd_template;
148 memset(wqe, 0, sizeof(union lpfc_wqe128));
149
150 /* Word 0, 1, 2 - BDE is variable */
151
152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
153
154 /* Word 4 - total_xfer_len is variable */
155
156 /* Word 5 - initial_xfer_len is variable */
157
158 /* Word 6 - ctxt_tag, xri_tag is variable */
159
160 /* Word 7 */
161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
165
166 /* Word 8 - abort_tag is variable */
167
168 /* Word 9 - reqtag is variable */
169
170 /* Word 10 - dbde, wqes is variable */
171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
176
177 /* Word 11 - pbde is variable */
178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
181
182 /* Word 12 - is zero */
183
184 /* Word 13, 14, 15 - PBDE is variable */
185
186 /* ICMND template */
187 wqe = &lpfc_icmnd_cmd_template;
188 memset(wqe, 0, sizeof(union lpfc_wqe128));
189
190 /* Word 0, 1, 2 - BDE is variable */
191
192 /* Word 3 - payload_offset_len is variable */
193
194 /* Word 4, 5 - is zero */
195
196 /* Word 6 - ctxt_tag, xri_tag is variable */
197
198 /* Word 7 */
199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
203
204 /* Word 8 - abort_tag is variable */
205
206 /* Word 9 - reqtag is variable */
207
208 /* Word 10 - dbde, wqes is variable */
209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
214
215 /* Word 11 */
216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
219
220 /* Word 12, 13, 14, 15 - is zero */
221 }
222
223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
224 /**
225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
226 * @srcp: Source memory pointer.
227 * @destp: Destination memory pointer.
228 * @cnt: Number of words required to be copied.
229 * Must be a multiple of sizeof(uint64_t)
230 *
231 * This function is used for copying data between driver memory
232 * and the SLI WQ. This function also changes the endianness
233 * of each word if native endianness is different from SLI
234 * endianness. This function can be called with or without
235 * lock.
236 **/
237 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
239 {
240 uint64_t *src = srcp;
241 uint64_t *dest = destp;
242 int i;
243
244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
245 *dest++ = *src++;
246 }
247 #else
248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
249 #endif
250
251 /**
252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
253 * @q: The Work Queue to operate on.
254 * @wqe: The work Queue Entry to put on the Work queue.
255 *
256 * This routine will copy the contents of @wqe to the next available entry on
257 * the @q. This function will then ring the Work Queue Doorbell to signal the
258 * HBA to start processing the Work Queue Entry. This function returns 0 if
259 * successful. If no entries are available on @q then this function will return
260 * -ENOMEM.
261 * The caller is expected to hold the hbalock when calling this routine.
262 **/
263 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
265 {
266 union lpfc_wqe *temp_wqe;
267 struct lpfc_register doorbell;
268 uint32_t host_index;
269 uint32_t idx;
270 uint32_t i = 0;
271 uint8_t *tmp;
272 u32 if_type;
273
274 /* sanity check on queue memory */
275 if (unlikely(!q))
276 return -ENOMEM;
277
278 temp_wqe = lpfc_sli4_qe(q, q->host_index);
279
280 /* If the host has not yet processed the next entry then we are done */
281 idx = ((q->host_index + 1) % q->entry_count);
282 if (idx == q->hba_index) {
283 q->WQ_overflow++;
284 return -EBUSY;
285 }
286 q->WQ_posted++;
287 /* set consumption flag every once in a while */
288 if (!((q->host_index + 1) % q->notify_interval))
289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
290 else
291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
295 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
296 /* write to DPP aperture taking advatage of Combined Writes */
297 tmp = (uint8_t *)temp_wqe;
298 #ifdef __raw_writeq
299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
300 __raw_writeq(*((uint64_t *)(tmp + i)),
301 q->dpp_regaddr + i);
302 #else
303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
304 __raw_writel(*((uint32_t *)(tmp + i)),
305 q->dpp_regaddr + i);
306 #endif
307 }
308 /* ensure WQE bcopy and DPP flushed before doorbell write */
309 wmb();
310
311 /* Update the host index before invoking device */
312 host_index = q->host_index;
313
314 q->host_index = idx;
315
316 /* Ring Doorbell */
317 doorbell.word0 = 0;
318 if (q->db_format == LPFC_DB_LIST_FORMAT) {
319 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
323 q->dpp_id);
324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
325 q->queue_id);
326 } else {
327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
329
330 /* Leave bits <23:16> clear for if_type 6 dpp */
331 if_type = bf_get(lpfc_sli_intf_if_type,
332 &q->phba->sli4_hba.sli_intf);
333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
334 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
335 host_index);
336 }
337 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
340 } else {
341 return -EINVAL;
342 }
343 writel(doorbell.word0, q->db_regaddr);
344
345 return 0;
346 }
347
348 /**
349 * lpfc_sli4_wq_release - Updates internal hba index for WQ
350 * @q: The Work Queue to operate on.
351 * @index: The index to advance the hba index to.
352 *
353 * This routine will update the HBA index of a queue to reflect consumption of
354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
355 * an entry the host calls this function to update the queue's internal
356 * pointers.
357 **/
358 static void
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
360 {
361 /* sanity check on queue memory */
362 if (unlikely(!q))
363 return;
364
365 q->hba_index = index;
366 }
367
368 /**
369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
370 * @q: The Mailbox Queue to operate on.
371 * @mqe: The Mailbox Queue Entry to put on the Work queue.
372 *
373 * This routine will copy the contents of @mqe to the next available entry on
374 * the @q. This function will then ring the Work Queue Doorbell to signal the
375 * HBA to start processing the Work Queue Entry. This function returns 0 if
376 * successful. If no entries are available on @q then this function will return
377 * -ENOMEM.
378 * The caller is expected to hold the hbalock when calling this routine.
379 **/
380 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
382 {
383 struct lpfc_mqe *temp_mqe;
384 struct lpfc_register doorbell;
385
386 /* sanity check on queue memory */
387 if (unlikely(!q))
388 return -ENOMEM;
389 temp_mqe = lpfc_sli4_qe(q, q->host_index);
390
391 /* If the host has not yet processed the next entry then we are done */
392 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
393 return -ENOMEM;
394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
395 /* Save off the mailbox pointer for completion */
396 q->phba->mbox = (MAILBOX_t *)temp_mqe;
397
398 /* Update the host index before invoking device */
399 q->host_index = ((q->host_index + 1) % q->entry_count);
400
401 /* Ring Doorbell */
402 doorbell.word0 = 0;
403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
406 return 0;
407 }
408
409 /**
410 * lpfc_sli4_mq_release - Updates internal hba index for MQ
411 * @q: The Mailbox Queue to operate on.
412 *
413 * This routine will update the HBA index of a queue to reflect consumption of
414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
415 * an entry the host calls this function to update the queue's internal
416 * pointers. This routine returns the number of entries that were consumed by
417 * the HBA.
418 **/
419 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)420 lpfc_sli4_mq_release(struct lpfc_queue *q)
421 {
422 /* sanity check on queue memory */
423 if (unlikely(!q))
424 return 0;
425
426 /* Clear the mailbox pointer for completion */
427 q->phba->mbox = NULL;
428 q->hba_index = ((q->hba_index + 1) % q->entry_count);
429 return 1;
430 }
431
432 /**
433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
434 * @q: The Event Queue to get the first valid EQE from
435 *
436 * This routine will get the first valid Event Queue Entry from @q, update
437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
438 * the Queue (no more work to do), or the Queue is full of EQEs that have been
439 * processed, but not popped back to the HBA then this routine will return NULL.
440 **/
441 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)442 lpfc_sli4_eq_get(struct lpfc_queue *q)
443 {
444 struct lpfc_eqe *eqe;
445
446 /* sanity check on queue memory */
447 if (unlikely(!q))
448 return NULL;
449 eqe = lpfc_sli4_qe(q, q->host_index);
450
451 /* If the next EQE is not valid then we are done */
452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
453 return NULL;
454
455 /*
456 * insert barrier for instruction interlock : data from the hardware
457 * must have the valid bit checked before it can be copied and acted
458 * upon. Speculative instructions were allowing a bcopy at the start
459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
460 * after our return, to copy data before the valid bit check above
461 * was done. As such, some of the copied data was stale. The barrier
462 * ensures the check is before any data is copied.
463 */
464 mb();
465 return eqe;
466 }
467
468 /**
469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
470 * @q: The Event Queue to disable interrupts
471 *
472 **/
473 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
475 {
476 struct lpfc_register doorbell;
477
478 doorbell.word0 = 0;
479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
485 }
486
487 /**
488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
489 * @q: The Event Queue to disable interrupts
490 *
491 **/
492 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
494 {
495 struct lpfc_register doorbell;
496
497 doorbell.word0 = 0;
498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
500 }
501
502 /**
503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
504 * @phba: adapter with EQ
505 * @q: The Event Queue that the host has completed processing for.
506 * @count: Number of elements that have been consumed
507 * @arm: Indicates whether the host wants to arms this CQ.
508 *
509 * This routine will notify the HBA, by ringing the doorbell, that count
510 * number of EQEs have been processed. The @arm parameter indicates whether
511 * the queue should be rearmed when ringing the doorbell.
512 **/
513 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
515 uint32_t count, bool arm)
516 {
517 struct lpfc_register doorbell;
518
519 /* sanity check on queue memory */
520 if (unlikely(!q || (count == 0 && !arm)))
521 return;
522
523 /* ring doorbell for number popped */
524 doorbell.word0 = 0;
525 if (arm) {
526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
528 }
529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
537 readl(q->phba->sli4_hba.EQDBregaddr);
538 }
539
540 /**
541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
542 * @phba: adapter with EQ
543 * @q: The Event Queue that the host has completed processing for.
544 * @count: Number of elements that have been consumed
545 * @arm: Indicates whether the host wants to arms this CQ.
546 *
547 * This routine will notify the HBA, by ringing the doorbell, that count
548 * number of EQEs have been processed. The @arm parameter indicates whether
549 * the queue should be rearmed when ringing the doorbell.
550 **/
551 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
553 uint32_t count, bool arm)
554 {
555 struct lpfc_register doorbell;
556
557 /* sanity check on queue memory */
558 if (unlikely(!q || (count == 0 && !arm)))
559 return;
560
561 /* ring doorbell for number popped */
562 doorbell.word0 = 0;
563 if (arm)
564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
570 readl(q->phba->sli4_hba.EQDBregaddr);
571 }
572
573 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
575 struct lpfc_eqe *eqe)
576 {
577 if (!phba->sli4_hba.pc_sli4_params.eqav)
578 bf_set_le32(lpfc_eqe_valid, eqe, 0);
579
580 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
581
582 /* if the index wrapped around, toggle the valid bit */
583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
584 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
585 }
586
587 static void
lpfc_sli4_eqcq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
589 {
590 struct lpfc_eqe *eqe = NULL;
591 u32 eq_count = 0, cq_count = 0;
592 struct lpfc_cqe *cqe = NULL;
593 struct lpfc_queue *cq = NULL, *childq = NULL;
594 int cqid = 0;
595
596 /* walk all the EQ entries and drop on the floor */
597 eqe = lpfc_sli4_eq_get(eq);
598 while (eqe) {
599 /* Get the reference to the corresponding CQ */
600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
601 cq = NULL;
602
603 list_for_each_entry(childq, &eq->child_list, list) {
604 if (childq->queue_id == cqid) {
605 cq = childq;
606 break;
607 }
608 }
609 /* If CQ is valid, iterate through it and drop all the CQEs */
610 if (cq) {
611 cqe = lpfc_sli4_cq_get(cq);
612 while (cqe) {
613 __lpfc_sli4_consume_cqe(phba, cq, cqe);
614 cq_count++;
615 cqe = lpfc_sli4_cq_get(cq);
616 }
617 /* Clear and re-arm the CQ */
618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
619 LPFC_QUEUE_REARM);
620 cq_count = 0;
621 }
622 __lpfc_sli4_consume_eqe(phba, eq, eqe);
623 eq_count++;
624 eqe = lpfc_sli4_eq_get(eq);
625 }
626
627 /* Clear and re-arm the EQ */
628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
629 }
630
631 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq,u8 rearm,enum lpfc_poll_mode poll_mode)632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
633 u8 rearm, enum lpfc_poll_mode poll_mode)
634 {
635 struct lpfc_eqe *eqe;
636 int count = 0, consumed = 0;
637
638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
639 goto rearm_and_exit;
640
641 eqe = lpfc_sli4_eq_get(eq);
642 while (eqe) {
643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode);
644 __lpfc_sli4_consume_eqe(phba, eq, eqe);
645
646 consumed++;
647 if (!(++count % eq->max_proc_limit))
648 break;
649
650 if (!(count % eq->notify_interval)) {
651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
652 LPFC_QUEUE_NOARM);
653 consumed = 0;
654 }
655
656 eqe = lpfc_sli4_eq_get(eq);
657 }
658 eq->EQ_processed += count;
659
660 /* Track the max number of EQEs processed in 1 intr */
661 if (count > eq->EQ_max_eqe)
662 eq->EQ_max_eqe = count;
663
664 xchg(&eq->queue_claimed, 0);
665
666 rearm_and_exit:
667 /* Always clear the EQ. */
668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
669
670 return count;
671 }
672
673 /**
674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
675 * @q: The Completion Queue to get the first valid CQE from
676 *
677 * This routine will get the first valid Completion Queue Entry from @q, update
678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
679 * the Queue (no more work to do), or the Queue is full of CQEs that have been
680 * processed, but not popped back to the HBA then this routine will return NULL.
681 **/
682 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)683 lpfc_sli4_cq_get(struct lpfc_queue *q)
684 {
685 struct lpfc_cqe *cqe;
686
687 /* sanity check on queue memory */
688 if (unlikely(!q))
689 return NULL;
690 cqe = lpfc_sli4_qe(q, q->host_index);
691
692 /* If the next CQE is not valid then we are done */
693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
694 return NULL;
695
696 /*
697 * insert barrier for instruction interlock : data from the hardware
698 * must have the valid bit checked before it can be copied and acted
699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
700 * instructions allowing action on content before valid bit checked,
701 * add barrier here as well. May not be needed as "content" is a
702 * single 32-bit entity here (vs multi word structure for cq's).
703 */
704 mb();
705 return cqe;
706 }
707
708 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
710 struct lpfc_cqe *cqe)
711 {
712 if (!phba->sli4_hba.pc_sli4_params.cqav)
713 bf_set_le32(lpfc_cqe_valid, cqe, 0);
714
715 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
716
717 /* if the index wrapped around, toggle the valid bit */
718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
719 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
720 }
721
722 /**
723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
724 * @phba: the adapter with the CQ
725 * @q: The Completion Queue that the host has completed processing for.
726 * @count: the number of elements that were consumed
727 * @arm: Indicates whether the host wants to arms this CQ.
728 *
729 * This routine will notify the HBA, by ringing the doorbell, that the
730 * CQEs have been processed. The @arm parameter specifies whether the
731 * queue should be rearmed when ringing the doorbell.
732 **/
733 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
735 uint32_t count, bool arm)
736 {
737 struct lpfc_register doorbell;
738
739 /* sanity check on queue memory */
740 if (unlikely(!q || (count == 0 && !arm)))
741 return;
742
743 /* ring doorbell for number popped */
744 doorbell.word0 = 0;
745 if (arm)
746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
753 }
754
755 /**
756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
757 * @phba: the adapter with the CQ
758 * @q: The Completion Queue that the host has completed processing for.
759 * @count: the number of elements that were consumed
760 * @arm: Indicates whether the host wants to arms this CQ.
761 *
762 * This routine will notify the HBA, by ringing the doorbell, that the
763 * CQEs have been processed. The @arm parameter specifies whether the
764 * queue should be rearmed when ringing the doorbell.
765 **/
766 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
768 uint32_t count, bool arm)
769 {
770 struct lpfc_register doorbell;
771
772 /* sanity check on queue memory */
773 if (unlikely(!q || (count == 0 && !arm)))
774 return;
775
776 /* ring doorbell for number popped */
777 doorbell.word0 = 0;
778 if (arm)
779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
783 }
784
785 /*
786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
787 *
788 * This routine will copy the contents of @wqe to the next available entry on
789 * the @q. This function will then ring the Receive Queue Doorbell to signal the
790 * HBA to start processing the Receive Queue Entry. This function returns the
791 * index that the rqe was copied to if successful. If no entries are available
792 * on @q then this function will return -ENOMEM.
793 * The caller is expected to hold the hbalock when calling this routine.
794 **/
795 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
798 {
799 struct lpfc_rqe *temp_hrqe;
800 struct lpfc_rqe *temp_drqe;
801 struct lpfc_register doorbell;
802 int hq_put_index;
803 int dq_put_index;
804
805 /* sanity check on queue memory */
806 if (unlikely(!hq) || unlikely(!dq))
807 return -ENOMEM;
808 hq_put_index = hq->host_index;
809 dq_put_index = dq->host_index;
810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
812
813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
814 return -EINVAL;
815 if (hq_put_index != dq_put_index)
816 return -EINVAL;
817 /* If the host has not yet processed the next entry then we are done */
818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
819 return -EBUSY;
820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
822
823 /* Update the host index to point to the next slot */
824 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
825 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
826 hq->RQ_buf_posted++;
827
828 /* Ring The Header Receive Queue Doorbell */
829 if (!(hq->host_index % hq->notify_interval)) {
830 doorbell.word0 = 0;
831 if (hq->db_format == LPFC_DB_RING_FORMAT) {
832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
833 hq->notify_interval);
834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
837 hq->notify_interval);
838 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
839 hq->host_index);
840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
841 } else {
842 return -EINVAL;
843 }
844 writel(doorbell.word0, hq->db_regaddr);
845 }
846 return hq_put_index;
847 }
848
849 /*
850 * lpfc_sli4_rq_release - Updates internal hba index for RQ
851 *
852 * This routine will update the HBA index of a queue to reflect consumption of
853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
854 * consumed an entry the host calls this function to update the queue's
855 * internal pointers. This routine returns the number of entries that were
856 * consumed by the HBA.
857 **/
858 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
860 {
861 /* sanity check on queue memory */
862 if (unlikely(!hq) || unlikely(!dq))
863 return 0;
864
865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
866 return 0;
867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
869 return 1;
870 }
871
872 /**
873 * lpfc_cmd_iocb - Get next command iocb entry in the ring
874 * @phba: Pointer to HBA context object.
875 * @pring: Pointer to driver SLI ring object.
876 *
877 * This function returns pointer to next command iocb entry
878 * in the command ring. The caller must hold hbalock to prevent
879 * other threads consume the next command iocb.
880 * SLI-2/SLI-3 provide different sized iocbs.
881 **/
882 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
884 {
885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
887 }
888
889 /**
890 * lpfc_resp_iocb - Get next response iocb entry in the ring
891 * @phba: Pointer to HBA context object.
892 * @pring: Pointer to driver SLI ring object.
893 *
894 * This function returns pointer to next response iocb entry
895 * in the response ring. The caller must hold hbalock to make sure
896 * that no other thread consume the next response iocb.
897 * SLI-2/SLI-3 provide different sized iocbs.
898 **/
899 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
901 {
902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
903 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
904 }
905
906 /**
907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
908 * @phba: Pointer to HBA context object.
909 *
910 * This function is called with hbalock held. This function
911 * allocates a new driver iocb object from the iocb pool. If the
912 * allocation is successful, it returns pointer to the newly
913 * allocated iocb object else it returns NULL.
914 **/
915 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
917 {
918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
919 struct lpfc_iocbq * iocbq = NULL;
920
921 lockdep_assert_held(&phba->hbalock);
922
923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
924 if (iocbq)
925 phba->iocb_cnt++;
926 if (phba->iocb_cnt > phba->iocb_max)
927 phba->iocb_max = phba->iocb_cnt;
928 return iocbq;
929 }
930
931 /**
932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
933 * @phba: Pointer to HBA context object.
934 * @xritag: XRI value.
935 *
936 * This function clears the sglq pointer from the array of active
937 * sglq's. The xritag that is passed in is used to index into the
938 * array. Before the xritag can be used it needs to be adjusted
939 * by subtracting the xribase.
940 *
941 * Returns sglq ponter = success, NULL = Failure.
942 **/
943 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
945 {
946 struct lpfc_sglq *sglq;
947
948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
950 return sglq;
951 }
952
953 /**
954 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
955 * @phba: Pointer to HBA context object.
956 * @xritag: XRI value.
957 *
958 * This function returns the sglq pointer from the array of active
959 * sglq's. The xritag that is passed in is used to index into the
960 * array. Before the xritag can be used it needs to be adjusted
961 * by subtracting the xribase.
962 *
963 * Returns sglq ponter = success, NULL = Failure.
964 **/
965 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
967 {
968 struct lpfc_sglq *sglq;
969
970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
971 return sglq;
972 }
973
974 /**
975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
976 * @phba: Pointer to HBA context object.
977 * @xritag: xri used in this exchange.
978 * @rrq: The RRQ to be cleared.
979 *
980 **/
981 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)982 lpfc_clr_rrq_active(struct lpfc_hba *phba,
983 uint16_t xritag,
984 struct lpfc_node_rrq *rrq)
985 {
986 struct lpfc_nodelist *ndlp = NULL;
987
988 /* Lookup did to verify if did is still active on this vport */
989 if (rrq->vport)
990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
991
992 if (!ndlp)
993 goto out;
994
995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
996 rrq->send_rrq = 0;
997 rrq->xritag = 0;
998 rrq->rrq_stop_time = 0;
999 }
1000 out:
1001 mempool_free(rrq, phba->rrq_pool);
1002 }
1003
1004 /**
1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1006 * @phba: Pointer to HBA context object.
1007 *
1008 * This function is called with hbalock held. This function
1009 * Checks if stop_time (ratov from setting rrq active) has
1010 * been reached, if it has and the send_rrq flag is set then
1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set
1012 * then it will just call the routine to clear the rrq and
1013 * free the rrq resource.
1014 * The timer is set to the next rrq that is going to expire before
1015 * leaving the routine.
1016 *
1017 **/
1018 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)1019 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1020 {
1021 struct lpfc_node_rrq *rrq;
1022 struct lpfc_node_rrq *nextrrq;
1023 unsigned long next_time;
1024 unsigned long iflags;
1025 LIST_HEAD(send_rrq);
1026
1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1030 list_for_each_entry_safe(rrq, nextrrq,
1031 &phba->active_rrq_list, list) {
1032 if (time_after(jiffies, rrq->rrq_stop_time))
1033 list_move(&rrq->list, &send_rrq);
1034 else if (time_before(rrq->rrq_stop_time, next_time))
1035 next_time = rrq->rrq_stop_time;
1036 }
1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1038 if ((!list_empty(&phba->active_rrq_list)) &&
1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag)))
1040 mod_timer(&phba->rrq_tmr, next_time);
1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1042 list_del(&rrq->list);
1043 if (!rrq->send_rrq) {
1044 /* this call will free the rrq */
1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1046 } else if (lpfc_send_rrq(phba, rrq)) {
1047 /* if we send the rrq then the completion handler
1048 * will clear the bit in the xribitmap.
1049 */
1050 lpfc_clr_rrq_active(phba, rrq->xritag,
1051 rrq);
1052 }
1053 }
1054 }
1055
1056 /**
1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1058 * @vport: Pointer to vport context object.
1059 * @xri: The xri used in the exchange.
1060 * @did: The targets DID for this exchange.
1061 *
1062 * returns NULL = rrq not found in the phba->active_rrq_list.
1063 * rrq = rrq for this xri and target.
1064 **/
1065 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1067 {
1068 struct lpfc_hba *phba = vport->phba;
1069 struct lpfc_node_rrq *rrq;
1070 struct lpfc_node_rrq *nextrrq;
1071 unsigned long iflags;
1072
1073 if (phba->sli_rev != LPFC_SLI_REV4)
1074 return NULL;
1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1077 if (rrq->vport == vport && rrq->xritag == xri &&
1078 rrq->nlp_DID == did){
1079 list_del(&rrq->list);
1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1081 return rrq;
1082 }
1083 }
1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1085 return NULL;
1086 }
1087
1088 /**
1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1090 * @vport: Pointer to vport context object.
1091 * @ndlp: Pointer to the lpfc_node_list structure.
1092 * If ndlp is NULL Remove all active RRQs for this vport from the
1093 * phba->active_rrq_list and clear the rrq.
1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1095 **/
1096 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1098
1099 {
1100 struct lpfc_hba *phba = vport->phba;
1101 struct lpfc_node_rrq *rrq;
1102 struct lpfc_node_rrq *nextrrq;
1103 unsigned long iflags;
1104 LIST_HEAD(rrq_list);
1105
1106 if (phba->sli_rev != LPFC_SLI_REV4)
1107 return;
1108 if (!ndlp) {
1109 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1111 }
1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1114 if (rrq->vport != vport)
1115 continue;
1116
1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1118 list_move(&rrq->list, &rrq_list);
1119
1120 }
1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1122
1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1124 list_del(&rrq->list);
1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1126 }
1127 }
1128
1129 /**
1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1131 * @phba: Pointer to HBA context object.
1132 * @ndlp: Targets nodelist pointer for this exchange.
1133 * @xritag: the xri in the bitmap to test.
1134 *
1135 * This function returns:
1136 * 0 = rrq not active for this xri
1137 * 1 = rrq is valid for this xri.
1138 **/
1139 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1141 uint16_t xritag)
1142 {
1143 if (!ndlp)
1144 return 0;
1145 if (!ndlp->active_rrqs_xri_bitmap)
1146 return 0;
1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1148 return 1;
1149 else
1150 return 0;
1151 }
1152
1153 /**
1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1155 * @phba: Pointer to HBA context object.
1156 * @ndlp: nodelist pointer for this target.
1157 * @xritag: xri used in this exchange.
1158 * @rxid: Remote Exchange ID.
1159 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1160 *
1161 * This function takes the hbalock.
1162 * The active bit is always set in the active rrq xri_bitmap even
1163 * if there is no slot avaiable for the other rrq information.
1164 *
1165 * returns 0 rrq actived for this xri
1166 * < 0 No memory or invalid ndlp.
1167 **/
1168 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1171 {
1172 unsigned long iflags;
1173 struct lpfc_node_rrq *rrq;
1174 int empty;
1175
1176 if (!ndlp)
1177 return -EINVAL;
1178
1179 if (!phba->cfg_enable_rrq)
1180 return -EINVAL;
1181
1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1184 goto outnl;
1185 }
1186
1187 spin_lock_irqsave(&phba->hbalock, iflags);
1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag))
1189 goto out;
1190
1191 if (!ndlp->active_rrqs_xri_bitmap)
1192 goto out;
1193
1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1195 goto out;
1196
1197 spin_unlock_irqrestore(&phba->hbalock, iflags);
1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1199 if (!rrq) {
1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1202 " DID:0x%x Send:%d\n",
1203 xritag, rxid, ndlp->nlp_DID, send_rrq);
1204 return -EINVAL;
1205 }
1206 if (phba->cfg_enable_rrq == 1)
1207 rrq->send_rrq = send_rrq;
1208 else
1209 rrq->send_rrq = 0;
1210 rrq->xritag = xritag;
1211 rrq->rrq_stop_time = jiffies +
1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1213 rrq->nlp_DID = ndlp->nlp_DID;
1214 rrq->vport = ndlp->vport;
1215 rrq->rxid = rxid;
1216
1217 spin_lock_irqsave(&phba->rrq_list_lock, iflags);
1218 empty = list_empty(&phba->active_rrq_list);
1219 list_add_tail(&rrq->list, &phba->active_rrq_list);
1220 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags);
1221 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1222 if (empty)
1223 lpfc_worker_wake_up(phba);
1224 return 0;
1225 out:
1226 spin_unlock_irqrestore(&phba->hbalock, iflags);
1227 outnl:
1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1230 " DID:0x%x Send:%d\n",
1231 xritag, rxid, ndlp->nlp_DID, send_rrq);
1232 return -EINVAL;
1233 }
1234
1235 /**
1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1237 * @phba: Pointer to HBA context object.
1238 * @piocbq: Pointer to the iocbq.
1239 *
1240 * The driver calls this function with either the nvme ls ring lock
1241 * or the fc els ring lock held depending on the iocb usage. This function
1242 * gets a new driver sglq object from the sglq list. If the list is not empty
1243 * then it is successful, it returns pointer to the newly allocated sglq
1244 * object else it returns NULL.
1245 **/
1246 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1248 {
1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1250 struct lpfc_sglq *sglq = NULL;
1251 struct lpfc_sglq *start_sglq = NULL;
1252 struct lpfc_io_buf *lpfc_cmd;
1253 struct lpfc_nodelist *ndlp;
1254 int found = 0;
1255 u8 cmnd;
1256
1257 cmnd = get_job_cmnd(phba, piocbq);
1258
1259 if (piocbq->cmd_flag & LPFC_IO_FCP) {
1260 lpfc_cmd = piocbq->io_buf;
1261 ndlp = lpfc_cmd->rdata->pnode;
1262 } else if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1263 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1264 ndlp = piocbq->ndlp;
1265 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1266 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1267 ndlp = NULL;
1268 else
1269 ndlp = piocbq->ndlp;
1270 } else {
1271 ndlp = piocbq->ndlp;
1272 }
1273
1274 spin_lock(&phba->sli4_hba.sgl_list_lock);
1275 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1276 start_sglq = sglq;
1277 while (!found) {
1278 if (!sglq)
1279 break;
1280 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1281 test_bit(sglq->sli4_lxritag,
1282 ndlp->active_rrqs_xri_bitmap)) {
1283 /* This xri has an rrq outstanding for this DID.
1284 * put it back in the list and get another xri.
1285 */
1286 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1287 sglq = NULL;
1288 list_remove_head(lpfc_els_sgl_list, sglq,
1289 struct lpfc_sglq, list);
1290 if (sglq == start_sglq) {
1291 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1292 sglq = NULL;
1293 break;
1294 } else
1295 continue;
1296 }
1297 sglq->ndlp = ndlp;
1298 found = 1;
1299 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1300 sglq->state = SGL_ALLOCATED;
1301 }
1302 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1303 return sglq;
1304 }
1305
1306 /**
1307 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1308 * @phba: Pointer to HBA context object.
1309 * @piocbq: Pointer to the iocbq.
1310 *
1311 * This function is called with the sgl_list lock held. This function
1312 * gets a new driver sglq object from the sglq list. If the
1313 * list is not empty then it is successful, it returns pointer to the newly
1314 * allocated sglq object else it returns NULL.
1315 **/
1316 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1317 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1318 {
1319 struct list_head *lpfc_nvmet_sgl_list;
1320 struct lpfc_sglq *sglq = NULL;
1321
1322 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1323
1324 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1325
1326 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1327 if (!sglq)
1328 return NULL;
1329 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1330 sglq->state = SGL_ALLOCATED;
1331 return sglq;
1332 }
1333
1334 /**
1335 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1336 * @phba: Pointer to HBA context object.
1337 *
1338 * This function is called with no lock held. This function
1339 * allocates a new driver iocb object from the iocb pool. If the
1340 * allocation is successful, it returns pointer to the newly
1341 * allocated iocb object else it returns NULL.
1342 **/
1343 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1344 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1345 {
1346 struct lpfc_iocbq * iocbq = NULL;
1347 unsigned long iflags;
1348
1349 spin_lock_irqsave(&phba->hbalock, iflags);
1350 iocbq = __lpfc_sli_get_iocbq(phba);
1351 spin_unlock_irqrestore(&phba->hbalock, iflags);
1352 return iocbq;
1353 }
1354
1355 /**
1356 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1357 * @phba: Pointer to HBA context object.
1358 * @iocbq: Pointer to driver iocb object.
1359 *
1360 * This function is called to release the driver iocb object
1361 * to the iocb pool. The iotag in the iocb object
1362 * does not change for each use of the iocb object. This function
1363 * clears all other fields of the iocb object when it is freed.
1364 * The sqlq structure that holds the xritag and phys and virtual
1365 * mappings for the scatter gather list is retrieved from the
1366 * active array of sglq. The get of the sglq pointer also clears
1367 * the entry in the array. If the status of the IO indiactes that
1368 * this IO was aborted then the sglq entry it put on the
1369 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1370 * IO has good status or fails for any other reason then the sglq
1371 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1372 * asserted held in the code path calling this routine.
1373 **/
1374 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1375 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1376 {
1377 struct lpfc_sglq *sglq;
1378 unsigned long iflag = 0;
1379 struct lpfc_sli_ring *pring;
1380
1381 if (iocbq->sli4_xritag == NO_XRI)
1382 sglq = NULL;
1383 else
1384 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1385
1386
1387 if (sglq) {
1388 if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1389 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1390 iflag);
1391 sglq->state = SGL_FREED;
1392 sglq->ndlp = NULL;
1393 list_add_tail(&sglq->list,
1394 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1395 spin_unlock_irqrestore(
1396 &phba->sli4_hba.sgl_list_lock, iflag);
1397 goto out;
1398 }
1399
1400 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1401 (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1402 sglq->state != SGL_XRI_ABORTED) {
1403 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1404 iflag);
1405
1406 /* Check if we can get a reference on ndlp */
1407 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1408 sglq->ndlp = NULL;
1409
1410 list_add(&sglq->list,
1411 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1412 spin_unlock_irqrestore(
1413 &phba->sli4_hba.sgl_list_lock, iflag);
1414 } else {
1415 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1416 iflag);
1417 sglq->state = SGL_FREED;
1418 sglq->ndlp = NULL;
1419 list_add_tail(&sglq->list,
1420 &phba->sli4_hba.lpfc_els_sgl_list);
1421 spin_unlock_irqrestore(
1422 &phba->sli4_hba.sgl_list_lock, iflag);
1423 pring = lpfc_phba_elsring(phba);
1424 /* Check if TXQ queue needs to be serviced */
1425 if (pring && (!list_empty(&pring->txq)))
1426 lpfc_worker_wake_up(phba);
1427 }
1428 }
1429
1430 out:
1431 /*
1432 * Clean all volatile data fields, preserve iotag and node struct.
1433 */
1434 memset_startat(iocbq, 0, wqe);
1435 iocbq->sli4_lxritag = NO_XRI;
1436 iocbq->sli4_xritag = NO_XRI;
1437 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1438 LPFC_IO_NVME_LS);
1439 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1440 }
1441
1442
1443 /**
1444 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1445 * @phba: Pointer to HBA context object.
1446 * @iocbq: Pointer to driver iocb object.
1447 *
1448 * This function is called to release the driver iocb object to the
1449 * iocb pool. The iotag in the iocb object does not change for each
1450 * use of the iocb object. This function clears all other fields of
1451 * the iocb object when it is freed. The hbalock is asserted held in
1452 * the code path calling this routine.
1453 **/
1454 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1455 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1456 {
1457
1458 /*
1459 * Clean all volatile data fields, preserve iotag and node struct.
1460 */
1461 memset_startat(iocbq, 0, iocb);
1462 iocbq->sli4_xritag = NO_XRI;
1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1464 }
1465
1466 /**
1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1468 * @phba: Pointer to HBA context object.
1469 * @iocbq: Pointer to driver iocb object.
1470 *
1471 * This function is called with hbalock held to release driver
1472 * iocb object to the iocb pool. The iotag in the iocb object
1473 * does not change for each use of the iocb object. This function
1474 * clears all other fields of the iocb object when it is freed.
1475 **/
1476 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1478 {
1479 lockdep_assert_held(&phba->hbalock);
1480
1481 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1482 phba->iocb_cnt--;
1483 }
1484
1485 /**
1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1487 * @phba: Pointer to HBA context object.
1488 * @iocbq: Pointer to driver iocb object.
1489 *
1490 * This function is called with no lock held to release the iocb to
1491 * iocb pool.
1492 **/
1493 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1495 {
1496 unsigned long iflags;
1497
1498 /*
1499 * Clean all volatile data fields, preserve iotag and node struct.
1500 */
1501 spin_lock_irqsave(&phba->hbalock, iflags);
1502 __lpfc_sli_release_iocbq(phba, iocbq);
1503 spin_unlock_irqrestore(&phba->hbalock, iflags);
1504 }
1505
1506 /**
1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1508 * @phba: Pointer to HBA context object.
1509 * @iocblist: List of IOCBs.
1510 * @ulpstatus: ULP status in IOCB command field.
1511 * @ulpWord4: ULP word-4 in IOCB command field.
1512 *
1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1514 * on the list by invoking the complete callback function associated with the
1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1516 * fields.
1517 **/
1518 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1520 uint32_t ulpstatus, uint32_t ulpWord4)
1521 {
1522 struct lpfc_iocbq *piocb;
1523
1524 while (!list_empty(iocblist)) {
1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1526 if (piocb->cmd_cmpl) {
1527 if (piocb->cmd_flag & LPFC_IO_NVME) {
1528 lpfc_nvme_cancel_iocb(phba, piocb,
1529 ulpstatus, ulpWord4);
1530 } else {
1531 if (phba->sli_rev == LPFC_SLI_REV4) {
1532 bf_set(lpfc_wcqe_c_status,
1533 &piocb->wcqe_cmpl, ulpstatus);
1534 piocb->wcqe_cmpl.parameter = ulpWord4;
1535 } else {
1536 piocb->iocb.ulpStatus = ulpstatus;
1537 piocb->iocb.un.ulpWord[4] = ulpWord4;
1538 }
1539 (piocb->cmd_cmpl) (phba, piocb, piocb);
1540 }
1541 } else {
1542 lpfc_sli_release_iocbq(phba, piocb);
1543 }
1544 }
1545 return;
1546 }
1547
1548 /**
1549 * lpfc_sli_iocb_cmd_type - Get the iocb type
1550 * @iocb_cmnd: iocb command code.
1551 *
1552 * This function is called by ring event handler function to get the iocb type.
1553 * This function translates the iocb command to an iocb command type used to
1554 * decide the final disposition of each completed IOCB.
1555 * The function returns
1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1557 * LPFC_SOL_IOCB if it is a solicited iocb completion
1558 * LPFC_ABORT_IOCB if it is an abort iocb
1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1560 *
1561 * The caller is not required to hold any lock.
1562 **/
1563 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1565 {
1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1567
1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1569 return 0;
1570
1571 switch (iocb_cmnd) {
1572 case CMD_XMIT_SEQUENCE_CR:
1573 case CMD_XMIT_SEQUENCE_CX:
1574 case CMD_XMIT_BCAST_CN:
1575 case CMD_XMIT_BCAST_CX:
1576 case CMD_ELS_REQUEST_CR:
1577 case CMD_ELS_REQUEST_CX:
1578 case CMD_CREATE_XRI_CR:
1579 case CMD_CREATE_XRI_CX:
1580 case CMD_GET_RPI_CN:
1581 case CMD_XMIT_ELS_RSP_CX:
1582 case CMD_GET_RPI_CR:
1583 case CMD_FCP_IWRITE_CR:
1584 case CMD_FCP_IWRITE_CX:
1585 case CMD_FCP_IREAD_CR:
1586 case CMD_FCP_IREAD_CX:
1587 case CMD_FCP_ICMND_CR:
1588 case CMD_FCP_ICMND_CX:
1589 case CMD_FCP_TSEND_CX:
1590 case CMD_FCP_TRSP_CX:
1591 case CMD_FCP_TRECEIVE_CX:
1592 case CMD_FCP_AUTO_TRSP_CX:
1593 case CMD_ADAPTER_MSG:
1594 case CMD_ADAPTER_DUMP:
1595 case CMD_XMIT_SEQUENCE64_CR:
1596 case CMD_XMIT_SEQUENCE64_CX:
1597 case CMD_XMIT_BCAST64_CN:
1598 case CMD_XMIT_BCAST64_CX:
1599 case CMD_ELS_REQUEST64_CR:
1600 case CMD_ELS_REQUEST64_CX:
1601 case CMD_FCP_IWRITE64_CR:
1602 case CMD_FCP_IWRITE64_CX:
1603 case CMD_FCP_IREAD64_CR:
1604 case CMD_FCP_IREAD64_CX:
1605 case CMD_FCP_ICMND64_CR:
1606 case CMD_FCP_ICMND64_CX:
1607 case CMD_FCP_TSEND64_CX:
1608 case CMD_FCP_TRSP64_CX:
1609 case CMD_FCP_TRECEIVE64_CX:
1610 case CMD_GEN_REQUEST64_CR:
1611 case CMD_GEN_REQUEST64_CX:
1612 case CMD_XMIT_ELS_RSP64_CX:
1613 case DSSCMD_IWRITE64_CR:
1614 case DSSCMD_IWRITE64_CX:
1615 case DSSCMD_IREAD64_CR:
1616 case DSSCMD_IREAD64_CX:
1617 case CMD_SEND_FRAME:
1618 type = LPFC_SOL_IOCB;
1619 break;
1620 case CMD_ABORT_XRI_CN:
1621 case CMD_ABORT_XRI_CX:
1622 case CMD_CLOSE_XRI_CN:
1623 case CMD_CLOSE_XRI_CX:
1624 case CMD_XRI_ABORTED_CX:
1625 case CMD_ABORT_MXRI64_CN:
1626 case CMD_XMIT_BLS_RSP64_CX:
1627 type = LPFC_ABORT_IOCB;
1628 break;
1629 case CMD_RCV_SEQUENCE_CX:
1630 case CMD_RCV_ELS_REQ_CX:
1631 case CMD_RCV_SEQUENCE64_CX:
1632 case CMD_RCV_ELS_REQ64_CX:
1633 case CMD_ASYNC_STATUS:
1634 case CMD_IOCB_RCV_SEQ64_CX:
1635 case CMD_IOCB_RCV_ELS64_CX:
1636 case CMD_IOCB_RCV_CONT64_CX:
1637 case CMD_IOCB_RET_XRI64_CX:
1638 type = LPFC_UNSOL_IOCB;
1639 break;
1640 case CMD_IOCB_XMIT_MSEQ64_CR:
1641 case CMD_IOCB_XMIT_MSEQ64_CX:
1642 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1643 case CMD_IOCB_RCV_ELS_LIST64_CX:
1644 case CMD_IOCB_CLOSE_EXTENDED_CN:
1645 case CMD_IOCB_ABORT_EXTENDED_CN:
1646 case CMD_IOCB_RET_HBQE64_CN:
1647 case CMD_IOCB_FCP_IBIDIR64_CR:
1648 case CMD_IOCB_FCP_IBIDIR64_CX:
1649 case CMD_IOCB_FCP_ITASKMGT64_CX:
1650 case CMD_IOCB_LOGENTRY_CN:
1651 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1652 printk("%s - Unhandled SLI-3 Command x%x\n",
1653 __func__, iocb_cmnd);
1654 type = LPFC_UNKNOWN_IOCB;
1655 break;
1656 default:
1657 type = LPFC_UNKNOWN_IOCB;
1658 break;
1659 }
1660
1661 return type;
1662 }
1663
1664 /**
1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1666 * @phba: Pointer to HBA context object.
1667 *
1668 * This function is called from SLI initialization code
1669 * to configure every ring of the HBA's SLI interface. The
1670 * caller is not required to hold any lock. This function issues
1671 * a config_ring mailbox command for each ring.
1672 * This function returns zero if successful else returns a negative
1673 * error code.
1674 **/
1675 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1676 lpfc_sli_ring_map(struct lpfc_hba *phba)
1677 {
1678 struct lpfc_sli *psli = &phba->sli;
1679 LPFC_MBOXQ_t *pmb;
1680 MAILBOX_t *pmbox;
1681 int i, rc, ret = 0;
1682
1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1684 if (!pmb)
1685 return -ENOMEM;
1686 pmbox = &pmb->u.mb;
1687 phba->link_state = LPFC_INIT_MBX_CMDS;
1688 for (i = 0; i < psli->num_rings; i++) {
1689 lpfc_config_ring(phba, i, pmb);
1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1691 if (rc != MBX_SUCCESS) {
1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1693 "0446 Adapter failed to init (%d), "
1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1695 "ring %d\n",
1696 rc, pmbox->mbxCommand,
1697 pmbox->mbxStatus, i);
1698 phba->link_state = LPFC_HBA_ERROR;
1699 ret = -ENXIO;
1700 break;
1701 }
1702 }
1703 mempool_free(pmb, phba->mbox_mem_pool);
1704 return ret;
1705 }
1706
1707 /**
1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1709 * @phba: Pointer to HBA context object.
1710 * @pring: Pointer to driver SLI ring object.
1711 * @piocb: Pointer to the driver iocb object.
1712 *
1713 * The driver calls this function with the hbalock held for SLI3 ports or
1714 * the ring lock held for SLI4 ports. The function adds the
1715 * new iocb to txcmplq of the given ring. This function always returns
1716 * 0. If this function is called for ELS ring, this function checks if
1717 * there is a vport associated with the ELS command. This function also
1718 * starts els_tmofunc timer if this is an ELS command.
1719 **/
1720 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1722 struct lpfc_iocbq *piocb)
1723 {
1724 u32 ulp_command = 0;
1725
1726 BUG_ON(!piocb);
1727 ulp_command = get_job_cmnd(phba, piocb);
1728
1729 list_add_tail(&piocb->list, &pring->txcmplq);
1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1731 pring->txcmplq_cnt++;
1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1733 (ulp_command != CMD_ABORT_XRI_WQE) &&
1734 (ulp_command != CMD_ABORT_XRI_CN) &&
1735 (ulp_command != CMD_CLOSE_XRI_CN)) {
1736 BUG_ON(!piocb->vport);
1737 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag))
1738 mod_timer(&piocb->vport->els_tmofunc,
1739 jiffies +
1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1741 }
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * lpfc_sli_ringtx_get - Get first element of the txq
1748 * @phba: Pointer to HBA context object.
1749 * @pring: Pointer to driver SLI ring object.
1750 *
1751 * This function is called with hbalock held to get next
1752 * iocb in txq of the given ring. If there is any iocb in
1753 * the txq, the function returns first iocb in the list after
1754 * removing the iocb from the list, else it returns NULL.
1755 **/
1756 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1758 {
1759 struct lpfc_iocbq *cmd_iocb;
1760
1761 lockdep_assert_held(&phba->hbalock);
1762
1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1764 return cmd_iocb;
1765 }
1766
1767 /**
1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1769 * @phba: Pointer to HBA context object.
1770 * @cmdiocb: Pointer to driver command iocb object.
1771 * @rspiocb: Pointer to driver response iocb object.
1772 *
1773 * This routine will inform the driver of any BW adjustments we need
1774 * to make. These changes will be picked up during the next CMF
1775 * timer interrupt. In addition, any BW changes will be logged
1776 * with LOG_CGN_MGMT.
1777 **/
1778 static void
lpfc_cmf_sync_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1780 struct lpfc_iocbq *rspiocb)
1781 {
1782 union lpfc_wqe128 *wqe;
1783 uint32_t status, info;
1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1785 uint64_t bw, bwdif, slop;
1786 uint64_t pcent, bwpcent;
1787 int asig, afpin, sigcnt, fpincnt;
1788 int wsigmax, wfpinmax, cg, tdp;
1789 char *s;
1790
1791 /* First check for error */
1792 status = bf_get(lpfc_wcqe_c_status, wcqe);
1793 if (status) {
1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1795 "6211 CMF_SYNC_WQE Error "
1796 "req_tag x%x status x%x hwstatus x%x "
1797 "tdatap x%x parm x%x\n",
1798 bf_get(lpfc_wcqe_c_request_tag, wcqe),
1799 bf_get(lpfc_wcqe_c_status, wcqe),
1800 bf_get(lpfc_wcqe_c_hw_status, wcqe),
1801 wcqe->total_data_placed,
1802 wcqe->parameter);
1803 goto out;
1804 }
1805
1806 /* Gather congestion information on a successful cmpl */
1807 info = wcqe->parameter;
1808 phba->cmf_active_info = info;
1809
1810 /* See if firmware info count is valid or has changed */
1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1812 info = 0;
1813 else
1814 phba->cmf_info_per_interval = info;
1815
1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1818
1819 /* Get BW requirement from firmware */
1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1821 if (!bw) {
1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n",
1824 bf_get(lpfc_wcqe_c_request_tag, wcqe));
1825 goto out;
1826 }
1827
1828 /* Gather information needed for logging if a BW change is required */
1829 wqe = &cmdiocb->wqe;
1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1834 if (phba->cmf_max_bytes_per_interval != bw ||
1835 (asig || afpin || sigcnt || fpincnt)) {
1836 /* Are we increasing or decreasing BW */
1837 if (phba->cmf_max_bytes_per_interval < bw) {
1838 bwdif = bw - phba->cmf_max_bytes_per_interval;
1839 s = "Increase";
1840 } else {
1841 bwdif = phba->cmf_max_bytes_per_interval - bw;
1842 s = "Decrease";
1843 }
1844
1845 /* What is the change percentage */
1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1847 pcent = div64_u64(bwdif * 100 + slop,
1848 phba->cmf_link_byte_count);
1849 bwpcent = div64_u64(bw * 100 + slop,
1850 phba->cmf_link_byte_count);
1851 /* Because of bytes adjustment due to shorter timer in
1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and
1853 * may seem like BW is above 100%.
1854 */
1855 if (bwpcent > 100)
1856 bwpcent = 100;
1857
1858 if (phba->cmf_max_bytes_per_interval < bw &&
1859 bwpcent > 95)
1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1861 "6208 Congestion bandwidth "
1862 "limits removed\n");
1863 else if ((phba->cmf_max_bytes_per_interval > bw) &&
1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95))
1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1866 "6209 Congestion bandwidth "
1867 "limits in effect\n");
1868
1869 if (asig) {
1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1871 "6237 BW Threshold %lld%% (%lld): "
1872 "%lld%% %s: Signal Alarm: cg:%d "
1873 "Info:%u\n",
1874 bwpcent, bw, pcent, s, cg,
1875 phba->cmf_active_info);
1876 } else if (afpin) {
1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1878 "6238 BW Threshold %lld%% (%lld): "
1879 "%lld%% %s: FPIN Alarm: cg:%d "
1880 "Info:%u\n",
1881 bwpcent, bw, pcent, s, cg,
1882 phba->cmf_active_info);
1883 } else if (sigcnt) {
1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1886 "6239 BW Threshold %lld%% (%lld): "
1887 "%lld%% %s: Signal Warning: "
1888 "Cnt %d Max %d: cg:%d Info:%u\n",
1889 bwpcent, bw, pcent, s, sigcnt,
1890 wsigmax, cg, phba->cmf_active_info);
1891 } else if (fpincnt) {
1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1894 "6240 BW Threshold %lld%% (%lld): "
1895 "%lld%% %s: FPIN Warning: "
1896 "Cnt %d Max %d: cg:%d Info:%u\n",
1897 bwpcent, bw, pcent, s, fpincnt,
1898 wfpinmax, cg, phba->cmf_active_info);
1899 } else {
1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1901 "6241 BW Threshold %lld%% (%lld): "
1902 "CMF %lld%% %s: cg:%d Info:%u\n",
1903 bwpcent, bw, pcent, s, cg,
1904 phba->cmf_active_info);
1905 }
1906 } else if (info) {
1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1908 "6246 Info Threshold %u\n", info);
1909 }
1910
1911 /* Save BW change to be picked up during next timer interrupt */
1912 phba->cmf_last_sync_bw = bw;
1913 out:
1914 lpfc_sli_release_iocbq(phba, cmdiocb);
1915 }
1916
1917 /**
1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1919 * @phba: Pointer to HBA context object.
1920 * @ms: ms to set in WQE interval, 0 means use init op
1921 * @total: Total rcv bytes for this interval
1922 *
1923 * This routine is called every CMF timer interrupt. Its purpose is
1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1925 * that may indicate we have congestion (FPINs or Signals). Upon
1926 * completion, the firmware will indicate any BW restrictions the
1927 * driver may need to take.
1928 **/
1929 int
lpfc_issue_cmf_sync_wqe(struct lpfc_hba * phba,u32 ms,u64 total)1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1931 {
1932 union lpfc_wqe128 *wqe;
1933 struct lpfc_iocbq *sync_buf;
1934 unsigned long iflags;
1935 u32 ret_val, cgn_sig_freq;
1936 u32 atot, wtot, max;
1937 u8 warn_sync_period = 0;
1938
1939 /* First address any alarm / warning activity */
1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1942
1943 spin_lock_irqsave(&phba->hbalock, iflags);
1944
1945 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1946 if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1947 phba->link_state < LPFC_LINK_UP) {
1948 ret_val = 0;
1949 goto out_unlock;
1950 }
1951
1952 sync_buf = __lpfc_sli_get_iocbq(phba);
1953 if (!sync_buf) {
1954 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1955 "6244 No available WQEs for CMF_SYNC_WQE\n");
1956 ret_val = ENOMEM;
1957 goto out_unlock;
1958 }
1959
1960 wqe = &sync_buf->wqe;
1961
1962 /* WQEs are reused. Clear stale data and set key fields to zero */
1963 memset(wqe, 0, sizeof(*wqe));
1964
1965 /* If this is the very first CMF_SYNC_WQE, issue an init operation */
1966 if (!ms) {
1967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1968 "6441 CMF Init %d - CMF_SYNC_WQE\n",
1969 phba->fc_eventTag);
1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1972 goto initpath;
1973 }
1974
1975 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1976 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1977
1978 /* Check for alarms / warnings */
1979 if (atot) {
1980 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1981 /* We hit an Signal alarm condition */
1982 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1983 } else {
1984 /* We hit a FPIN alarm condition */
1985 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1986 }
1987 } else if (wtot) {
1988 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1989 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1990 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq :
1991 lpfc_fabric_cgn_frequency;
1992 /* We hit an Signal warning condition */
1993 max = LPFC_SEC_TO_MSEC / cgn_sig_freq *
1994 lpfc_acqe_cgn_frequency;
1995 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1996 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1997 warn_sync_period = lpfc_acqe_cgn_frequency;
1998 } else {
1999 /* We hit a FPIN warning condition */
2000 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
2001 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
2002 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
2003 warn_sync_period =
2004 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
2005 }
2006 }
2007
2008 /* Update total read blocks during previous timer interval */
2009 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
2010
2011 initpath:
2012 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
2013 wqe->cmf_sync.event_tag = phba->fc_eventTag;
2014 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
2015
2016 /* Setup reqtag to match the wqe completion. */
2017 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
2018
2019 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
2020 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
2021
2022 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2023 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2024 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2025
2026 sync_buf->vport = phba->pport;
2027 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2028 sync_buf->cmd_dmabuf = NULL;
2029 sync_buf->rsp_dmabuf = NULL;
2030 sync_buf->bpl_dmabuf = NULL;
2031 sync_buf->sli4_xritag = NO_XRI;
2032
2033 sync_buf->cmd_flag |= LPFC_IO_CMF;
2034 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2035 if (ret_val) {
2036 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2037 "6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2038 ret_val);
2039 __lpfc_sli_release_iocbq(phba, sync_buf);
2040 }
2041 out_unlock:
2042 spin_unlock_irqrestore(&phba->hbalock, iflags);
2043 return ret_val;
2044 }
2045
2046 /**
2047 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2048 * @phba: Pointer to HBA context object.
2049 * @pring: Pointer to driver SLI ring object.
2050 *
2051 * This function is called with hbalock held and the caller must post the
2052 * iocb without releasing the lock. If the caller releases the lock,
2053 * iocb slot returned by the function is not guaranteed to be available.
2054 * The function returns pointer to the next available iocb slot if there
2055 * is available slot in the ring, else it returns NULL.
2056 * If the get index of the ring is ahead of the put index, the function
2057 * will post an error attention event to the worker thread to take the
2058 * HBA to offline state.
2059 **/
2060 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2061 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2062 {
2063 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2064 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
2065
2066 lockdep_assert_held(&phba->hbalock);
2067
2068 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2069 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2070 pring->sli.sli3.next_cmdidx = 0;
2071
2072 if (unlikely(pring->sli.sli3.local_getidx ==
2073 pring->sli.sli3.next_cmdidx)) {
2074
2075 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2076
2077 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2079 "0315 Ring %d issue: portCmdGet %d "
2080 "is bigger than cmd ring %d\n",
2081 pring->ringno,
2082 pring->sli.sli3.local_getidx,
2083 max_cmd_idx);
2084
2085 phba->link_state = LPFC_HBA_ERROR;
2086 /*
2087 * All error attention handlers are posted to
2088 * worker thread
2089 */
2090 phba->work_ha |= HA_ERATT;
2091 phba->work_hs = HS_FFER3;
2092
2093 lpfc_worker_wake_up(phba);
2094
2095 return NULL;
2096 }
2097
2098 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2099 return NULL;
2100 }
2101
2102 return lpfc_cmd_iocb(phba, pring);
2103 }
2104
2105 /**
2106 * lpfc_sli_next_iotag - Get an iotag for the iocb
2107 * @phba: Pointer to HBA context object.
2108 * @iocbq: Pointer to driver iocb object.
2109 *
2110 * This function gets an iotag for the iocb. If there is no unused iotag and
2111 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2112 * array and assigns a new iotag.
2113 * The function returns the allocated iotag if successful, else returns zero.
2114 * Zero is not a valid iotag.
2115 * The caller is not required to hold any lock.
2116 **/
2117 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)2118 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2119 {
2120 struct lpfc_iocbq **new_arr;
2121 struct lpfc_iocbq **old_arr;
2122 size_t new_len;
2123 struct lpfc_sli *psli = &phba->sli;
2124 uint16_t iotag;
2125
2126 spin_lock_irq(&phba->hbalock);
2127 iotag = psli->last_iotag;
2128 if(++iotag < psli->iocbq_lookup_len) {
2129 psli->last_iotag = iotag;
2130 psli->iocbq_lookup[iotag] = iocbq;
2131 spin_unlock_irq(&phba->hbalock);
2132 iocbq->iotag = iotag;
2133 return iotag;
2134 } else if (psli->iocbq_lookup_len < (0xffff
2135 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2136 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2137 spin_unlock_irq(&phba->hbalock);
2138 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2139 GFP_KERNEL);
2140 if (new_arr) {
2141 spin_lock_irq(&phba->hbalock);
2142 old_arr = psli->iocbq_lookup;
2143 if (new_len <= psli->iocbq_lookup_len) {
2144 /* highly unprobable case */
2145 kfree(new_arr);
2146 iotag = psli->last_iotag;
2147 if(++iotag < psli->iocbq_lookup_len) {
2148 psli->last_iotag = iotag;
2149 psli->iocbq_lookup[iotag] = iocbq;
2150 spin_unlock_irq(&phba->hbalock);
2151 iocbq->iotag = iotag;
2152 return iotag;
2153 }
2154 spin_unlock_irq(&phba->hbalock);
2155 return 0;
2156 }
2157 if (psli->iocbq_lookup)
2158 memcpy(new_arr, old_arr,
2159 ((psli->last_iotag + 1) *
2160 sizeof (struct lpfc_iocbq *)));
2161 psli->iocbq_lookup = new_arr;
2162 psli->iocbq_lookup_len = new_len;
2163 psli->last_iotag = iotag;
2164 psli->iocbq_lookup[iotag] = iocbq;
2165 spin_unlock_irq(&phba->hbalock);
2166 iocbq->iotag = iotag;
2167 kfree(old_arr);
2168 return iotag;
2169 }
2170 } else
2171 spin_unlock_irq(&phba->hbalock);
2172
2173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2174 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2175 psli->last_iotag);
2176
2177 return 0;
2178 }
2179
2180 /**
2181 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2182 * @phba: Pointer to HBA context object.
2183 * @pring: Pointer to driver SLI ring object.
2184 * @iocb: Pointer to iocb slot in the ring.
2185 * @nextiocb: Pointer to driver iocb object which need to be
2186 * posted to firmware.
2187 *
2188 * This function is called to post a new iocb to the firmware. This
2189 * function copies the new iocb to ring iocb slot and updates the
2190 * ring pointers. It adds the new iocb to txcmplq if there is
2191 * a completion call back for this iocb else the function will free the
2192 * iocb object. The hbalock is asserted held in the code path calling
2193 * this routine.
2194 **/
2195 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)2196 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2197 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2198 {
2199 /*
2200 * Set up an iotag
2201 */
2202 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2203
2204
2205 if (pring->ringno == LPFC_ELS_RING) {
2206 lpfc_debugfs_slow_ring_trc(phba,
2207 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
2208 *(((uint32_t *) &nextiocb->iocb) + 4),
2209 *(((uint32_t *) &nextiocb->iocb) + 6),
2210 *(((uint32_t *) &nextiocb->iocb) + 7));
2211 }
2212
2213 /*
2214 * Issue iocb command to adapter
2215 */
2216 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2217 wmb();
2218 pring->stats.iocb_cmd++;
2219
2220 /*
2221 * If there is no completion routine to call, we can release the
2222 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2223 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2224 */
2225 if (nextiocb->cmd_cmpl)
2226 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2227 else
2228 __lpfc_sli_release_iocbq(phba, nextiocb);
2229
2230 /*
2231 * Let the HBA know what IOCB slot will be the next one the
2232 * driver will put a command into.
2233 */
2234 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2235 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2236 }
2237
2238 /**
2239 * lpfc_sli_update_full_ring - Update the chip attention register
2240 * @phba: Pointer to HBA context object.
2241 * @pring: Pointer to driver SLI ring object.
2242 *
2243 * The caller is not required to hold any lock for calling this function.
2244 * This function updates the chip attention bits for the ring to inform firmware
2245 * that there are pending work to be done for this ring and requests an
2246 * interrupt when there is space available in the ring. This function is
2247 * called when the driver is unable to post more iocbs to the ring due
2248 * to unavailability of space in the ring.
2249 **/
2250 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2251 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2252 {
2253 int ringno = pring->ringno;
2254
2255 pring->flag |= LPFC_CALL_RING_AVAILABLE;
2256
2257 wmb();
2258
2259 /*
2260 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2261 * The HBA will tell us when an IOCB entry is available.
2262 */
2263 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2264 readl(phba->CAregaddr); /* flush */
2265
2266 pring->stats.iocb_cmd_full++;
2267 }
2268
2269 /**
2270 * lpfc_sli_update_ring - Update chip attention register
2271 * @phba: Pointer to HBA context object.
2272 * @pring: Pointer to driver SLI ring object.
2273 *
2274 * This function updates the chip attention register bit for the
2275 * given ring to inform HBA that there is more work to be done
2276 * in this ring. The caller is not required to hold any lock.
2277 **/
2278 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2279 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2280 {
2281 int ringno = pring->ringno;
2282
2283 /*
2284 * Tell the HBA that there is work to do in this ring.
2285 */
2286 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2287 wmb();
2288 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2289 readl(phba->CAregaddr); /* flush */
2290 }
2291 }
2292
2293 /**
2294 * lpfc_sli_resume_iocb - Process iocbs in the txq
2295 * @phba: Pointer to HBA context object.
2296 * @pring: Pointer to driver SLI ring object.
2297 *
2298 * This function is called with hbalock held to post pending iocbs
2299 * in the txq to the firmware. This function is called when driver
2300 * detects space available in the ring.
2301 **/
2302 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2303 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2304 {
2305 IOCB_t *iocb;
2306 struct lpfc_iocbq *nextiocb;
2307
2308 lockdep_assert_held(&phba->hbalock);
2309
2310 /*
2311 * Check to see if:
2312 * (a) there is anything on the txq to send
2313 * (b) link is up
2314 * (c) link attention events can be processed (fcp ring only)
2315 * (d) IOCB processing is not blocked by the outstanding mbox command.
2316 */
2317
2318 if (lpfc_is_link_up(phba) &&
2319 (!list_empty(&pring->txq)) &&
2320 (pring->ringno != LPFC_FCP_RING ||
2321 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2322
2323 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2324 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2325 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2326
2327 if (iocb)
2328 lpfc_sli_update_ring(phba, pring);
2329 else
2330 lpfc_sli_update_full_ring(phba, pring);
2331 }
2332
2333 return;
2334 }
2335
2336 /**
2337 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2338 * @phba: Pointer to HBA context object.
2339 * @hbqno: HBQ number.
2340 *
2341 * This function is called with hbalock held to get the next
2342 * available slot for the given HBQ. If there is free slot
2343 * available for the HBQ it will return pointer to the next available
2344 * HBQ entry else it will return NULL.
2345 **/
2346 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)2347 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2348 {
2349 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2350
2351 lockdep_assert_held(&phba->hbalock);
2352
2353 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2354 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2355 hbqp->next_hbqPutIdx = 0;
2356
2357 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2358 uint32_t raw_index = phba->hbq_get[hbqno];
2359 uint32_t getidx = le32_to_cpu(raw_index);
2360
2361 hbqp->local_hbqGetIdx = getidx;
2362
2363 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2365 "1802 HBQ %d: local_hbqGetIdx "
2366 "%u is > than hbqp->entry_count %u\n",
2367 hbqno, hbqp->local_hbqGetIdx,
2368 hbqp->entry_count);
2369
2370 phba->link_state = LPFC_HBA_ERROR;
2371 return NULL;
2372 }
2373
2374 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2375 return NULL;
2376 }
2377
2378 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2379 hbqp->hbqPutIdx;
2380 }
2381
2382 /**
2383 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2384 * @phba: Pointer to HBA context object.
2385 *
2386 * This function is called with no lock held to free all the
2387 * hbq buffers while uninitializing the SLI interface. It also
2388 * frees the HBQ buffers returned by the firmware but not yet
2389 * processed by the upper layers.
2390 **/
2391 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)2392 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2393 {
2394 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2395 struct hbq_dmabuf *hbq_buf;
2396 unsigned long flags;
2397 int i, hbq_count;
2398
2399 hbq_count = lpfc_sli_hbq_count();
2400 /* Return all memory used by all HBQs */
2401 spin_lock_irqsave(&phba->hbalock, flags);
2402 for (i = 0; i < hbq_count; ++i) {
2403 list_for_each_entry_safe(dmabuf, next_dmabuf,
2404 &phba->hbqs[i].hbq_buffer_list, list) {
2405 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2406 list_del(&hbq_buf->dbuf.list);
2407 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2408 }
2409 phba->hbqs[i].buffer_count = 0;
2410 }
2411
2412 /* Mark the HBQs not in use */
2413 phba->hbq_in_use = 0;
2414 spin_unlock_irqrestore(&phba->hbalock, flags);
2415 }
2416
2417 /**
2418 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2419 * @phba: Pointer to HBA context object.
2420 * @hbqno: HBQ number.
2421 * @hbq_buf: Pointer to HBQ buffer.
2422 *
2423 * This function is called with the hbalock held to post a
2424 * hbq buffer to the firmware. If the function finds an empty
2425 * slot in the HBQ, it will post the buffer. The function will return
2426 * pointer to the hbq entry if it successfully post the buffer
2427 * else it will return NULL.
2428 **/
2429 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2430 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2431 struct hbq_dmabuf *hbq_buf)
2432 {
2433 lockdep_assert_held(&phba->hbalock);
2434 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2435 }
2436
2437 /**
2438 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2439 * @phba: Pointer to HBA context object.
2440 * @hbqno: HBQ number.
2441 * @hbq_buf: Pointer to HBQ buffer.
2442 *
2443 * This function is called with the hbalock held to post a hbq buffer to the
2444 * firmware. If the function finds an empty slot in the HBQ, it will post the
2445 * buffer and place it on the hbq_buffer_list. The function will return zero if
2446 * it successfully post the buffer else it will return an error.
2447 **/
2448 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2449 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2450 struct hbq_dmabuf *hbq_buf)
2451 {
2452 struct lpfc_hbq_entry *hbqe;
2453 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2454
2455 lockdep_assert_held(&phba->hbalock);
2456 /* Get next HBQ entry slot to use */
2457 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2458 if (hbqe) {
2459 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2460
2461 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2462 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2463 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2464 hbqe->bde.tus.f.bdeFlags = 0;
2465 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2466 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2467 /* Sync SLIM */
2468 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2469 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2470 /* flush */
2471 readl(phba->hbq_put + hbqno);
2472 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2473 return 0;
2474 } else
2475 return -ENOMEM;
2476 }
2477
2478 /**
2479 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2480 * @phba: Pointer to HBA context object.
2481 * @hbqno: HBQ number.
2482 * @hbq_buf: Pointer to HBQ buffer.
2483 *
2484 * This function is called with the hbalock held to post an RQE to the SLI4
2485 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2486 * the hbq_buffer_list and return zero, otherwise it will return an error.
2487 **/
2488 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2489 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2490 struct hbq_dmabuf *hbq_buf)
2491 {
2492 int rc;
2493 struct lpfc_rqe hrqe;
2494 struct lpfc_rqe drqe;
2495 struct lpfc_queue *hrq;
2496 struct lpfc_queue *drq;
2497
2498 if (hbqno != LPFC_ELS_HBQ)
2499 return 1;
2500 hrq = phba->sli4_hba.hdr_rq;
2501 drq = phba->sli4_hba.dat_rq;
2502
2503 lockdep_assert_held(&phba->hbalock);
2504 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2505 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2506 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2507 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2508 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2509 if (rc < 0)
2510 return rc;
2511 hbq_buf->tag = (rc | (hbqno << 16));
2512 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2513 return 0;
2514 }
2515
2516 /* HBQ for ELS and CT traffic. */
2517 static struct lpfc_hbq_init lpfc_els_hbq = {
2518 .rn = 1,
2519 .entry_count = 256,
2520 .mask_count = 0,
2521 .profile = 0,
2522 .ring_mask = (1 << LPFC_ELS_RING),
2523 .buffer_count = 0,
2524 .init_count = 40,
2525 .add_count = 40,
2526 };
2527
2528 /* Array of HBQs */
2529 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2530 &lpfc_els_hbq,
2531 };
2532
2533 /**
2534 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2535 * @phba: Pointer to HBA context object.
2536 * @hbqno: HBQ number.
2537 * @count: Number of HBQ buffers to be posted.
2538 *
2539 * This function is called with no lock held to post more hbq buffers to the
2540 * given HBQ. The function returns the number of HBQ buffers successfully
2541 * posted.
2542 **/
2543 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2544 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2545 {
2546 uint32_t i, posted = 0;
2547 unsigned long flags;
2548 struct hbq_dmabuf *hbq_buffer;
2549 LIST_HEAD(hbq_buf_list);
2550 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2551 return 0;
2552
2553 if ((phba->hbqs[hbqno].buffer_count + count) >
2554 lpfc_hbq_defs[hbqno]->entry_count)
2555 count = lpfc_hbq_defs[hbqno]->entry_count -
2556 phba->hbqs[hbqno].buffer_count;
2557 if (!count)
2558 return 0;
2559 /* Allocate HBQ entries */
2560 for (i = 0; i < count; i++) {
2561 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2562 if (!hbq_buffer)
2563 break;
2564 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2565 }
2566 /* Check whether HBQ is still in use */
2567 spin_lock_irqsave(&phba->hbalock, flags);
2568 if (!phba->hbq_in_use)
2569 goto err;
2570 while (!list_empty(&hbq_buf_list)) {
2571 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2572 dbuf.list);
2573 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2574 (hbqno << 16));
2575 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2576 phba->hbqs[hbqno].buffer_count++;
2577 posted++;
2578 } else
2579 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2580 }
2581 spin_unlock_irqrestore(&phba->hbalock, flags);
2582 return posted;
2583 err:
2584 spin_unlock_irqrestore(&phba->hbalock, flags);
2585 while (!list_empty(&hbq_buf_list)) {
2586 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2587 dbuf.list);
2588 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2589 }
2590 return 0;
2591 }
2592
2593 /**
2594 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2595 * @phba: Pointer to HBA context object.
2596 * @qno: HBQ number.
2597 *
2598 * This function posts more buffers to the HBQ. This function
2599 * is called with no lock held. The function returns the number of HBQ entries
2600 * successfully allocated.
2601 **/
2602 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2603 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2604 {
2605 if (phba->sli_rev == LPFC_SLI_REV4)
2606 return 0;
2607 else
2608 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2609 lpfc_hbq_defs[qno]->add_count);
2610 }
2611
2612 /**
2613 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2614 * @phba: Pointer to HBA context object.
2615 * @qno: HBQ queue number.
2616 *
2617 * This function is called from SLI initialization code path with
2618 * no lock held to post initial HBQ buffers to firmware. The
2619 * function returns the number of HBQ entries successfully allocated.
2620 **/
2621 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2622 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2623 {
2624 if (phba->sli_rev == LPFC_SLI_REV4)
2625 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2626 lpfc_hbq_defs[qno]->entry_count);
2627 else
2628 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2629 lpfc_hbq_defs[qno]->init_count);
2630 }
2631
2632 /*
2633 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2634 *
2635 * This function removes the first hbq buffer on an hbq list and returns a
2636 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2637 **/
2638 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2639 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2640 {
2641 struct lpfc_dmabuf *d_buf;
2642
2643 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2644 if (!d_buf)
2645 return NULL;
2646 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2647 }
2648
2649 /**
2650 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2651 * @phba: Pointer to HBA context object.
2652 * @hrq: HBQ number.
2653 *
2654 * This function removes the first RQ buffer on an RQ buffer list and returns a
2655 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2656 **/
2657 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2658 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2659 {
2660 struct lpfc_dmabuf *h_buf;
2661 struct lpfc_rqb *rqbp;
2662
2663 rqbp = hrq->rqbp;
2664 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2665 struct lpfc_dmabuf, list);
2666 if (!h_buf)
2667 return NULL;
2668 rqbp->buffer_count--;
2669 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2670 }
2671
2672 /**
2673 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2674 * @phba: Pointer to HBA context object.
2675 * @tag: Tag of the hbq buffer.
2676 *
2677 * This function searches for the hbq buffer associated with the given tag in
2678 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2679 * otherwise it returns NULL.
2680 **/
2681 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2682 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2683 {
2684 struct lpfc_dmabuf *d_buf;
2685 struct hbq_dmabuf *hbq_buf;
2686 uint32_t hbqno;
2687
2688 hbqno = tag >> 16;
2689 if (hbqno >= LPFC_MAX_HBQS)
2690 return NULL;
2691
2692 spin_lock_irq(&phba->hbalock);
2693 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2694 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2695 if (hbq_buf->tag == tag) {
2696 spin_unlock_irq(&phba->hbalock);
2697 return hbq_buf;
2698 }
2699 }
2700 spin_unlock_irq(&phba->hbalock);
2701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2702 "1803 Bad hbq tag. Data: x%x x%x\n",
2703 tag, phba->hbqs[tag >> 16].buffer_count);
2704 return NULL;
2705 }
2706
2707 /**
2708 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2709 * @phba: Pointer to HBA context object.
2710 * @hbq_buffer: Pointer to HBQ buffer.
2711 *
2712 * This function is called with hbalock. This function gives back
2713 * the hbq buffer to firmware. If the HBQ does not have space to
2714 * post the buffer, it will free the buffer.
2715 **/
2716 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2717 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2718 {
2719 uint32_t hbqno;
2720
2721 if (hbq_buffer) {
2722 hbqno = hbq_buffer->tag >> 16;
2723 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2724 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2725 }
2726 }
2727
2728 /**
2729 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2730 * @mbxCommand: mailbox command code.
2731 *
2732 * This function is called by the mailbox event handler function to verify
2733 * that the completed mailbox command is a legitimate mailbox command. If the
2734 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2735 * and the mailbox event handler will take the HBA offline.
2736 **/
2737 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2738 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2739 {
2740 uint8_t ret;
2741
2742 switch (mbxCommand) {
2743 case MBX_LOAD_SM:
2744 case MBX_READ_NV:
2745 case MBX_WRITE_NV:
2746 case MBX_WRITE_VPARMS:
2747 case MBX_RUN_BIU_DIAG:
2748 case MBX_INIT_LINK:
2749 case MBX_DOWN_LINK:
2750 case MBX_CONFIG_LINK:
2751 case MBX_CONFIG_RING:
2752 case MBX_RESET_RING:
2753 case MBX_READ_CONFIG:
2754 case MBX_READ_RCONFIG:
2755 case MBX_READ_SPARM:
2756 case MBX_READ_STATUS:
2757 case MBX_READ_RPI:
2758 case MBX_READ_XRI:
2759 case MBX_READ_REV:
2760 case MBX_READ_LNK_STAT:
2761 case MBX_REG_LOGIN:
2762 case MBX_UNREG_LOGIN:
2763 case MBX_CLEAR_LA:
2764 case MBX_DUMP_MEMORY:
2765 case MBX_DUMP_CONTEXT:
2766 case MBX_RUN_DIAGS:
2767 case MBX_RESTART:
2768 case MBX_UPDATE_CFG:
2769 case MBX_DOWN_LOAD:
2770 case MBX_DEL_LD_ENTRY:
2771 case MBX_RUN_PROGRAM:
2772 case MBX_SET_MASK:
2773 case MBX_SET_VARIABLE:
2774 case MBX_UNREG_D_ID:
2775 case MBX_KILL_BOARD:
2776 case MBX_CONFIG_FARP:
2777 case MBX_BEACON:
2778 case MBX_LOAD_AREA:
2779 case MBX_RUN_BIU_DIAG64:
2780 case MBX_CONFIG_PORT:
2781 case MBX_READ_SPARM64:
2782 case MBX_READ_RPI64:
2783 case MBX_REG_LOGIN64:
2784 case MBX_READ_TOPOLOGY:
2785 case MBX_WRITE_WWN:
2786 case MBX_SET_DEBUG:
2787 case MBX_LOAD_EXP_ROM:
2788 case MBX_ASYNCEVT_ENABLE:
2789 case MBX_REG_VPI:
2790 case MBX_UNREG_VPI:
2791 case MBX_HEARTBEAT:
2792 case MBX_PORT_CAPABILITIES:
2793 case MBX_PORT_IOV_CONTROL:
2794 case MBX_SLI4_CONFIG:
2795 case MBX_SLI4_REQ_FTRS:
2796 case MBX_REG_FCFI:
2797 case MBX_UNREG_FCFI:
2798 case MBX_REG_VFI:
2799 case MBX_UNREG_VFI:
2800 case MBX_INIT_VPI:
2801 case MBX_INIT_VFI:
2802 case MBX_RESUME_RPI:
2803 case MBX_READ_EVENT_LOG_STATUS:
2804 case MBX_READ_EVENT_LOG:
2805 case MBX_SECURITY_MGMT:
2806 case MBX_AUTH_PORT:
2807 case MBX_ACCESS_VDATA:
2808 ret = mbxCommand;
2809 break;
2810 default:
2811 ret = MBX_SHUTDOWN;
2812 break;
2813 }
2814 return ret;
2815 }
2816
2817 /**
2818 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2819 * @phba: Pointer to HBA context object.
2820 * @pmboxq: Pointer to mailbox command.
2821 *
2822 * This is completion handler function for mailbox commands issued from
2823 * lpfc_sli_issue_mbox_wait function. This function is called by the
2824 * mailbox event handler function with no lock held. This function
2825 * will wake up thread waiting on the wait queue pointed by context1
2826 * of the mailbox.
2827 **/
2828 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2829 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2830 {
2831 unsigned long drvr_flag;
2832 struct completion *pmbox_done;
2833
2834 /*
2835 * If pmbox_done is empty, the driver thread gave up waiting and
2836 * continued running.
2837 */
2838 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2839 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2840 pmbox_done = pmboxq->ctx_u.mbox_wait;
2841 if (pmbox_done)
2842 complete(pmbox_done);
2843 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2844 return;
2845 }
2846
2847 /**
2848 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2849 * @phba: Pointer to HBA context object.
2850 * @pmb: Pointer to mailbox object.
2851 *
2852 * This function is the default mailbox completion handler. It
2853 * frees the memory resources associated with the completed mailbox
2854 * command. If the completed command is a REG_LOGIN mailbox command,
2855 * this function will issue a UREG_LOGIN to re-claim the RPI.
2856 **/
2857 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2858 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2859 {
2860 struct lpfc_vport *vport = pmb->vport;
2861 struct lpfc_dmabuf *mp;
2862 struct lpfc_nodelist *ndlp;
2863 struct Scsi_Host *shost;
2864 uint16_t rpi, vpi;
2865 int rc;
2866
2867 /*
2868 * If a REG_LOGIN succeeded after node is destroyed or node
2869 * is in re-discovery driver need to cleanup the RPI.
2870 */
2871 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2872 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2873 !pmb->u.mb.mbxStatus) {
2874 mp = pmb->ctx_buf;
2875 if (mp) {
2876 pmb->ctx_buf = NULL;
2877 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2878 kfree(mp);
2879 }
2880 rpi = pmb->u.mb.un.varWords[0];
2881 vpi = pmb->u.mb.un.varRegLogin.vpi;
2882 if (phba->sli_rev == LPFC_SLI_REV4)
2883 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2884 lpfc_unreg_login(phba, vpi, rpi, pmb);
2885 pmb->vport = vport;
2886 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2887 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2888 if (rc != MBX_NOT_FINISHED)
2889 return;
2890 }
2891
2892 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2893 !test_bit(FC_UNLOADING, &phba->pport->load_flag) &&
2894 !pmb->u.mb.mbxStatus) {
2895 shost = lpfc_shost_from_vport(vport);
2896 spin_lock_irq(shost->host_lock);
2897 vport->vpi_state |= LPFC_VPI_REGISTERED;
2898 spin_unlock_irq(shost->host_lock);
2899 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
2900 }
2901
2902 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2903 ndlp = pmb->ctx_ndlp;
2904 lpfc_nlp_put(ndlp);
2905 }
2906
2907 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2908 ndlp = pmb->ctx_ndlp;
2909
2910 /* Check to see if there are any deferred events to process */
2911 if (ndlp) {
2912 lpfc_printf_vlog(
2913 vport,
2914 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2915 "1438 UNREG cmpl deferred mbox x%x "
2916 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n",
2917 ndlp->nlp_rpi, ndlp->nlp_DID,
2918 ndlp->nlp_flag, ndlp->nlp_defer_did,
2919 ndlp, vport->load_flag, kref_read(&ndlp->kref));
2920
2921 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) &&
2922 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) {
2923 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2924 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2925 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2926 } else {
2927 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
2928 }
2929
2930 /* The unreg_login mailbox is complete and had a
2931 * reference that has to be released. The PLOGI
2932 * got its own ref.
2933 */
2934 lpfc_nlp_put(ndlp);
2935 pmb->ctx_ndlp = NULL;
2936 }
2937 }
2938
2939 /* This nlp_put pairs with lpfc_sli4_resume_rpi */
2940 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2941 ndlp = pmb->ctx_ndlp;
2942 lpfc_nlp_put(ndlp);
2943 }
2944
2945 /* Check security permission status on INIT_LINK mailbox command */
2946 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2947 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2949 "2860 SLI authentication is required "
2950 "for INIT_LINK but has not done yet\n");
2951
2952 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2953 lpfc_sli4_mbox_cmd_free(phba, pmb);
2954 else
2955 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2956 }
2957 /**
2958 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2959 * @phba: Pointer to HBA context object.
2960 * @pmb: Pointer to mailbox object.
2961 *
2962 * This function is the unreg rpi mailbox completion handler. It
2963 * frees the memory resources associated with the completed mailbox
2964 * command. An additional reference is put on the ndlp to prevent
2965 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2966 * the unreg mailbox command completes, this routine puts the
2967 * reference back.
2968 *
2969 **/
2970 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2971 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2972 {
2973 struct lpfc_vport *vport = pmb->vport;
2974 struct lpfc_nodelist *ndlp;
2975 bool unreg_inp;
2976
2977 ndlp = pmb->ctx_ndlp;
2978 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2979 if (phba->sli_rev == LPFC_SLI_REV4 &&
2980 (bf_get(lpfc_sli_intf_if_type,
2981 &phba->sli4_hba.sli_intf) >=
2982 LPFC_SLI_INTF_IF_TYPE_2)) {
2983 if (ndlp) {
2984 lpfc_printf_vlog(
2985 vport, KERN_INFO,
2986 LOG_MBOX | LOG_SLI | LOG_NODE,
2987 "0010 UNREG_LOGIN vpi:x%x "
2988 "rpi:%x DID:%x defer x%x flg x%lx "
2989 "x%px\n",
2990 vport->vpi, ndlp->nlp_rpi,
2991 ndlp->nlp_DID, ndlp->nlp_defer_did,
2992 ndlp->nlp_flag,
2993 ndlp);
2994
2995 /* Cleanup the nlp_flag now that the UNREG RPI
2996 * has completed.
2997 */
2998 unreg_inp = test_and_clear_bit(NLP_UNREG_INP,
2999 &ndlp->nlp_flag);
3000 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag);
3001
3002 /* Check to see if there are any deferred
3003 * events to process
3004 */
3005 if (unreg_inp &&
3006 ndlp->nlp_defer_did !=
3007 NLP_EVT_NOTHING_PENDING) {
3008 lpfc_printf_vlog(
3009 vport, KERN_INFO,
3010 LOG_MBOX | LOG_SLI | LOG_NODE,
3011 "4111 UNREG cmpl deferred "
3012 "clr x%x on "
3013 "NPort x%x Data: x%x x%px\n",
3014 ndlp->nlp_rpi, ndlp->nlp_DID,
3015 ndlp->nlp_defer_did, ndlp);
3016 ndlp->nlp_defer_did =
3017 NLP_EVT_NOTHING_PENDING;
3018 lpfc_issue_els_plogi(
3019 vport, ndlp->nlp_DID, 0);
3020 }
3021
3022 lpfc_nlp_put(ndlp);
3023 }
3024 }
3025 }
3026
3027 mempool_free(pmb, phba->mbox_mem_pool);
3028 }
3029
3030 /**
3031 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3032 * @phba: Pointer to HBA context object.
3033 *
3034 * This function is called with no lock held. This function processes all
3035 * the completed mailbox commands and gives it to upper layers. The interrupt
3036 * service routine processes mailbox completion interrupt and adds completed
3037 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3038 * Worker thread call lpfc_sli_handle_mb_event, which will return the
3039 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3040 * function returns the mailbox commands to the upper layer by calling the
3041 * completion handler function of each mailbox.
3042 **/
3043 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)3044 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3045 {
3046 MAILBOX_t *pmbox;
3047 LPFC_MBOXQ_t *pmb;
3048 int rc;
3049 LIST_HEAD(cmplq);
3050
3051 phba->sli.slistat.mbox_event++;
3052
3053 /* Get all completed mailboxe buffers into the cmplq */
3054 spin_lock_irq(&phba->hbalock);
3055 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3056 spin_unlock_irq(&phba->hbalock);
3057
3058 /* Get a Mailbox buffer to setup mailbox commands for callback */
3059 do {
3060 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3061 if (pmb == NULL)
3062 break;
3063
3064 pmbox = &pmb->u.mb;
3065
3066 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3067 if (pmb->vport) {
3068 lpfc_debugfs_disc_trc(pmb->vport,
3069 LPFC_DISC_TRC_MBOX_VPORT,
3070 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3071 (uint32_t)pmbox->mbxCommand,
3072 pmbox->un.varWords[0],
3073 pmbox->un.varWords[1]);
3074 }
3075 else {
3076 lpfc_debugfs_disc_trc(phba->pport,
3077 LPFC_DISC_TRC_MBOX,
3078 "MBOX cmpl: cmd:x%x mb:x%x x%x",
3079 (uint32_t)pmbox->mbxCommand,
3080 pmbox->un.varWords[0],
3081 pmbox->un.varWords[1]);
3082 }
3083 }
3084
3085 /*
3086 * It is a fatal error if unknown mbox command completion.
3087 */
3088 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3089 MBX_SHUTDOWN) {
3090 /* Unknown mailbox command compl */
3091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3092 "(%d):0323 Unknown Mailbox command "
3093 "x%x (x%x/x%x) Cmpl\n",
3094 pmb->vport ? pmb->vport->vpi :
3095 LPFC_VPORT_UNKNOWN,
3096 pmbox->mbxCommand,
3097 lpfc_sli_config_mbox_subsys_get(phba,
3098 pmb),
3099 lpfc_sli_config_mbox_opcode_get(phba,
3100 pmb));
3101 phba->link_state = LPFC_HBA_ERROR;
3102 phba->work_hs = HS_FFER3;
3103 lpfc_handle_eratt(phba);
3104 continue;
3105 }
3106
3107 if (pmbox->mbxStatus) {
3108 phba->sli.slistat.mbox_stat_err++;
3109 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3110 /* Mbox cmd cmpl error - RETRYing */
3111 lpfc_printf_log(phba, KERN_INFO,
3112 LOG_MBOX | LOG_SLI,
3113 "(%d):0305 Mbox cmd cmpl "
3114 "error - RETRYing Data: x%x "
3115 "(x%x/x%x) x%x x%x x%x\n",
3116 pmb->vport ? pmb->vport->vpi :
3117 LPFC_VPORT_UNKNOWN,
3118 pmbox->mbxCommand,
3119 lpfc_sli_config_mbox_subsys_get(phba,
3120 pmb),
3121 lpfc_sli_config_mbox_opcode_get(phba,
3122 pmb),
3123 pmbox->mbxStatus,
3124 pmbox->un.varWords[0],
3125 pmb->vport ? pmb->vport->port_state :
3126 LPFC_VPORT_UNKNOWN);
3127 pmbox->mbxStatus = 0;
3128 pmbox->mbxOwner = OWN_HOST;
3129 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3130 if (rc != MBX_NOT_FINISHED)
3131 continue;
3132 }
3133 }
3134
3135 /* Mailbox cmd <cmd> Cmpl <cmpl> */
3136 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3137 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3138 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3139 "x%x x%x x%x\n",
3140 pmb->vport ? pmb->vport->vpi : 0,
3141 pmbox->mbxCommand,
3142 lpfc_sli_config_mbox_subsys_get(phba, pmb),
3143 lpfc_sli_config_mbox_opcode_get(phba, pmb),
3144 pmb->mbox_cmpl,
3145 *((uint32_t *) pmbox),
3146 pmbox->un.varWords[0],
3147 pmbox->un.varWords[1],
3148 pmbox->un.varWords[2],
3149 pmbox->un.varWords[3],
3150 pmbox->un.varWords[4],
3151 pmbox->un.varWords[5],
3152 pmbox->un.varWords[6],
3153 pmbox->un.varWords[7],
3154 pmbox->un.varWords[8],
3155 pmbox->un.varWords[9],
3156 pmbox->un.varWords[10]);
3157
3158 if (pmb->mbox_cmpl)
3159 pmb->mbox_cmpl(phba,pmb);
3160 } while (1);
3161 return 0;
3162 }
3163
3164 /**
3165 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3166 * @phba: Pointer to HBA context object.
3167 * @pring: Pointer to driver SLI ring object.
3168 * @tag: buffer tag.
3169 *
3170 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3171 * is set in the tag the buffer is posted for a particular exchange,
3172 * the function will return the buffer without replacing the buffer.
3173 * If the buffer is for unsolicited ELS or CT traffic, this function
3174 * returns the buffer and also posts another buffer to the firmware.
3175 **/
3176 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)3177 lpfc_sli_get_buff(struct lpfc_hba *phba,
3178 struct lpfc_sli_ring *pring,
3179 uint32_t tag)
3180 {
3181 struct hbq_dmabuf *hbq_entry;
3182
3183 if (tag & QUE_BUFTAG_BIT)
3184 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3185 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3186 if (!hbq_entry)
3187 return NULL;
3188 return &hbq_entry->dbuf;
3189 }
3190
3191 /**
3192 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3193 * containing a NVME LS request.
3194 * @phba: pointer to lpfc hba data structure.
3195 * @piocb: pointer to the iocbq struct representing the sequence starting
3196 * frame.
3197 *
3198 * This routine initially validates the NVME LS, validates there is a login
3199 * with the port that sent the LS, and then calls the appropriate nvme host
3200 * or target LS request handler.
3201 **/
3202 static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)3203 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3204 {
3205 struct lpfc_nodelist *ndlp;
3206 struct lpfc_dmabuf *d_buf;
3207 struct hbq_dmabuf *nvmebuf;
3208 struct fc_frame_header *fc_hdr;
3209 struct lpfc_async_xchg_ctx *axchg = NULL;
3210 char *failwhy = NULL;
3211 uint32_t oxid, sid, did, fctl, size;
3212 int ret = 1;
3213
3214 d_buf = piocb->cmd_dmabuf;
3215
3216 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3217 fc_hdr = nvmebuf->hbuf.virt;
3218 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3219 sid = sli4_sid_from_fc_hdr(fc_hdr);
3220 did = sli4_did_from_fc_hdr(fc_hdr);
3221 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3222 fc_hdr->fh_f_ctl[1] << 8 |
3223 fc_hdr->fh_f_ctl[2]);
3224 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3225
3226 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
3227 oxid, size, sid);
3228
3229 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
3230 failwhy = "Driver Unloading";
3231 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3232 failwhy = "NVME FC4 Disabled";
3233 } else if (!phba->nvmet_support && !phba->pport->localport) {
3234 failwhy = "No Localport";
3235 } else if (phba->nvmet_support && !phba->targetport) {
3236 failwhy = "No Targetport";
3237 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3238 failwhy = "Bad NVME LS R_CTL";
3239 } else if (unlikely((fctl & 0x00FF0000) !=
3240 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3241 failwhy = "Bad NVME LS F_CTL";
3242 } else {
3243 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3244 if (!axchg)
3245 failwhy = "No CTX memory";
3246 }
3247
3248 if (unlikely(failwhy)) {
3249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3250 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3251 sid, oxid, failwhy);
3252 goto out_fail;
3253 }
3254
3255 /* validate the source of the LS is logged in */
3256 ndlp = lpfc_findnode_did(phba->pport, sid);
3257 if (!ndlp ||
3258 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3259 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3260 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3261 "6216 NVME Unsol rcv: No ndlp: "
3262 "NPort_ID x%x oxid x%x\n",
3263 sid, oxid);
3264 goto out_fail;
3265 }
3266
3267 axchg->phba = phba;
3268 axchg->ndlp = ndlp;
3269 axchg->size = size;
3270 axchg->oxid = oxid;
3271 axchg->sid = sid;
3272 axchg->wqeq = NULL;
3273 axchg->state = LPFC_NVME_STE_LS_RCV;
3274 axchg->entry_cnt = 1;
3275 axchg->rqb_buffer = (void *)nvmebuf;
3276 axchg->hdwq = &phba->sli4_hba.hdwq[0];
3277 axchg->payload = nvmebuf->dbuf.virt;
3278 INIT_LIST_HEAD(&axchg->list);
3279
3280 if (phba->nvmet_support) {
3281 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3282 spin_lock_irq(&ndlp->lock);
3283 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3284 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3285 spin_unlock_irq(&ndlp->lock);
3286
3287 /* This reference is a single occurrence to hold the
3288 * node valid until the nvmet transport calls
3289 * host_release.
3290 */
3291 if (!lpfc_nlp_get(ndlp))
3292 goto out_fail;
3293
3294 lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3295 "6206 NVMET unsol ls_req ndlp x%px "
3296 "DID x%x xflags x%x refcnt %d\n",
3297 ndlp, ndlp->nlp_DID,
3298 ndlp->fc4_xpt_flags,
3299 kref_read(&ndlp->kref));
3300 } else {
3301 spin_unlock_irq(&ndlp->lock);
3302 }
3303 } else {
3304 ret = lpfc_nvme_handle_lsreq(phba, axchg);
3305 }
3306
3307 /* if zero, LS was successfully handled. If non-zero, LS not handled */
3308 if (!ret)
3309 return;
3310
3311 out_fail:
3312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3313 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3314 "NVMe%s handler failed %d\n",
3315 did, sid, oxid,
3316 (phba->nvmet_support) ? "T" : "I", ret);
3317
3318 /* recycle receive buffer */
3319 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3320
3321 /* If start of new exchange, abort it */
3322 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3323 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3324
3325 if (ret)
3326 kfree(axchg);
3327 }
3328
3329 /**
3330 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3331 * @phba: Pointer to HBA context object.
3332 * @pring: Pointer to driver SLI ring object.
3333 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3334 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3335 * @fch_type: the type for the first frame of the sequence.
3336 *
3337 * This function is called with no lock held. This function uses the r_ctl and
3338 * type of the received sequence to find the correct callback function to call
3339 * to process the sequence.
3340 **/
3341 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)3342 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3343 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3344 uint32_t fch_type)
3345 {
3346 int i;
3347
3348 switch (fch_type) {
3349 case FC_TYPE_NVME:
3350 lpfc_nvme_unsol_ls_handler(phba, saveq);
3351 return 1;
3352 default:
3353 break;
3354 }
3355
3356 /* unSolicited Responses */
3357 if (pring->prt[0].profile) {
3358 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3359 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3360 saveq);
3361 return 1;
3362 }
3363 /* We must search, based on rctl / type
3364 for the right routine */
3365 for (i = 0; i < pring->num_mask; i++) {
3366 if ((pring->prt[i].rctl == fch_r_ctl) &&
3367 (pring->prt[i].type == fch_type)) {
3368 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3369 (pring->prt[i].lpfc_sli_rcv_unsol_event)
3370 (phba, pring, saveq);
3371 return 1;
3372 }
3373 }
3374 return 0;
3375 }
3376
3377 static void
lpfc_sli_prep_unsol_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * saveq)3378 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3379 struct lpfc_iocbq *saveq)
3380 {
3381 IOCB_t *irsp;
3382 union lpfc_wqe128 *wqe;
3383 u16 i = 0;
3384
3385 irsp = &saveq->iocb;
3386 wqe = &saveq->wqe;
3387
3388 /* Fill wcqe with the IOCB status fields */
3389 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3390 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3391 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3392 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3393
3394 /* Source ID */
3395 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3396
3397 /* rx-id of the response frame */
3398 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3399
3400 /* ox-id of the frame */
3401 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3402 irsp->unsli3.rcvsli3.ox_id);
3403
3404 /* DID */
3405 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3406 irsp->un.rcvels.remoteID);
3407
3408 /* unsol data len */
3409 for (i = 0; i < irsp->ulpBdeCount; i++) {
3410 struct lpfc_hbq_entry *hbqe = NULL;
3411
3412 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3413 if (i == 0) {
3414 hbqe = (struct lpfc_hbq_entry *)
3415 &irsp->un.ulpWord[0];
3416 saveq->wqe.gen_req.bde.tus.f.bdeSize =
3417 hbqe->bde.tus.f.bdeSize;
3418 } else if (i == 1) {
3419 hbqe = (struct lpfc_hbq_entry *)
3420 &irsp->unsli3.sli3Words[4];
3421 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3422 }
3423 }
3424 }
3425 }
3426
3427 /**
3428 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3429 * @phba: Pointer to HBA context object.
3430 * @pring: Pointer to driver SLI ring object.
3431 * @saveq: Pointer to the unsolicited iocb.
3432 *
3433 * This function is called with no lock held by the ring event handler
3434 * when there is an unsolicited iocb posted to the response ring by the
3435 * firmware. This function gets the buffer associated with the iocbs
3436 * and calls the event handler for the ring. This function handles both
3437 * qring buffers and hbq buffers.
3438 * When the function returns 1 the caller can free the iocb object otherwise
3439 * upper layer functions will free the iocb objects.
3440 **/
3441 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3442 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3443 struct lpfc_iocbq *saveq)
3444 {
3445 IOCB_t * irsp;
3446 WORD5 * w5p;
3447 dma_addr_t paddr;
3448 uint32_t Rctl, Type;
3449 struct lpfc_iocbq *iocbq;
3450 struct lpfc_dmabuf *dmzbuf;
3451
3452 irsp = &saveq->iocb;
3453 saveq->vport = phba->pport;
3454
3455 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3456 if (pring->lpfc_sli_rcv_async_status)
3457 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3458 else
3459 lpfc_printf_log(phba,
3460 KERN_WARNING,
3461 LOG_SLI,
3462 "0316 Ring %d handler: unexpected "
3463 "ASYNC_STATUS iocb received evt_code "
3464 "0x%x\n",
3465 pring->ringno,
3466 irsp->un.asyncstat.evt_code);
3467 return 1;
3468 }
3469
3470 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3471 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3472 if (irsp->ulpBdeCount > 0) {
3473 dmzbuf = lpfc_sli_get_buff(phba, pring,
3474 irsp->un.ulpWord[3]);
3475 lpfc_in_buf_free(phba, dmzbuf);
3476 }
3477
3478 if (irsp->ulpBdeCount > 1) {
3479 dmzbuf = lpfc_sli_get_buff(phba, pring,
3480 irsp->unsli3.sli3Words[3]);
3481 lpfc_in_buf_free(phba, dmzbuf);
3482 }
3483
3484 if (irsp->ulpBdeCount > 2) {
3485 dmzbuf = lpfc_sli_get_buff(phba, pring,
3486 irsp->unsli3.sli3Words[7]);
3487 lpfc_in_buf_free(phba, dmzbuf);
3488 }
3489
3490 return 1;
3491 }
3492
3493 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3494 if (irsp->ulpBdeCount != 0) {
3495 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3496 irsp->un.ulpWord[3]);
3497 if (!saveq->cmd_dmabuf)
3498 lpfc_printf_log(phba,
3499 KERN_ERR,
3500 LOG_SLI,
3501 "0341 Ring %d Cannot find buffer for "
3502 "an unsolicited iocb. tag 0x%x\n",
3503 pring->ringno,
3504 irsp->un.ulpWord[3]);
3505 }
3506 if (irsp->ulpBdeCount == 2) {
3507 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3508 irsp->unsli3.sli3Words[7]);
3509 if (!saveq->bpl_dmabuf)
3510 lpfc_printf_log(phba,
3511 KERN_ERR,
3512 LOG_SLI,
3513 "0342 Ring %d Cannot find buffer for an"
3514 " unsolicited iocb. tag 0x%x\n",
3515 pring->ringno,
3516 irsp->unsli3.sli3Words[7]);
3517 }
3518 list_for_each_entry(iocbq, &saveq->list, list) {
3519 irsp = &iocbq->iocb;
3520 if (irsp->ulpBdeCount != 0) {
3521 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3522 pring,
3523 irsp->un.ulpWord[3]);
3524 if (!iocbq->cmd_dmabuf)
3525 lpfc_printf_log(phba,
3526 KERN_ERR,
3527 LOG_SLI,
3528 "0343 Ring %d Cannot find "
3529 "buffer for an unsolicited iocb"
3530 ". tag 0x%x\n", pring->ringno,
3531 irsp->un.ulpWord[3]);
3532 }
3533 if (irsp->ulpBdeCount == 2) {
3534 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3535 pring,
3536 irsp->unsli3.sli3Words[7]);
3537 if (!iocbq->bpl_dmabuf)
3538 lpfc_printf_log(phba,
3539 KERN_ERR,
3540 LOG_SLI,
3541 "0344 Ring %d Cannot find "
3542 "buffer for an unsolicited "
3543 "iocb. tag 0x%x\n",
3544 pring->ringno,
3545 irsp->unsli3.sli3Words[7]);
3546 }
3547 }
3548 } else {
3549 paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3550 irsp->un.cont64[0].addrLow);
3551 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3552 paddr);
3553 if (irsp->ulpBdeCount == 2) {
3554 paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3555 irsp->un.cont64[1].addrLow);
3556 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3557 pring,
3558 paddr);
3559 }
3560 }
3561
3562 if (irsp->ulpBdeCount != 0 &&
3563 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3564 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3565 int found = 0;
3566
3567 /* search continue save q for same XRI */
3568 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3569 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3570 saveq->iocb.unsli3.rcvsli3.ox_id) {
3571 list_add_tail(&saveq->list, &iocbq->list);
3572 found = 1;
3573 break;
3574 }
3575 }
3576 if (!found)
3577 list_add_tail(&saveq->clist,
3578 &pring->iocb_continue_saveq);
3579
3580 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3581 list_del_init(&iocbq->clist);
3582 saveq = iocbq;
3583 irsp = &saveq->iocb;
3584 } else {
3585 return 0;
3586 }
3587 }
3588 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3589 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3590 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3591 Rctl = FC_RCTL_ELS_REQ;
3592 Type = FC_TYPE_ELS;
3593 } else {
3594 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3595 Rctl = w5p->hcsw.Rctl;
3596 Type = w5p->hcsw.Type;
3597
3598 /* Firmware Workaround */
3599 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3600 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3601 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3602 Rctl = FC_RCTL_ELS_REQ;
3603 Type = FC_TYPE_ELS;
3604 w5p->hcsw.Rctl = Rctl;
3605 w5p->hcsw.Type = Type;
3606 }
3607 }
3608
3609 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3610 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3611 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3612 if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3613 saveq->vport = phba->pport;
3614 else
3615 saveq->vport = lpfc_find_vport_by_vpid(phba,
3616 irsp->unsli3.rcvsli3.vpi);
3617 }
3618
3619 /* Prepare WQE with Unsol frame */
3620 lpfc_sli_prep_unsol_wqe(phba, saveq);
3621
3622 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3624 "0313 Ring %d handler: unexpected Rctl x%x "
3625 "Type x%x received\n",
3626 pring->ringno, Rctl, Type);
3627
3628 return 1;
3629 }
3630
3631 /**
3632 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3633 * @phba: Pointer to HBA context object.
3634 * @pring: Pointer to driver SLI ring object.
3635 * @prspiocb: Pointer to response iocb object.
3636 *
3637 * This function looks up the iocb_lookup table to get the command iocb
3638 * corresponding to the given response iocb using the iotag of the
3639 * response iocb. The driver calls this function with the hbalock held
3640 * for SLI3 ports or the ring lock held for SLI4 ports.
3641 * This function returns the command iocb object if it finds the command
3642 * iocb else returns NULL.
3643 **/
3644 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3645 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3646 struct lpfc_sli_ring *pring,
3647 struct lpfc_iocbq *prspiocb)
3648 {
3649 struct lpfc_iocbq *cmd_iocb = NULL;
3650 u16 iotag;
3651
3652 if (phba->sli_rev == LPFC_SLI_REV4)
3653 iotag = get_wqe_reqtag(prspiocb);
3654 else
3655 iotag = prspiocb->iocb.ulpIoTag;
3656
3657 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3658 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3659 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3660 /* remove from txcmpl queue list */
3661 list_del_init(&cmd_iocb->list);
3662 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3663 pring->txcmplq_cnt--;
3664 return cmd_iocb;
3665 }
3666 }
3667
3668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3669 "0317 iotag x%x is out of "
3670 "range: max iotag x%x\n",
3671 iotag, phba->sli.last_iotag);
3672 return NULL;
3673 }
3674
3675 /**
3676 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3677 * @phba: Pointer to HBA context object.
3678 * @pring: Pointer to driver SLI ring object.
3679 * @iotag: IOCB tag.
3680 *
3681 * This function looks up the iocb_lookup table to get the command iocb
3682 * corresponding to the given iotag. The driver calls this function with
3683 * the ring lock held because this function is an SLI4 port only helper.
3684 * This function returns the command iocb object if it finds the command
3685 * iocb else returns NULL.
3686 **/
3687 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3688 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3689 struct lpfc_sli_ring *pring, uint16_t iotag)
3690 {
3691 struct lpfc_iocbq *cmd_iocb = NULL;
3692
3693 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3694 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3695 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3696 /* remove from txcmpl queue list */
3697 list_del_init(&cmd_iocb->list);
3698 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3699 pring->txcmplq_cnt--;
3700 return cmd_iocb;
3701 }
3702 }
3703
3704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3705 "0372 iotag x%x lookup error: max iotag (x%x) "
3706 "cmd_flag x%x\n",
3707 iotag, phba->sli.last_iotag,
3708 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3709 return NULL;
3710 }
3711
3712 /**
3713 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3714 * @phba: Pointer to HBA context object.
3715 * @pring: Pointer to driver SLI ring object.
3716 * @saveq: Pointer to the response iocb to be processed.
3717 *
3718 * This function is called by the ring event handler for non-fcp
3719 * rings when there is a new response iocb in the response ring.
3720 * The caller is not required to hold any locks. This function
3721 * gets the command iocb associated with the response iocb and
3722 * calls the completion handler for the command iocb. If there
3723 * is no completion handler, the function will free the resources
3724 * associated with command iocb. If the response iocb is for
3725 * an already aborted command iocb, the status of the completion
3726 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3727 * This function always returns 1.
3728 **/
3729 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3730 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3731 struct lpfc_iocbq *saveq)
3732 {
3733 struct lpfc_iocbq *cmdiocbp;
3734 unsigned long iflag;
3735 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3736
3737 if (phba->sli_rev == LPFC_SLI_REV4)
3738 spin_lock_irqsave(&pring->ring_lock, iflag);
3739 else
3740 spin_lock_irqsave(&phba->hbalock, iflag);
3741 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3742 if (phba->sli_rev == LPFC_SLI_REV4)
3743 spin_unlock_irqrestore(&pring->ring_lock, iflag);
3744 else
3745 spin_unlock_irqrestore(&phba->hbalock, iflag);
3746
3747 ulp_command = get_job_cmnd(phba, saveq);
3748 ulp_status = get_job_ulpstatus(phba, saveq);
3749 ulp_word4 = get_job_word4(phba, saveq);
3750 ulp_context = get_job_ulpcontext(phba, saveq);
3751 if (phba->sli_rev == LPFC_SLI_REV4)
3752 iotag = get_wqe_reqtag(saveq);
3753 else
3754 iotag = saveq->iocb.ulpIoTag;
3755
3756 if (cmdiocbp) {
3757 ulp_command = get_job_cmnd(phba, cmdiocbp);
3758 if (cmdiocbp->cmd_cmpl) {
3759 /*
3760 * If an ELS command failed send an event to mgmt
3761 * application.
3762 */
3763 if (ulp_status &&
3764 (pring->ringno == LPFC_ELS_RING) &&
3765 (ulp_command == CMD_ELS_REQUEST64_CR))
3766 lpfc_send_els_failure_event(phba,
3767 cmdiocbp, saveq);
3768
3769 /*
3770 * Post all ELS completions to the worker thread.
3771 * All other are passed to the completion callback.
3772 */
3773 if (pring->ringno == LPFC_ELS_RING) {
3774 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3775 (cmdiocbp->cmd_flag &
3776 LPFC_DRIVER_ABORTED)) {
3777 spin_lock_irqsave(&phba->hbalock,
3778 iflag);
3779 cmdiocbp->cmd_flag &=
3780 ~LPFC_DRIVER_ABORTED;
3781 spin_unlock_irqrestore(&phba->hbalock,
3782 iflag);
3783 saveq->iocb.ulpStatus =
3784 IOSTAT_LOCAL_REJECT;
3785 saveq->iocb.un.ulpWord[4] =
3786 IOERR_SLI_ABORTED;
3787
3788 /* Firmware could still be in progress
3789 * of DMAing payload, so don't free data
3790 * buffer till after a hbeat.
3791 */
3792 spin_lock_irqsave(&phba->hbalock,
3793 iflag);
3794 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3795 spin_unlock_irqrestore(&phba->hbalock,
3796 iflag);
3797 }
3798 if (phba->sli_rev == LPFC_SLI_REV4) {
3799 if (saveq->cmd_flag &
3800 LPFC_EXCHANGE_BUSY) {
3801 /* Set cmdiocb flag for the
3802 * exchange busy so sgl (xri)
3803 * will not be released until
3804 * the abort xri is received
3805 * from hba.
3806 */
3807 spin_lock_irqsave(
3808 &phba->hbalock, iflag);
3809 cmdiocbp->cmd_flag |=
3810 LPFC_EXCHANGE_BUSY;
3811 spin_unlock_irqrestore(
3812 &phba->hbalock, iflag);
3813 }
3814 if (cmdiocbp->cmd_flag &
3815 LPFC_DRIVER_ABORTED) {
3816 /*
3817 * Clear LPFC_DRIVER_ABORTED
3818 * bit in case it was driver
3819 * initiated abort.
3820 */
3821 spin_lock_irqsave(
3822 &phba->hbalock, iflag);
3823 cmdiocbp->cmd_flag &=
3824 ~LPFC_DRIVER_ABORTED;
3825 spin_unlock_irqrestore(
3826 &phba->hbalock, iflag);
3827 set_job_ulpstatus(cmdiocbp,
3828 IOSTAT_LOCAL_REJECT);
3829 set_job_ulpword4(cmdiocbp,
3830 IOERR_ABORT_REQUESTED);
3831 /*
3832 * For SLI4, irspiocb contains
3833 * NO_XRI in sli_xritag, it
3834 * shall not affect releasing
3835 * sgl (xri) process.
3836 */
3837 set_job_ulpstatus(saveq,
3838 IOSTAT_LOCAL_REJECT);
3839 set_job_ulpword4(saveq,
3840 IOERR_SLI_ABORTED);
3841 spin_lock_irqsave(
3842 &phba->hbalock, iflag);
3843 saveq->cmd_flag |=
3844 LPFC_DELAY_MEM_FREE;
3845 spin_unlock_irqrestore(
3846 &phba->hbalock, iflag);
3847 }
3848 }
3849 }
3850 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3851 } else
3852 lpfc_sli_release_iocbq(phba, cmdiocbp);
3853 } else {
3854 /*
3855 * Unknown initiating command based on the response iotag.
3856 * This could be the case on the ELS ring because of
3857 * lpfc_els_abort().
3858 */
3859 if (pring->ringno != LPFC_ELS_RING) {
3860 /*
3861 * Ring <ringno> handler: unexpected completion IoTag
3862 * <IoTag>
3863 */
3864 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3865 "0322 Ring %d handler: "
3866 "unexpected completion IoTag x%x "
3867 "Data: x%x x%x x%x x%x\n",
3868 pring->ringno, iotag, ulp_status,
3869 ulp_word4, ulp_command, ulp_context);
3870 }
3871 }
3872
3873 return 1;
3874 }
3875
3876 /**
3877 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3878 * @phba: Pointer to HBA context object.
3879 * @pring: Pointer to driver SLI ring object.
3880 *
3881 * This function is called from the iocb ring event handlers when
3882 * put pointer is ahead of the get pointer for a ring. This function signal
3883 * an error attention condition to the worker thread and the worker
3884 * thread will transition the HBA to offline state.
3885 **/
3886 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3887 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3888 {
3889 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3890 /*
3891 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3892 * rsp ring <portRspMax>
3893 */
3894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3895 "0312 Ring %d handler: portRspPut %d "
3896 "is bigger than rsp ring %d\n",
3897 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3898 pring->sli.sli3.numRiocb);
3899
3900 phba->link_state = LPFC_HBA_ERROR;
3901
3902 /*
3903 * All error attention handlers are posted to
3904 * worker thread
3905 */
3906 phba->work_ha |= HA_ERATT;
3907 phba->work_hs = HS_FFER3;
3908
3909 lpfc_worker_wake_up(phba);
3910
3911 return;
3912 }
3913
3914 /**
3915 * lpfc_poll_eratt - Error attention polling timer timeout handler
3916 * @t: Context to fetch pointer to address of HBA context object from.
3917 *
3918 * This function is invoked by the Error Attention polling timer when the
3919 * timer times out. It will check the SLI Error Attention register for
3920 * possible attention events. If so, it will post an Error Attention event
3921 * and wake up worker thread to process it. Otherwise, it will set up the
3922 * Error Attention polling timer for the next poll.
3923 **/
lpfc_poll_eratt(struct timer_list * t)3924 void lpfc_poll_eratt(struct timer_list *t)
3925 {
3926 struct lpfc_hba *phba;
3927 uint32_t eratt = 0;
3928 uint64_t sli_intr, cnt;
3929
3930 phba = from_timer(phba, t, eratt_poll);
3931 if (!test_bit(HBA_SETUP, &phba->hba_flag))
3932 return;
3933
3934 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
3935 return;
3936
3937 /* Here we will also keep track of interrupts per sec of the hba */
3938 sli_intr = phba->sli.slistat.sli_intr;
3939
3940 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3941 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3942 sli_intr);
3943 else
3944 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3945
3946 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3947 do_div(cnt, phba->eratt_poll_interval);
3948 phba->sli.slistat.sli_ips = cnt;
3949
3950 phba->sli.slistat.sli_prev_intr = sli_intr;
3951
3952 /* Check chip HA register for error event */
3953 eratt = lpfc_sli_check_eratt(phba);
3954
3955 if (eratt)
3956 /* Tell the worker thread there is work to do */
3957 lpfc_worker_wake_up(phba);
3958 else
3959 /* Restart the timer for next eratt poll */
3960 mod_timer(&phba->eratt_poll,
3961 jiffies +
3962 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3963 return;
3964 }
3965
3966
3967 /**
3968 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3969 * @phba: Pointer to HBA context object.
3970 * @pring: Pointer to driver SLI ring object.
3971 * @mask: Host attention register mask for this ring.
3972 *
3973 * This function is called from the interrupt context when there is a ring
3974 * event for the fcp ring. The caller does not hold any lock.
3975 * The function processes each response iocb in the response ring until it
3976 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3977 * LE bit set. The function will call the completion handler of the command iocb
3978 * if the response iocb indicates a completion for a command iocb or it is
3979 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3980 * function if this is an unsolicited iocb.
3981 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3982 * to check it explicitly.
3983 */
3984 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3985 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3986 struct lpfc_sli_ring *pring, uint32_t mask)
3987 {
3988 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3989 IOCB_t *irsp = NULL;
3990 IOCB_t *entry = NULL;
3991 struct lpfc_iocbq *cmdiocbq = NULL;
3992 struct lpfc_iocbq rspiocbq;
3993 uint32_t status;
3994 uint32_t portRspPut, portRspMax;
3995 int rc = 1;
3996 lpfc_iocb_type type;
3997 unsigned long iflag;
3998 uint32_t rsp_cmpl = 0;
3999
4000 spin_lock_irqsave(&phba->hbalock, iflag);
4001 pring->stats.iocb_event++;
4002
4003 /*
4004 * The next available response entry should never exceed the maximum
4005 * entries. If it does, treat it as an adapter hardware error.
4006 */
4007 portRspMax = pring->sli.sli3.numRiocb;
4008 portRspPut = le32_to_cpu(pgp->rspPutInx);
4009 if (unlikely(portRspPut >= portRspMax)) {
4010 lpfc_sli_rsp_pointers_error(phba, pring);
4011 spin_unlock_irqrestore(&phba->hbalock, iflag);
4012 return 1;
4013 }
4014 if (phba->fcp_ring_in_use) {
4015 spin_unlock_irqrestore(&phba->hbalock, iflag);
4016 return 1;
4017 } else
4018 phba->fcp_ring_in_use = 1;
4019
4020 rmb();
4021 while (pring->sli.sli3.rspidx != portRspPut) {
4022 /*
4023 * Fetch an entry off the ring and copy it into a local data
4024 * structure. The copy involves a byte-swap since the
4025 * network byte order and pci byte orders are different.
4026 */
4027 entry = lpfc_resp_iocb(phba, pring);
4028 phba->last_completion_time = jiffies;
4029
4030 if (++pring->sli.sli3.rspidx >= portRspMax)
4031 pring->sli.sli3.rspidx = 0;
4032
4033 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4034 (uint32_t *) &rspiocbq.iocb,
4035 phba->iocb_rsp_size);
4036 INIT_LIST_HEAD(&(rspiocbq.list));
4037 irsp = &rspiocbq.iocb;
4038
4039 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4040 pring->stats.iocb_rsp++;
4041 rsp_cmpl++;
4042
4043 if (unlikely(irsp->ulpStatus)) {
4044 /*
4045 * If resource errors reported from HBA, reduce
4046 * queuedepths of the SCSI device.
4047 */
4048 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4049 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4050 IOERR_NO_RESOURCES)) {
4051 spin_unlock_irqrestore(&phba->hbalock, iflag);
4052 phba->lpfc_rampdown_queue_depth(phba);
4053 spin_lock_irqsave(&phba->hbalock, iflag);
4054 }
4055
4056 /* Rsp ring <ringno> error: IOCB */
4057 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4058 "0336 Rsp Ring %d error: IOCB Data: "
4059 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
4060 pring->ringno,
4061 irsp->un.ulpWord[0],
4062 irsp->un.ulpWord[1],
4063 irsp->un.ulpWord[2],
4064 irsp->un.ulpWord[3],
4065 irsp->un.ulpWord[4],
4066 irsp->un.ulpWord[5],
4067 *(uint32_t *)&irsp->un1,
4068 *((uint32_t *)&irsp->un1 + 1));
4069 }
4070
4071 switch (type) {
4072 case LPFC_ABORT_IOCB:
4073 case LPFC_SOL_IOCB:
4074 /*
4075 * Idle exchange closed via ABTS from port. No iocb
4076 * resources need to be recovered.
4077 */
4078 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4079 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4080 "0333 IOCB cmd 0x%x"
4081 " processed. Skipping"
4082 " completion\n",
4083 irsp->ulpCommand);
4084 break;
4085 }
4086
4087 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4088 &rspiocbq);
4089 if (unlikely(!cmdiocbq))
4090 break;
4091 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4092 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4093 if (cmdiocbq->cmd_cmpl) {
4094 spin_unlock_irqrestore(&phba->hbalock, iflag);
4095 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4096 spin_lock_irqsave(&phba->hbalock, iflag);
4097 }
4098 break;
4099 case LPFC_UNSOL_IOCB:
4100 spin_unlock_irqrestore(&phba->hbalock, iflag);
4101 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4102 spin_lock_irqsave(&phba->hbalock, iflag);
4103 break;
4104 default:
4105 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4106 char adaptermsg[LPFC_MAX_ADPTMSG];
4107 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4108 memcpy(&adaptermsg[0], (uint8_t *) irsp,
4109 MAX_MSG_DATA);
4110 dev_warn(&((phba->pcidev)->dev),
4111 "lpfc%d: %s\n",
4112 phba->brd_no, adaptermsg);
4113 } else {
4114 /* Unknown IOCB command */
4115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4116 "0334 Unknown IOCB command "
4117 "Data: x%x, x%x x%x x%x x%x\n",
4118 type, irsp->ulpCommand,
4119 irsp->ulpStatus,
4120 irsp->ulpIoTag,
4121 irsp->ulpContext);
4122 }
4123 break;
4124 }
4125
4126 /*
4127 * The response IOCB has been processed. Update the ring
4128 * pointer in SLIM. If the port response put pointer has not
4129 * been updated, sync the pgp->rspPutInx and fetch the new port
4130 * response put pointer.
4131 */
4132 writel(pring->sli.sli3.rspidx,
4133 &phba->host_gp[pring->ringno].rspGetInx);
4134
4135 if (pring->sli.sli3.rspidx == portRspPut)
4136 portRspPut = le32_to_cpu(pgp->rspPutInx);
4137 }
4138
4139 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4140 pring->stats.iocb_rsp_full++;
4141 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4142 writel(status, phba->CAregaddr);
4143 readl(phba->CAregaddr);
4144 }
4145 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4146 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4147 pring->stats.iocb_cmd_empty++;
4148
4149 /* Force update of the local copy of cmdGetInx */
4150 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4151 lpfc_sli_resume_iocb(phba, pring);
4152
4153 if ((pring->lpfc_sli_cmd_available))
4154 (pring->lpfc_sli_cmd_available) (phba, pring);
4155
4156 }
4157
4158 phba->fcp_ring_in_use = 0;
4159 spin_unlock_irqrestore(&phba->hbalock, iflag);
4160 return rc;
4161 }
4162
4163 /**
4164 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4165 * @phba: Pointer to HBA context object.
4166 * @pring: Pointer to driver SLI ring object.
4167 * @rspiocbp: Pointer to driver response IOCB object.
4168 *
4169 * This function is called from the worker thread when there is a slow-path
4170 * response IOCB to process. This function chains all the response iocbs until
4171 * seeing the iocb with the LE bit set. The function will call
4172 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4173 * completion of a command iocb. The function will call the
4174 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4175 * The function frees the resources or calls the completion handler if this
4176 * iocb is an abort completion. The function returns NULL when the response
4177 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4178 * this function shall chain the iocb on to the iocb_continueq and return the
4179 * response iocb passed in.
4180 **/
4181 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)4182 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4183 struct lpfc_iocbq *rspiocbp)
4184 {
4185 struct lpfc_iocbq *saveq;
4186 struct lpfc_iocbq *cmdiocb;
4187 struct lpfc_iocbq *next_iocb;
4188 IOCB_t *irsp;
4189 uint32_t free_saveq;
4190 u8 cmd_type;
4191 lpfc_iocb_type type;
4192 unsigned long iflag;
4193 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4194 u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4195 u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4196 int rc;
4197
4198 spin_lock_irqsave(&phba->hbalock, iflag);
4199 /* First add the response iocb to the countinueq list */
4200 list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4201 pring->iocb_continueq_cnt++;
4202
4203 /*
4204 * By default, the driver expects to free all resources
4205 * associated with this iocb completion.
4206 */
4207 free_saveq = 1;
4208 saveq = list_get_first(&pring->iocb_continueq,
4209 struct lpfc_iocbq, list);
4210 list_del_init(&pring->iocb_continueq);
4211 pring->iocb_continueq_cnt = 0;
4212
4213 pring->stats.iocb_rsp++;
4214
4215 /*
4216 * If resource errors reported from HBA, reduce
4217 * queuedepths of the SCSI device.
4218 */
4219 if (ulp_status == IOSTAT_LOCAL_REJECT &&
4220 ((ulp_word4 & IOERR_PARAM_MASK) ==
4221 IOERR_NO_RESOURCES)) {
4222 spin_unlock_irqrestore(&phba->hbalock, iflag);
4223 phba->lpfc_rampdown_queue_depth(phba);
4224 spin_lock_irqsave(&phba->hbalock, iflag);
4225 }
4226
4227 if (ulp_status) {
4228 /* Rsp ring <ringno> error: IOCB */
4229 if (phba->sli_rev < LPFC_SLI_REV4) {
4230 irsp = &rspiocbp->iocb;
4231 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4232 "0328 Rsp Ring %d error: ulp_status x%x "
4233 "IOCB Data: "
4234 "x%08x x%08x x%08x x%08x "
4235 "x%08x x%08x x%08x x%08x "
4236 "x%08x x%08x x%08x x%08x "
4237 "x%08x x%08x x%08x x%08x\n",
4238 pring->ringno, ulp_status,
4239 get_job_ulpword(rspiocbp, 0),
4240 get_job_ulpword(rspiocbp, 1),
4241 get_job_ulpword(rspiocbp, 2),
4242 get_job_ulpword(rspiocbp, 3),
4243 get_job_ulpword(rspiocbp, 4),
4244 get_job_ulpword(rspiocbp, 5),
4245 *(((uint32_t *)irsp) + 6),
4246 *(((uint32_t *)irsp) + 7),
4247 *(((uint32_t *)irsp) + 8),
4248 *(((uint32_t *)irsp) + 9),
4249 *(((uint32_t *)irsp) + 10),
4250 *(((uint32_t *)irsp) + 11),
4251 *(((uint32_t *)irsp) + 12),
4252 *(((uint32_t *)irsp) + 13),
4253 *(((uint32_t *)irsp) + 14),
4254 *(((uint32_t *)irsp) + 15));
4255 } else {
4256 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4257 "0321 Rsp Ring %d error: "
4258 "IOCB Data: "
4259 "x%x x%x x%x x%x\n",
4260 pring->ringno,
4261 rspiocbp->wcqe_cmpl.word0,
4262 rspiocbp->wcqe_cmpl.total_data_placed,
4263 rspiocbp->wcqe_cmpl.parameter,
4264 rspiocbp->wcqe_cmpl.word3);
4265 }
4266 }
4267
4268
4269 /*
4270 * Fetch the iocb command type and call the correct completion
4271 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4272 * get freed back to the lpfc_iocb_list by the discovery
4273 * kernel thread.
4274 */
4275 cmd_type = ulp_command & CMD_IOCB_MASK;
4276 type = lpfc_sli_iocb_cmd_type(cmd_type);
4277 switch (type) {
4278 case LPFC_SOL_IOCB:
4279 spin_unlock_irqrestore(&phba->hbalock, iflag);
4280 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4281 spin_lock_irqsave(&phba->hbalock, iflag);
4282 break;
4283 case LPFC_UNSOL_IOCB:
4284 spin_unlock_irqrestore(&phba->hbalock, iflag);
4285 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4286 spin_lock_irqsave(&phba->hbalock, iflag);
4287 if (!rc)
4288 free_saveq = 0;
4289 break;
4290 case LPFC_ABORT_IOCB:
4291 cmdiocb = NULL;
4292 if (ulp_command != CMD_XRI_ABORTED_CX)
4293 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4294 saveq);
4295 if (cmdiocb) {
4296 /* Call the specified completion routine */
4297 if (cmdiocb->cmd_cmpl) {
4298 spin_unlock_irqrestore(&phba->hbalock, iflag);
4299 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4300 spin_lock_irqsave(&phba->hbalock, iflag);
4301 } else {
4302 __lpfc_sli_release_iocbq(phba, cmdiocb);
4303 }
4304 }
4305 break;
4306 case LPFC_UNKNOWN_IOCB:
4307 if (ulp_command == CMD_ADAPTER_MSG) {
4308 char adaptermsg[LPFC_MAX_ADPTMSG];
4309
4310 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4311 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4312 MAX_MSG_DATA);
4313 dev_warn(&((phba->pcidev)->dev),
4314 "lpfc%d: %s\n",
4315 phba->brd_no, adaptermsg);
4316 } else {
4317 /* Unknown command */
4318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4319 "0335 Unknown IOCB "
4320 "command Data: x%x "
4321 "x%x x%x x%x\n",
4322 ulp_command,
4323 ulp_status,
4324 get_wqe_reqtag(rspiocbp),
4325 get_job_ulpcontext(phba, rspiocbp));
4326 }
4327 break;
4328 }
4329
4330 if (free_saveq) {
4331 list_for_each_entry_safe(rspiocbp, next_iocb,
4332 &saveq->list, list) {
4333 list_del_init(&rspiocbp->list);
4334 __lpfc_sli_release_iocbq(phba, rspiocbp);
4335 }
4336 __lpfc_sli_release_iocbq(phba, saveq);
4337 }
4338 rspiocbp = NULL;
4339 spin_unlock_irqrestore(&phba->hbalock, iflag);
4340 return rspiocbp;
4341 }
4342
4343 /**
4344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4345 * @phba: Pointer to HBA context object.
4346 * @pring: Pointer to driver SLI ring object.
4347 * @mask: Host attention register mask for this ring.
4348 *
4349 * This routine wraps the actual slow_ring event process routine from the
4350 * API jump table function pointer from the lpfc_hba struct.
4351 **/
4352 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4354 struct lpfc_sli_ring *pring, uint32_t mask)
4355 {
4356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4357 }
4358
4359 /**
4360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4361 * @phba: Pointer to HBA context object.
4362 * @pring: Pointer to driver SLI ring object.
4363 * @mask: Host attention register mask for this ring.
4364 *
4365 * This function is called from the worker thread when there is a ring event
4366 * for non-fcp rings. The caller does not hold any lock. The function will
4367 * remove each response iocb in the response ring and calls the handle
4368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4369 **/
4370 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4372 struct lpfc_sli_ring *pring, uint32_t mask)
4373 {
4374 struct lpfc_pgp *pgp;
4375 IOCB_t *entry;
4376 IOCB_t *irsp = NULL;
4377 struct lpfc_iocbq *rspiocbp = NULL;
4378 uint32_t portRspPut, portRspMax;
4379 unsigned long iflag;
4380 uint32_t status;
4381
4382 pgp = &phba->port_gp[pring->ringno];
4383 spin_lock_irqsave(&phba->hbalock, iflag);
4384 pring->stats.iocb_event++;
4385
4386 /*
4387 * The next available response entry should never exceed the maximum
4388 * entries. If it does, treat it as an adapter hardware error.
4389 */
4390 portRspMax = pring->sli.sli3.numRiocb;
4391 portRspPut = le32_to_cpu(pgp->rspPutInx);
4392 if (portRspPut >= portRspMax) {
4393 /*
4394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4395 * rsp ring <portRspMax>
4396 */
4397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4398 "0303 Ring %d handler: portRspPut %d "
4399 "is bigger than rsp ring %d\n",
4400 pring->ringno, portRspPut, portRspMax);
4401
4402 phba->link_state = LPFC_HBA_ERROR;
4403 spin_unlock_irqrestore(&phba->hbalock, iflag);
4404
4405 phba->work_hs = HS_FFER3;
4406 lpfc_handle_eratt(phba);
4407
4408 return;
4409 }
4410
4411 rmb();
4412 while (pring->sli.sli3.rspidx != portRspPut) {
4413 /*
4414 * Build a completion list and call the appropriate handler.
4415 * The process is to get the next available response iocb, get
4416 * a free iocb from the list, copy the response data into the
4417 * free iocb, insert to the continuation list, and update the
4418 * next response index to slim. This process makes response
4419 * iocb's in the ring available to DMA as fast as possible but
4420 * pays a penalty for a copy operation. Since the iocb is
4421 * only 32 bytes, this penalty is considered small relative to
4422 * the PCI reads for register values and a slim write. When
4423 * the ulpLe field is set, the entire Command has been
4424 * received.
4425 */
4426 entry = lpfc_resp_iocb(phba, pring);
4427
4428 phba->last_completion_time = jiffies;
4429 rspiocbp = __lpfc_sli_get_iocbq(phba);
4430 if (rspiocbp == NULL) {
4431 printk(KERN_ERR "%s: out of buffers! Failing "
4432 "completion.\n", __func__);
4433 break;
4434 }
4435
4436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4437 phba->iocb_rsp_size);
4438 irsp = &rspiocbp->iocb;
4439
4440 if (++pring->sli.sli3.rspidx >= portRspMax)
4441 pring->sli.sli3.rspidx = 0;
4442
4443 if (pring->ringno == LPFC_ELS_RING) {
4444 lpfc_debugfs_slow_ring_trc(phba,
4445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
4446 *(((uint32_t *) irsp) + 4),
4447 *(((uint32_t *) irsp) + 6),
4448 *(((uint32_t *) irsp) + 7));
4449 }
4450
4451 writel(pring->sli.sli3.rspidx,
4452 &phba->host_gp[pring->ringno].rspGetInx);
4453
4454 spin_unlock_irqrestore(&phba->hbalock, iflag);
4455 /* Handle the response IOCB */
4456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4457 spin_lock_irqsave(&phba->hbalock, iflag);
4458
4459 /*
4460 * If the port response put pointer has not been updated, sync
4461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4462 * response put pointer.
4463 */
4464 if (pring->sli.sli3.rspidx == portRspPut) {
4465 portRspPut = le32_to_cpu(pgp->rspPutInx);
4466 }
4467 } /* while (pring->sli.sli3.rspidx != portRspPut) */
4468
4469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4470 /* At least one response entry has been freed */
4471 pring->stats.iocb_rsp_full++;
4472 /* SET RxRE_RSP in Chip Att register */
4473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4474 writel(status, phba->CAregaddr);
4475 readl(phba->CAregaddr); /* flush */
4476 }
4477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4479 pring->stats.iocb_cmd_empty++;
4480
4481 /* Force update of the local copy of cmdGetInx */
4482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4483 lpfc_sli_resume_iocb(phba, pring);
4484
4485 if ((pring->lpfc_sli_cmd_available))
4486 (pring->lpfc_sli_cmd_available) (phba, pring);
4487
4488 }
4489
4490 spin_unlock_irqrestore(&phba->hbalock, iflag);
4491 return;
4492 }
4493
4494 /**
4495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4496 * @phba: Pointer to HBA context object.
4497 * @pring: Pointer to driver SLI ring object.
4498 * @mask: Host attention register mask for this ring.
4499 *
4500 * This function is called from the worker thread when there is a pending
4501 * ELS response iocb on the driver internal slow-path response iocb worker
4502 * queue. The caller does not hold any lock. The function will remove each
4503 * response iocb from the response worker queue and calls the handle
4504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4505 **/
4506 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4508 struct lpfc_sli_ring *pring, uint32_t mask)
4509 {
4510 struct lpfc_iocbq *irspiocbq;
4511 struct hbq_dmabuf *dmabuf;
4512 struct lpfc_cq_event *cq_event;
4513 unsigned long iflag;
4514 int count = 0;
4515
4516 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
4517 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4518 /* Get the response iocb from the head of work queue */
4519 spin_lock_irqsave(&phba->hbalock, iflag);
4520 list_remove_head(&phba->sli4_hba.sp_queue_event,
4521 cq_event, struct lpfc_cq_event, list);
4522 spin_unlock_irqrestore(&phba->hbalock, iflag);
4523
4524 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4525 case CQE_CODE_COMPL_WQE:
4526 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4527 cq_event);
4528 /* Translate ELS WCQE to response IOCBQ */
4529 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4530 irspiocbq);
4531 if (irspiocbq)
4532 lpfc_sli_sp_handle_rspiocb(phba, pring,
4533 irspiocbq);
4534 count++;
4535 break;
4536 case CQE_CODE_RECEIVE:
4537 case CQE_CODE_RECEIVE_V1:
4538 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4539 cq_event);
4540 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4541 count++;
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 /* Limit the number of events to 64 to avoid soft lockups */
4548 if (count == 64)
4549 break;
4550 }
4551 }
4552
4553 /**
4554 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4555 * @phba: Pointer to HBA context object.
4556 * @pring: Pointer to driver SLI ring object.
4557 *
4558 * This function aborts all iocbs in the given ring and frees all the iocb
4559 * objects in txq. This function issues an abort iocb for all the iocb commands
4560 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4561 * the return of this function. The caller is not required to hold any locks.
4562 **/
4563 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)4564 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4565 {
4566 LIST_HEAD(tx_completions);
4567 LIST_HEAD(txcmplq_completions);
4568 struct lpfc_iocbq *iocb, *next_iocb;
4569 int offline;
4570
4571 if (pring->ringno == LPFC_ELS_RING) {
4572 lpfc_fabric_abort_hba(phba);
4573 }
4574 offline = pci_channel_offline(phba->pcidev);
4575
4576 /* Error everything on txq and txcmplq
4577 * First do the txq.
4578 */
4579 if (phba->sli_rev >= LPFC_SLI_REV4) {
4580 spin_lock_irq(&pring->ring_lock);
4581 list_splice_init(&pring->txq, &tx_completions);
4582 pring->txq_cnt = 0;
4583
4584 if (offline) {
4585 list_splice_init(&pring->txcmplq,
4586 &txcmplq_completions);
4587 } else {
4588 /* Next issue ABTS for everything on the txcmplq */
4589 list_for_each_entry_safe(iocb, next_iocb,
4590 &pring->txcmplq, list)
4591 lpfc_sli_issue_abort_iotag(phba, pring,
4592 iocb, NULL);
4593 }
4594 spin_unlock_irq(&pring->ring_lock);
4595 } else {
4596 spin_lock_irq(&phba->hbalock);
4597 list_splice_init(&pring->txq, &tx_completions);
4598 pring->txq_cnt = 0;
4599
4600 if (offline) {
4601 list_splice_init(&pring->txcmplq, &txcmplq_completions);
4602 } else {
4603 /* Next issue ABTS for everything on the txcmplq */
4604 list_for_each_entry_safe(iocb, next_iocb,
4605 &pring->txcmplq, list)
4606 lpfc_sli_issue_abort_iotag(phba, pring,
4607 iocb, NULL);
4608 }
4609 spin_unlock_irq(&phba->hbalock);
4610 }
4611
4612 if (offline) {
4613 /* Cancel all the IOCBs from the completions list */
4614 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4615 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4616 } else {
4617 /* Make sure HBA is alive */
4618 lpfc_issue_hb_tmo(phba);
4619 }
4620 /* Cancel all the IOCBs from the completions list */
4621 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4622 IOERR_SLI_ABORTED);
4623 }
4624
4625 /**
4626 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4627 * @phba: Pointer to HBA context object.
4628 *
4629 * This function aborts all iocbs in FCP rings and frees all the iocb
4630 * objects in txq. This function issues an abort iocb for all the iocb commands
4631 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4632 * the return of this function. The caller is not required to hold any locks.
4633 **/
4634 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)4635 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4636 {
4637 struct lpfc_sli *psli = &phba->sli;
4638 struct lpfc_sli_ring *pring;
4639 uint32_t i;
4640
4641 /* Look on all the FCP Rings for the iotag */
4642 if (phba->sli_rev >= LPFC_SLI_REV4) {
4643 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4644 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4645 lpfc_sli_abort_iocb_ring(phba, pring);
4646 }
4647 } else {
4648 pring = &psli->sli3_ring[LPFC_FCP_RING];
4649 lpfc_sli_abort_iocb_ring(phba, pring);
4650 }
4651 }
4652
4653 /**
4654 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4655 * @phba: Pointer to HBA context object.
4656 *
4657 * This function flushes all iocbs in the IO ring and frees all the iocb
4658 * objects in txq and txcmplq. This function will not issue abort iocbs
4659 * for all the iocb commands in txcmplq, they will just be returned with
4660 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4661 * slot has been permanently disabled.
4662 **/
4663 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4664 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4665 {
4666 LIST_HEAD(txq);
4667 LIST_HEAD(txcmplq);
4668 struct lpfc_sli *psli = &phba->sli;
4669 struct lpfc_sli_ring *pring;
4670 uint32_t i;
4671 struct lpfc_iocbq *piocb, *next_iocb;
4672
4673 /* Indicate the I/O queues are flushed */
4674 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
4675
4676 /* Look on all the FCP Rings for the iotag */
4677 if (phba->sli_rev >= LPFC_SLI_REV4) {
4678 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4679 if (!phba->sli4_hba.hdwq ||
4680 !phba->sli4_hba.hdwq[i].io_wq) {
4681 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4682 "7777 hdwq's deleted %lx "
4683 "%lx %x %x\n",
4684 phba->pport->load_flag,
4685 phba->hba_flag,
4686 phba->link_state,
4687 phba->sli.sli_flag);
4688 return;
4689 }
4690 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4691
4692 spin_lock_irq(&pring->ring_lock);
4693 /* Retrieve everything on txq */
4694 list_splice_init(&pring->txq, &txq);
4695 list_for_each_entry_safe(piocb, next_iocb,
4696 &pring->txcmplq, list)
4697 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4698 /* Retrieve everything on the txcmplq */
4699 list_splice_init(&pring->txcmplq, &txcmplq);
4700 pring->txq_cnt = 0;
4701 pring->txcmplq_cnt = 0;
4702 spin_unlock_irq(&pring->ring_lock);
4703
4704 /* Flush the txq */
4705 lpfc_sli_cancel_iocbs(phba, &txq,
4706 IOSTAT_LOCAL_REJECT,
4707 IOERR_SLI_DOWN);
4708 /* Flush the txcmplq */
4709 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4710 IOSTAT_LOCAL_REJECT,
4711 IOERR_SLI_DOWN);
4712 if (unlikely(pci_channel_offline(phba->pcidev)))
4713 lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4714 }
4715 } else {
4716 pring = &psli->sli3_ring[LPFC_FCP_RING];
4717
4718 spin_lock_irq(&phba->hbalock);
4719 /* Retrieve everything on txq */
4720 list_splice_init(&pring->txq, &txq);
4721 list_for_each_entry_safe(piocb, next_iocb,
4722 &pring->txcmplq, list)
4723 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4724 /* Retrieve everything on the txcmplq */
4725 list_splice_init(&pring->txcmplq, &txcmplq);
4726 pring->txq_cnt = 0;
4727 pring->txcmplq_cnt = 0;
4728 spin_unlock_irq(&phba->hbalock);
4729
4730 /* Flush the txq */
4731 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4732 IOERR_SLI_DOWN);
4733 /* Flush the txcmpq */
4734 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4735 IOERR_SLI_DOWN);
4736 }
4737 }
4738
4739 /**
4740 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4741 * @phba: Pointer to HBA context object.
4742 * @mask: Bit mask to be checked.
4743 *
4744 * This function reads the host status register and compares
4745 * with the provided bit mask to check if HBA completed
4746 * the restart. This function will wait in a loop for the
4747 * HBA to complete restart. If the HBA does not restart within
4748 * 15 iterations, the function will reset the HBA again. The
4749 * function returns 1 when HBA fail to restart otherwise returns
4750 * zero.
4751 **/
4752 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4753 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4754 {
4755 uint32_t status;
4756 int i = 0;
4757 int retval = 0;
4758
4759 /* Read the HBA Host Status Register */
4760 if (lpfc_readl(phba->HSregaddr, &status))
4761 return 1;
4762
4763 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
4764
4765 /*
4766 * Check status register every 100ms for 5 retries, then every
4767 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4768 * every 2.5 sec for 4.
4769 * Break our of the loop if errors occurred during init.
4770 */
4771 while (((status & mask) != mask) &&
4772 !(status & HS_FFERM) &&
4773 i++ < 20) {
4774
4775 if (i <= 5)
4776 msleep(10);
4777 else if (i <= 10)
4778 msleep(500);
4779 else
4780 msleep(2500);
4781
4782 if (i == 15) {
4783 /* Do post */
4784 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4785 lpfc_sli_brdrestart(phba);
4786 }
4787 /* Read the HBA Host Status Register */
4788 if (lpfc_readl(phba->HSregaddr, &status)) {
4789 retval = 1;
4790 break;
4791 }
4792 }
4793
4794 /* Check to see if any errors occurred during init */
4795 if ((status & HS_FFERM) || (i >= 20)) {
4796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4797 "2751 Adapter failed to restart, "
4798 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4799 status,
4800 readl(phba->MBslimaddr + 0xa8),
4801 readl(phba->MBslimaddr + 0xac));
4802 phba->link_state = LPFC_HBA_ERROR;
4803 retval = 1;
4804 }
4805
4806 return retval;
4807 }
4808
4809 /**
4810 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4811 * @phba: Pointer to HBA context object.
4812 * @mask: Bit mask to be checked.
4813 *
4814 * This function checks the host status register to check if HBA is
4815 * ready. This function will wait in a loop for the HBA to be ready
4816 * If the HBA is not ready , the function will will reset the HBA PCI
4817 * function again. The function returns 1 when HBA fail to be ready
4818 * otherwise returns zero.
4819 **/
4820 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4821 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4822 {
4823 uint32_t status;
4824 int retval = 0;
4825
4826 /* Read the HBA Host Status Register */
4827 status = lpfc_sli4_post_status_check(phba);
4828
4829 if (status) {
4830 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4831 lpfc_sli_brdrestart(phba);
4832 status = lpfc_sli4_post_status_check(phba);
4833 }
4834
4835 /* Check to see if any errors occurred during init */
4836 if (status) {
4837 phba->link_state = LPFC_HBA_ERROR;
4838 retval = 1;
4839 } else
4840 phba->sli4_hba.intr_enable = 0;
4841
4842 clear_bit(HBA_SETUP, &phba->hba_flag);
4843 return retval;
4844 }
4845
4846 /**
4847 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4848 * @phba: Pointer to HBA context object.
4849 * @mask: Bit mask to be checked.
4850 *
4851 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4852 * from the API jump table function pointer from the lpfc_hba struct.
4853 **/
4854 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4855 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4856 {
4857 return phba->lpfc_sli_brdready(phba, mask);
4858 }
4859
4860 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4861
4862 /**
4863 * lpfc_reset_barrier - Make HBA ready for HBA reset
4864 * @phba: Pointer to HBA context object.
4865 *
4866 * This function is called before resetting an HBA. This function is called
4867 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4868 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4869 void lpfc_reset_barrier(struct lpfc_hba *phba)
4870 {
4871 uint32_t __iomem *resp_buf;
4872 uint32_t __iomem *mbox_buf;
4873 volatile struct MAILBOX_word0 mbox;
4874 uint32_t hc_copy, ha_copy, resp_data;
4875 int i;
4876 uint8_t hdrtype;
4877
4878 lockdep_assert_held(&phba->hbalock);
4879
4880 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4881 if (hdrtype != PCI_HEADER_TYPE_MFD ||
4882 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4883 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4884 return;
4885
4886 /*
4887 * Tell the other part of the chip to suspend temporarily all
4888 * its DMA activity.
4889 */
4890 resp_buf = phba->MBslimaddr;
4891
4892 /* Disable the error attention */
4893 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4894 return;
4895 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4896 readl(phba->HCregaddr); /* flush */
4897 phba->link_flag |= LS_IGNORE_ERATT;
4898
4899 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4900 return;
4901 if (ha_copy & HA_ERATT) {
4902 /* Clear Chip error bit */
4903 writel(HA_ERATT, phba->HAregaddr);
4904 phba->pport->stopped = 1;
4905 }
4906
4907 mbox.word0 = 0;
4908 mbox.mbxCommand = MBX_KILL_BOARD;
4909 mbox.mbxOwner = OWN_CHIP;
4910
4911 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4912 mbox_buf = phba->MBslimaddr;
4913 writel(mbox.word0, mbox_buf);
4914
4915 for (i = 0; i < 50; i++) {
4916 if (lpfc_readl((resp_buf + 1), &resp_data))
4917 return;
4918 if (resp_data != ~(BARRIER_TEST_PATTERN))
4919 mdelay(1);
4920 else
4921 break;
4922 }
4923 resp_data = 0;
4924 if (lpfc_readl((resp_buf + 1), &resp_data))
4925 return;
4926 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4927 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4928 phba->pport->stopped)
4929 goto restore_hc;
4930 else
4931 goto clear_errat;
4932 }
4933
4934 mbox.mbxOwner = OWN_HOST;
4935 resp_data = 0;
4936 for (i = 0; i < 500; i++) {
4937 if (lpfc_readl(resp_buf, &resp_data))
4938 return;
4939 if (resp_data != mbox.word0)
4940 mdelay(1);
4941 else
4942 break;
4943 }
4944
4945 clear_errat:
4946
4947 while (++i < 500) {
4948 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4949 return;
4950 if (!(ha_copy & HA_ERATT))
4951 mdelay(1);
4952 else
4953 break;
4954 }
4955
4956 if (readl(phba->HAregaddr) & HA_ERATT) {
4957 writel(HA_ERATT, phba->HAregaddr);
4958 phba->pport->stopped = 1;
4959 }
4960
4961 restore_hc:
4962 phba->link_flag &= ~LS_IGNORE_ERATT;
4963 writel(hc_copy, phba->HCregaddr);
4964 readl(phba->HCregaddr); /* flush */
4965 }
4966
4967 /**
4968 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4969 * @phba: Pointer to HBA context object.
4970 *
4971 * This function issues a kill_board mailbox command and waits for
4972 * the error attention interrupt. This function is called for stopping
4973 * the firmware processing. The caller is not required to hold any
4974 * locks. This function calls lpfc_hba_down_post function to free
4975 * any pending commands after the kill. The function will return 1 when it
4976 * fails to kill the board else will return 0.
4977 **/
4978 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4979 lpfc_sli_brdkill(struct lpfc_hba *phba)
4980 {
4981 struct lpfc_sli *psli;
4982 LPFC_MBOXQ_t *pmb;
4983 uint32_t status;
4984 uint32_t ha_copy;
4985 int retval;
4986 int i = 0;
4987
4988 psli = &phba->sli;
4989
4990 /* Kill HBA */
4991 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4992 "0329 Kill HBA Data: x%x x%x\n",
4993 phba->pport->port_state, psli->sli_flag);
4994
4995 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4996 if (!pmb)
4997 return 1;
4998
4999 /* Disable the error attention */
5000 spin_lock_irq(&phba->hbalock);
5001 if (lpfc_readl(phba->HCregaddr, &status)) {
5002 spin_unlock_irq(&phba->hbalock);
5003 mempool_free(pmb, phba->mbox_mem_pool);
5004 return 1;
5005 }
5006 status &= ~HC_ERINT_ENA;
5007 writel(status, phba->HCregaddr);
5008 readl(phba->HCregaddr); /* flush */
5009 phba->link_flag |= LS_IGNORE_ERATT;
5010 spin_unlock_irq(&phba->hbalock);
5011
5012 lpfc_kill_board(phba, pmb);
5013 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
5014 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5015
5016 if (retval != MBX_SUCCESS) {
5017 if (retval != MBX_BUSY)
5018 mempool_free(pmb, phba->mbox_mem_pool);
5019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5020 "2752 KILL_BOARD command failed retval %d\n",
5021 retval);
5022 spin_lock_irq(&phba->hbalock);
5023 phba->link_flag &= ~LS_IGNORE_ERATT;
5024 spin_unlock_irq(&phba->hbalock);
5025 return 1;
5026 }
5027
5028 spin_lock_irq(&phba->hbalock);
5029 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5030 spin_unlock_irq(&phba->hbalock);
5031
5032 mempool_free(pmb, phba->mbox_mem_pool);
5033
5034 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5035 * attention every 100ms for 3 seconds. If we don't get ERATT after
5036 * 3 seconds we still set HBA_ERROR state because the status of the
5037 * board is now undefined.
5038 */
5039 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5040 return 1;
5041 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5042 mdelay(100);
5043 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5044 return 1;
5045 }
5046
5047 del_timer_sync(&psli->mbox_tmo);
5048 if (ha_copy & HA_ERATT) {
5049 writel(HA_ERATT, phba->HAregaddr);
5050 phba->pport->stopped = 1;
5051 }
5052 spin_lock_irq(&phba->hbalock);
5053 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5054 psli->mbox_active = NULL;
5055 phba->link_flag &= ~LS_IGNORE_ERATT;
5056 spin_unlock_irq(&phba->hbalock);
5057
5058 lpfc_hba_down_post(phba);
5059 phba->link_state = LPFC_HBA_ERROR;
5060
5061 return ha_copy & HA_ERATT ? 0 : 1;
5062 }
5063
5064 /**
5065 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5066 * @phba: Pointer to HBA context object.
5067 *
5068 * This function resets the HBA by writing HC_INITFF to the control
5069 * register. After the HBA resets, this function resets all the iocb ring
5070 * indices. This function disables PCI layer parity checking during
5071 * the reset.
5072 * This function returns 0 always.
5073 * The caller is not required to hold any locks.
5074 **/
5075 int
lpfc_sli_brdreset(struct lpfc_hba * phba)5076 lpfc_sli_brdreset(struct lpfc_hba *phba)
5077 {
5078 struct lpfc_sli *psli;
5079 struct lpfc_sli_ring *pring;
5080 uint16_t cfg_value;
5081 int i;
5082
5083 psli = &phba->sli;
5084
5085 /* Reset HBA */
5086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5087 "0325 Reset HBA Data: x%x x%x\n",
5088 (phba->pport) ? phba->pport->port_state : 0,
5089 psli->sli_flag);
5090
5091 /* perform board reset */
5092 phba->fc_eventTag = 0;
5093 phba->link_events = 0;
5094 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5095 if (phba->pport) {
5096 phba->pport->fc_myDID = 0;
5097 phba->pport->fc_prevDID = 0;
5098 }
5099
5100 /* Turn off parity checking and serr during the physical reset */
5101 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5102 return -EIO;
5103
5104 pci_write_config_word(phba->pcidev, PCI_COMMAND,
5105 (cfg_value &
5106 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5107
5108 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5109
5110 /* Now toggle INITFF bit in the Host Control Register */
5111 writel(HC_INITFF, phba->HCregaddr);
5112 mdelay(1);
5113 readl(phba->HCregaddr); /* flush */
5114 writel(0, phba->HCregaddr);
5115 readl(phba->HCregaddr); /* flush */
5116
5117 /* Restore PCI cmd register */
5118 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5119
5120 /* Initialize relevant SLI info */
5121 for (i = 0; i < psli->num_rings; i++) {
5122 pring = &psli->sli3_ring[i];
5123 pring->flag = 0;
5124 pring->sli.sli3.rspidx = 0;
5125 pring->sli.sli3.next_cmdidx = 0;
5126 pring->sli.sli3.local_getidx = 0;
5127 pring->sli.sli3.cmdidx = 0;
5128 pring->missbufcnt = 0;
5129 }
5130
5131 phba->link_state = LPFC_WARM_START;
5132 return 0;
5133 }
5134
5135 /**
5136 * lpfc_sli4_brdreset - Reset a sli-4 HBA
5137 * @phba: Pointer to HBA context object.
5138 *
5139 * This function resets a SLI4 HBA. This function disables PCI layer parity
5140 * checking during resets the device. The caller is not required to hold
5141 * any locks.
5142 *
5143 * This function returns 0 on success else returns negative error code.
5144 **/
5145 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)5146 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5147 {
5148 struct lpfc_sli *psli = &phba->sli;
5149 uint16_t cfg_value;
5150 int rc = 0;
5151
5152 /* Reset HBA */
5153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5154 "0295 Reset HBA Data: x%x x%x x%lx\n",
5155 phba->pport->port_state, psli->sli_flag,
5156 phba->hba_flag);
5157
5158 /* perform board reset */
5159 phba->fc_eventTag = 0;
5160 phba->link_events = 0;
5161 phba->pport->fc_myDID = 0;
5162 phba->pport->fc_prevDID = 0;
5163 clear_bit(HBA_SETUP, &phba->hba_flag);
5164
5165 spin_lock_irq(&phba->hbalock);
5166 psli->sli_flag &= ~(LPFC_PROCESS_LA);
5167 phba->fcf.fcf_flag = 0;
5168 spin_unlock_irq(&phba->hbalock);
5169
5170 /* Now physically reset the device */
5171 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5172 "0389 Performing PCI function reset!\n");
5173
5174 /* Turn off parity checking and serr during the physical reset */
5175 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5176 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5177 "3205 PCI read Config failed\n");
5178 return -EIO;
5179 }
5180
5181 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5182 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5183
5184 /* Perform FCoE PCI function reset before freeing queue memory */
5185 rc = lpfc_pci_function_reset(phba);
5186
5187 /* Restore PCI cmd register */
5188 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5189
5190 return rc;
5191 }
5192
5193 /**
5194 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5195 * @phba: Pointer to HBA context object.
5196 *
5197 * This function is called in the SLI initialization code path to
5198 * restart the HBA. The caller is not required to hold any lock.
5199 * This function writes MBX_RESTART mailbox command to the SLIM and
5200 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5201 * function to free any pending commands. The function enables
5202 * POST only during the first initialization. The function returns zero.
5203 * The function does not guarantee completion of MBX_RESTART mailbox
5204 * command before the return of this function.
5205 **/
5206 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)5207 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5208 {
5209 volatile struct MAILBOX_word0 mb;
5210 struct lpfc_sli *psli;
5211 void __iomem *to_slim;
5212
5213 spin_lock_irq(&phba->hbalock);
5214
5215 psli = &phba->sli;
5216
5217 /* Restart HBA */
5218 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5219 "0337 Restart HBA Data: x%x x%x\n",
5220 (phba->pport) ? phba->pport->port_state : 0,
5221 psli->sli_flag);
5222
5223 mb.word0 = 0;
5224 mb.mbxCommand = MBX_RESTART;
5225 mb.mbxHc = 1;
5226
5227 lpfc_reset_barrier(phba);
5228
5229 to_slim = phba->MBslimaddr;
5230 writel(mb.word0, to_slim);
5231 readl(to_slim); /* flush */
5232
5233 /* Only skip post after fc_ffinit is completed */
5234 if (phba->pport && phba->pport->port_state)
5235 mb.word0 = 1; /* This is really setting up word1 */
5236 else
5237 mb.word0 = 0; /* This is really setting up word1 */
5238 to_slim = phba->MBslimaddr + sizeof (uint32_t);
5239 writel(mb.word0, to_slim);
5240 readl(to_slim); /* flush */
5241
5242 lpfc_sli_brdreset(phba);
5243 if (phba->pport)
5244 phba->pport->stopped = 0;
5245 phba->link_state = LPFC_INIT_START;
5246 phba->hba_flag = 0;
5247 spin_unlock_irq(&phba->hbalock);
5248
5249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5250 psli->stats_start = ktime_get_seconds();
5251
5252 /* Give the INITFF and Post time to settle. */
5253 mdelay(100);
5254
5255 lpfc_hba_down_post(phba);
5256
5257 return 0;
5258 }
5259
5260 /**
5261 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5262 * @phba: Pointer to HBA context object.
5263 *
5264 * This function is called in the SLI initialization code path to restart
5265 * a SLI4 HBA. The caller is not required to hold any lock.
5266 * At the end of the function, it calls lpfc_hba_down_post function to
5267 * free any pending commands.
5268 **/
5269 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)5270 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5271 {
5272 struct lpfc_sli *psli = &phba->sli;
5273 int rc;
5274
5275 /* Restart HBA */
5276 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5277 "0296 Restart HBA Data: x%x x%x\n",
5278 phba->pport->port_state, psli->sli_flag);
5279
5280 lpfc_sli4_queue_unset(phba);
5281
5282 rc = lpfc_sli4_brdreset(phba);
5283 if (rc) {
5284 phba->link_state = LPFC_HBA_ERROR;
5285 goto hba_down_queue;
5286 }
5287
5288 spin_lock_irq(&phba->hbalock);
5289 phba->pport->stopped = 0;
5290 phba->link_state = LPFC_INIT_START;
5291 phba->hba_flag = 0;
5292 /* Preserve FA-PWWN expectation */
5293 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5294 spin_unlock_irq(&phba->hbalock);
5295
5296 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5297 psli->stats_start = ktime_get_seconds();
5298
5299 hba_down_queue:
5300 lpfc_hba_down_post(phba);
5301 lpfc_sli4_queue_destroy(phba);
5302
5303 return rc;
5304 }
5305
5306 /**
5307 * lpfc_sli_brdrestart - Wrapper func for restarting hba
5308 * @phba: Pointer to HBA context object.
5309 *
5310 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5311 * API jump table function pointer from the lpfc_hba struct.
5312 **/
5313 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)5314 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5315 {
5316 return phba->lpfc_sli_brdrestart(phba);
5317 }
5318
5319 /**
5320 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5321 * @phba: Pointer to HBA context object.
5322 *
5323 * This function is called after a HBA restart to wait for successful
5324 * restart of the HBA. Successful restart of the HBA is indicated by
5325 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5326 * iteration, the function will restart the HBA again. The function returns
5327 * zero if HBA successfully restarted else returns negative error code.
5328 **/
5329 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)5330 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5331 {
5332 uint32_t status, i = 0;
5333
5334 /* Read the HBA Host Status Register */
5335 if (lpfc_readl(phba->HSregaddr, &status))
5336 return -EIO;
5337
5338 /* Check status register to see what current state is */
5339 i = 0;
5340 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5341
5342 /* Check every 10ms for 10 retries, then every 100ms for 90
5343 * retries, then every 1 sec for 50 retires for a total of
5344 * ~60 seconds before reset the board again and check every
5345 * 1 sec for 50 retries. The up to 60 seconds before the
5346 * board ready is required by the Falcon FIPS zeroization
5347 * complete, and any reset the board in between shall cause
5348 * restart of zeroization, further delay the board ready.
5349 */
5350 if (i++ >= 200) {
5351 /* Adapter failed to init, timeout, status reg
5352 <status> */
5353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5354 "0436 Adapter failed to init, "
5355 "timeout, status reg x%x, "
5356 "FW Data: A8 x%x AC x%x\n", status,
5357 readl(phba->MBslimaddr + 0xa8),
5358 readl(phba->MBslimaddr + 0xac));
5359 phba->link_state = LPFC_HBA_ERROR;
5360 return -ETIMEDOUT;
5361 }
5362
5363 /* Check to see if any errors occurred during init */
5364 if (status & HS_FFERM) {
5365 /* ERROR: During chipset initialization */
5366 /* Adapter failed to init, chipset, status reg
5367 <status> */
5368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5369 "0437 Adapter failed to init, "
5370 "chipset, status reg x%x, "
5371 "FW Data: A8 x%x AC x%x\n", status,
5372 readl(phba->MBslimaddr + 0xa8),
5373 readl(phba->MBslimaddr + 0xac));
5374 phba->link_state = LPFC_HBA_ERROR;
5375 return -EIO;
5376 }
5377
5378 if (i <= 10)
5379 msleep(10);
5380 else if (i <= 100)
5381 msleep(100);
5382 else
5383 msleep(1000);
5384
5385 if (i == 150) {
5386 /* Do post */
5387 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5388 lpfc_sli_brdrestart(phba);
5389 }
5390 /* Read the HBA Host Status Register */
5391 if (lpfc_readl(phba->HSregaddr, &status))
5392 return -EIO;
5393 }
5394
5395 /* Check to see if any errors occurred during init */
5396 if (status & HS_FFERM) {
5397 /* ERROR: During chipset initialization */
5398 /* Adapter failed to init, chipset, status reg <status> */
5399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5400 "0438 Adapter failed to init, chipset, "
5401 "status reg x%x, "
5402 "FW Data: A8 x%x AC x%x\n", status,
5403 readl(phba->MBslimaddr + 0xa8),
5404 readl(phba->MBslimaddr + 0xac));
5405 phba->link_state = LPFC_HBA_ERROR;
5406 return -EIO;
5407 }
5408
5409 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5410
5411 /* Clear all interrupt enable conditions */
5412 writel(0, phba->HCregaddr);
5413 readl(phba->HCregaddr); /* flush */
5414
5415 /* setup host attn register */
5416 writel(0xffffffff, phba->HAregaddr);
5417 readl(phba->HAregaddr); /* flush */
5418 return 0;
5419 }
5420
5421 /**
5422 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5423 *
5424 * This function calculates and returns the number of HBQs required to be
5425 * configured.
5426 **/
5427 int
lpfc_sli_hbq_count(void)5428 lpfc_sli_hbq_count(void)
5429 {
5430 return ARRAY_SIZE(lpfc_hbq_defs);
5431 }
5432
5433 /**
5434 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5435 *
5436 * This function adds the number of hbq entries in every HBQ to get
5437 * the total number of hbq entries required for the HBA and returns
5438 * the total count.
5439 **/
5440 static int
lpfc_sli_hbq_entry_count(void)5441 lpfc_sli_hbq_entry_count(void)
5442 {
5443 int hbq_count = lpfc_sli_hbq_count();
5444 int count = 0;
5445 int i;
5446
5447 for (i = 0; i < hbq_count; ++i)
5448 count += lpfc_hbq_defs[i]->entry_count;
5449 return count;
5450 }
5451
5452 /**
5453 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5454 *
5455 * This function calculates amount of memory required for all hbq entries
5456 * to be configured and returns the total memory required.
5457 **/
5458 int
lpfc_sli_hbq_size(void)5459 lpfc_sli_hbq_size(void)
5460 {
5461 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5462 }
5463
5464 /**
5465 * lpfc_sli_hbq_setup - configure and initialize HBQs
5466 * @phba: Pointer to HBA context object.
5467 *
5468 * This function is called during the SLI initialization to configure
5469 * all the HBQs and post buffers to the HBQ. The caller is not
5470 * required to hold any locks. This function will return zero if successful
5471 * else it will return negative error code.
5472 **/
5473 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)5474 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5475 {
5476 int hbq_count = lpfc_sli_hbq_count();
5477 LPFC_MBOXQ_t *pmb;
5478 MAILBOX_t *pmbox;
5479 uint32_t hbqno;
5480 uint32_t hbq_entry_index;
5481
5482 /* Get a Mailbox buffer to setup mailbox
5483 * commands for HBA initialization
5484 */
5485 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5486
5487 if (!pmb)
5488 return -ENOMEM;
5489
5490 pmbox = &pmb->u.mb;
5491
5492 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
5493 phba->link_state = LPFC_INIT_MBX_CMDS;
5494 phba->hbq_in_use = 1;
5495
5496 hbq_entry_index = 0;
5497 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5498 phba->hbqs[hbqno].next_hbqPutIdx = 0;
5499 phba->hbqs[hbqno].hbqPutIdx = 0;
5500 phba->hbqs[hbqno].local_hbqGetIdx = 0;
5501 phba->hbqs[hbqno].entry_count =
5502 lpfc_hbq_defs[hbqno]->entry_count;
5503 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5504 hbq_entry_index, pmb);
5505 hbq_entry_index += phba->hbqs[hbqno].entry_count;
5506
5507 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5508 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5509 mbxStatus <status>, ring <num> */
5510
5511 lpfc_printf_log(phba, KERN_ERR,
5512 LOG_SLI | LOG_VPORT,
5513 "1805 Adapter failed to init. "
5514 "Data: x%x x%x x%x\n",
5515 pmbox->mbxCommand,
5516 pmbox->mbxStatus, hbqno);
5517
5518 phba->link_state = LPFC_HBA_ERROR;
5519 mempool_free(pmb, phba->mbox_mem_pool);
5520 return -ENXIO;
5521 }
5522 }
5523 phba->hbq_count = hbq_count;
5524
5525 mempool_free(pmb, phba->mbox_mem_pool);
5526
5527 /* Initially populate or replenish the HBQs */
5528 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5529 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5530 return 0;
5531 }
5532
5533 /**
5534 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5535 * @phba: Pointer to HBA context object.
5536 *
5537 * This function is called during the SLI initialization to configure
5538 * all the HBQs and post buffers to the HBQ. The caller is not
5539 * required to hold any locks. This function will return zero if successful
5540 * else it will return negative error code.
5541 **/
5542 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)5543 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5544 {
5545 phba->hbq_in_use = 1;
5546 /**
5547 * Specific case when the MDS diagnostics is enabled and supported.
5548 * The receive buffer count is truncated to manage the incoming
5549 * traffic.
5550 **/
5551 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5552 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5553 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5554 else
5555 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5556 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5557 phba->hbq_count = 1;
5558 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5559 /* Initially populate or replenish the HBQs */
5560 return 0;
5561 }
5562
5563 /**
5564 * lpfc_sli_config_port - Issue config port mailbox command
5565 * @phba: Pointer to HBA context object.
5566 * @sli_mode: sli mode - 2/3
5567 *
5568 * This function is called by the sli initialization code path
5569 * to issue config_port mailbox command. This function restarts the
5570 * HBA firmware and issues a config_port mailbox command to configure
5571 * the SLI interface in the sli mode specified by sli_mode
5572 * variable. The caller is not required to hold any locks.
5573 * The function returns 0 if successful, else returns negative error
5574 * code.
5575 **/
5576 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)5577 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5578 {
5579 LPFC_MBOXQ_t *pmb;
5580 uint32_t resetcount = 0, rc = 0, done = 0;
5581
5582 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5583 if (!pmb) {
5584 phba->link_state = LPFC_HBA_ERROR;
5585 return -ENOMEM;
5586 }
5587
5588 phba->sli_rev = sli_mode;
5589 while (resetcount < 2 && !done) {
5590 spin_lock_irq(&phba->hbalock);
5591 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5592 spin_unlock_irq(&phba->hbalock);
5593 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5594 lpfc_sli_brdrestart(phba);
5595 rc = lpfc_sli_chipset_init(phba);
5596 if (rc)
5597 break;
5598
5599 spin_lock_irq(&phba->hbalock);
5600 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5601 spin_unlock_irq(&phba->hbalock);
5602 resetcount++;
5603
5604 /* Call pre CONFIG_PORT mailbox command initialization. A
5605 * value of 0 means the call was successful. Any other
5606 * nonzero value is a failure, but if ERESTART is returned,
5607 * the driver may reset the HBA and try again.
5608 */
5609 rc = lpfc_config_port_prep(phba);
5610 if (rc == -ERESTART) {
5611 phba->link_state = LPFC_LINK_UNKNOWN;
5612 continue;
5613 } else if (rc)
5614 break;
5615
5616 phba->link_state = LPFC_INIT_MBX_CMDS;
5617 lpfc_config_port(phba, pmb);
5618 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5619 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5620 LPFC_SLI3_HBQ_ENABLED |
5621 LPFC_SLI3_CRP_ENABLED |
5622 LPFC_SLI3_DSS_ENABLED);
5623 if (rc != MBX_SUCCESS) {
5624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5625 "0442 Adapter failed to init, mbxCmd x%x "
5626 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5627 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5628 spin_lock_irq(&phba->hbalock);
5629 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5630 spin_unlock_irq(&phba->hbalock);
5631 rc = -ENXIO;
5632 } else {
5633 /* Allow asynchronous mailbox command to go through */
5634 spin_lock_irq(&phba->hbalock);
5635 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5636 spin_unlock_irq(&phba->hbalock);
5637 done = 1;
5638
5639 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5640 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5641 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5642 "3110 Port did not grant ASABT\n");
5643 }
5644 }
5645 if (!done) {
5646 rc = -EINVAL;
5647 goto do_prep_failed;
5648 }
5649 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5650 if (!pmb->u.mb.un.varCfgPort.cMA) {
5651 rc = -ENXIO;
5652 goto do_prep_failed;
5653 }
5654 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5655 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5656 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5657 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5658 phba->max_vpi : phba->max_vports;
5659
5660 } else
5661 phba->max_vpi = 0;
5662 if (pmb->u.mb.un.varCfgPort.gerbm)
5663 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5664 if (pmb->u.mb.un.varCfgPort.gcrp)
5665 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5666
5667 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5668 phba->port_gp = phba->mbox->us.s3_pgp.port;
5669
5670 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5671 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5672 phba->cfg_enable_bg = 0;
5673 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5675 "0443 Adapter did not grant "
5676 "BlockGuard\n");
5677 }
5678 }
5679 } else {
5680 phba->hbq_get = NULL;
5681 phba->port_gp = phba->mbox->us.s2.port;
5682 phba->max_vpi = 0;
5683 }
5684 do_prep_failed:
5685 mempool_free(pmb, phba->mbox_mem_pool);
5686 return rc;
5687 }
5688
5689
5690 /**
5691 * lpfc_sli_hba_setup - SLI initialization function
5692 * @phba: Pointer to HBA context object.
5693 *
5694 * This function is the main SLI initialization function. This function
5695 * is called by the HBA initialization code, HBA reset code and HBA
5696 * error attention handler code. Caller is not required to hold any
5697 * locks. This function issues config_port mailbox command to configure
5698 * the SLI, setup iocb rings and HBQ rings. In the end the function
5699 * calls the config_port_post function to issue init_link mailbox
5700 * command and to start the discovery. The function will return zero
5701 * if successful, else it will return negative error code.
5702 **/
5703 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5704 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5705 {
5706 uint32_t rc;
5707 int i;
5708 int longs;
5709
5710 /* Enable ISR already does config_port because of config_msi mbx */
5711 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) {
5712 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5713 if (rc)
5714 return -EIO;
5715 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
5716 }
5717 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5718
5719 if (phba->sli_rev == 3) {
5720 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5721 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5722 } else {
5723 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5724 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5725 phba->sli3_options = 0;
5726 }
5727
5728 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5729 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5730 phba->sli_rev, phba->max_vpi);
5731 rc = lpfc_sli_ring_map(phba);
5732
5733 if (rc)
5734 goto lpfc_sli_hba_setup_error;
5735
5736 /* Initialize VPIs. */
5737 if (phba->sli_rev == LPFC_SLI_REV3) {
5738 /*
5739 * The VPI bitmask and physical ID array are allocated
5740 * and initialized once only - at driver load. A port
5741 * reset doesn't need to reinitialize this memory.
5742 */
5743 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5744 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5745 phba->vpi_bmask = kcalloc(longs,
5746 sizeof(unsigned long),
5747 GFP_KERNEL);
5748 if (!phba->vpi_bmask) {
5749 rc = -ENOMEM;
5750 goto lpfc_sli_hba_setup_error;
5751 }
5752
5753 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5754 sizeof(uint16_t),
5755 GFP_KERNEL);
5756 if (!phba->vpi_ids) {
5757 kfree(phba->vpi_bmask);
5758 rc = -ENOMEM;
5759 goto lpfc_sli_hba_setup_error;
5760 }
5761 for (i = 0; i < phba->max_vpi; i++)
5762 phba->vpi_ids[i] = i;
5763 }
5764 }
5765
5766 /* Init HBQs */
5767 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5768 rc = lpfc_sli_hbq_setup(phba);
5769 if (rc)
5770 goto lpfc_sli_hba_setup_error;
5771 }
5772 spin_lock_irq(&phba->hbalock);
5773 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5774 spin_unlock_irq(&phba->hbalock);
5775
5776 rc = lpfc_config_port_post(phba);
5777 if (rc)
5778 goto lpfc_sli_hba_setup_error;
5779
5780 return rc;
5781
5782 lpfc_sli_hba_setup_error:
5783 phba->link_state = LPFC_HBA_ERROR;
5784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5785 "0445 Firmware initialization failed\n");
5786 return rc;
5787 }
5788
5789 /**
5790 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5791 * @phba: Pointer to HBA context object.
5792 *
5793 * This function issue a dump mailbox command to read config region
5794 * 23 and parse the records in the region and populate driver
5795 * data structure.
5796 **/
5797 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5798 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5799 {
5800 LPFC_MBOXQ_t *mboxq;
5801 struct lpfc_dmabuf *mp;
5802 struct lpfc_mqe *mqe;
5803 uint32_t data_length;
5804 int rc;
5805
5806 /* Program the default value of vlan_id and fc_map */
5807 phba->valid_vlan = 0;
5808 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5809 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5810 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5811
5812 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5813 if (!mboxq)
5814 return -ENOMEM;
5815
5816 mqe = &mboxq->u.mqe;
5817 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5818 rc = -ENOMEM;
5819 goto out_free_mboxq;
5820 }
5821
5822 mp = mboxq->ctx_buf;
5823 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5824
5825 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5826 "(%d):2571 Mailbox cmd x%x Status x%x "
5827 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5828 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5829 "CQ: x%x x%x x%x x%x\n",
5830 mboxq->vport ? mboxq->vport->vpi : 0,
5831 bf_get(lpfc_mqe_command, mqe),
5832 bf_get(lpfc_mqe_status, mqe),
5833 mqe->un.mb_words[0], mqe->un.mb_words[1],
5834 mqe->un.mb_words[2], mqe->un.mb_words[3],
5835 mqe->un.mb_words[4], mqe->un.mb_words[5],
5836 mqe->un.mb_words[6], mqe->un.mb_words[7],
5837 mqe->un.mb_words[8], mqe->un.mb_words[9],
5838 mqe->un.mb_words[10], mqe->un.mb_words[11],
5839 mqe->un.mb_words[12], mqe->un.mb_words[13],
5840 mqe->un.mb_words[14], mqe->un.mb_words[15],
5841 mqe->un.mb_words[16], mqe->un.mb_words[50],
5842 mboxq->mcqe.word0,
5843 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5844 mboxq->mcqe.trailer);
5845
5846 if (rc) {
5847 rc = -EIO;
5848 goto out_free_mboxq;
5849 }
5850 data_length = mqe->un.mb_words[5];
5851 if (data_length > DMP_RGN23_SIZE) {
5852 rc = -EIO;
5853 goto out_free_mboxq;
5854 }
5855
5856 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5857 rc = 0;
5858
5859 out_free_mboxq:
5860 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5861 return rc;
5862 }
5863
5864 /**
5865 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5866 * @phba: pointer to lpfc hba data structure.
5867 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5868 * @vpd: pointer to the memory to hold resulting port vpd data.
5869 * @vpd_size: On input, the number of bytes allocated to @vpd.
5870 * On output, the number of data bytes in @vpd.
5871 *
5872 * This routine executes a READ_REV SLI4 mailbox command. In
5873 * addition, this routine gets the port vpd data.
5874 *
5875 * Return codes
5876 * 0 - successful
5877 * -ENOMEM - could not allocated memory.
5878 **/
5879 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5880 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5881 uint8_t *vpd, uint32_t *vpd_size)
5882 {
5883 int rc = 0;
5884 uint32_t dma_size;
5885 struct lpfc_dmabuf *dmabuf;
5886 struct lpfc_mqe *mqe;
5887
5888 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5889 if (!dmabuf)
5890 return -ENOMEM;
5891
5892 /*
5893 * Get a DMA buffer for the vpd data resulting from the READ_REV
5894 * mailbox command.
5895 */
5896 dma_size = *vpd_size;
5897 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5898 &dmabuf->phys, GFP_KERNEL);
5899 if (!dmabuf->virt) {
5900 kfree(dmabuf);
5901 return -ENOMEM;
5902 }
5903
5904 /*
5905 * The SLI4 implementation of READ_REV conflicts at word1,
5906 * bits 31:16 and SLI4 adds vpd functionality not present
5907 * in SLI3. This code corrects the conflicts.
5908 */
5909 lpfc_read_rev(phba, mboxq);
5910 mqe = &mboxq->u.mqe;
5911 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5912 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5913 mqe->un.read_rev.word1 &= 0x0000FFFF;
5914 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5915 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5916
5917 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5918 if (rc) {
5919 dma_free_coherent(&phba->pcidev->dev, dma_size,
5920 dmabuf->virt, dmabuf->phys);
5921 kfree(dmabuf);
5922 return -EIO;
5923 }
5924
5925 /*
5926 * The available vpd length cannot be bigger than the
5927 * DMA buffer passed to the port. Catch the less than
5928 * case and update the caller's size.
5929 */
5930 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5931 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5932
5933 memcpy(vpd, dmabuf->virt, *vpd_size);
5934
5935 dma_free_coherent(&phba->pcidev->dev, dma_size,
5936 dmabuf->virt, dmabuf->phys);
5937 kfree(dmabuf);
5938 return 0;
5939 }
5940
5941 /**
5942 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5943 * @phba: pointer to lpfc hba data structure.
5944 *
5945 * This routine retrieves SLI4 device physical port name this PCI function
5946 * is attached to.
5947 *
5948 * Return codes
5949 * 0 - successful
5950 * otherwise - failed to retrieve controller attributes
5951 **/
5952 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5953 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5954 {
5955 LPFC_MBOXQ_t *mboxq;
5956 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5957 struct lpfc_controller_attribute *cntl_attr;
5958 void *virtaddr = NULL;
5959 uint32_t alloclen, reqlen;
5960 uint32_t shdr_status, shdr_add_status;
5961 union lpfc_sli4_cfg_shdr *shdr;
5962 int rc;
5963
5964 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5965 if (!mboxq)
5966 return -ENOMEM;
5967
5968 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5969 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5970 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5971 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5972 LPFC_SLI4_MBX_NEMBED);
5973
5974 if (alloclen < reqlen) {
5975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5976 "3084 Allocated DMA memory size (%d) is "
5977 "less than the requested DMA memory size "
5978 "(%d)\n", alloclen, reqlen);
5979 rc = -ENOMEM;
5980 goto out_free_mboxq;
5981 }
5982 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5983 virtaddr = mboxq->sge_array->addr[0];
5984 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5985 shdr = &mbx_cntl_attr->cfg_shdr;
5986 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5987 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5988 if (shdr_status || shdr_add_status || rc) {
5989 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5990 "3085 Mailbox x%x (x%x/x%x) failed, "
5991 "rc:x%x, status:x%x, add_status:x%x\n",
5992 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5993 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5994 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5995 rc, shdr_status, shdr_add_status);
5996 rc = -ENXIO;
5997 goto out_free_mboxq;
5998 }
5999
6000 cntl_attr = &mbx_cntl_attr->cntl_attr;
6001 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
6002 phba->sli4_hba.lnk_info.lnk_tp =
6003 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
6004 phba->sli4_hba.lnk_info.lnk_no =
6005 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
6006 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
6007 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6008
6009 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
6010 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
6011 sizeof(phba->BIOSVersion));
6012
6013 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6014 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6015 "flash_id: x%02x, asic_rev: x%02x\n",
6016 phba->sli4_hba.lnk_info.lnk_tp,
6017 phba->sli4_hba.lnk_info.lnk_no,
6018 phba->BIOSVersion, phba->sli4_hba.flash_id,
6019 phba->sli4_hba.asic_rev);
6020 out_free_mboxq:
6021 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6022 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6023 else
6024 mempool_free(mboxq, phba->mbox_mem_pool);
6025 return rc;
6026 }
6027
6028 /**
6029 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6030 * @phba: pointer to lpfc hba data structure.
6031 *
6032 * This routine retrieves SLI4 device physical port name this PCI function
6033 * is attached to.
6034 *
6035 * Return codes
6036 * 0 - successful
6037 * otherwise - failed to retrieve physical port name
6038 **/
6039 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)6040 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6041 {
6042 LPFC_MBOXQ_t *mboxq;
6043 struct lpfc_mbx_get_port_name *get_port_name;
6044 uint32_t shdr_status, shdr_add_status;
6045 union lpfc_sli4_cfg_shdr *shdr;
6046 char cport_name = 0;
6047 int rc;
6048
6049 /* We assume nothing at this point */
6050 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6051 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6052
6053 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6054 if (!mboxq)
6055 return -ENOMEM;
6056 /* obtain link type and link number via READ_CONFIG */
6057 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6058 lpfc_sli4_read_config(phba);
6059
6060 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6061 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6062
6063 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6064 goto retrieve_ppname;
6065
6066 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6067 rc = lpfc_sli4_get_ctl_attr(phba);
6068 if (rc)
6069 goto out_free_mboxq;
6070
6071 retrieve_ppname:
6072 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6073 LPFC_MBOX_OPCODE_GET_PORT_NAME,
6074 sizeof(struct lpfc_mbx_get_port_name) -
6075 sizeof(struct lpfc_sli4_cfg_mhdr),
6076 LPFC_SLI4_MBX_EMBED);
6077 get_port_name = &mboxq->u.mqe.un.get_port_name;
6078 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6079 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6080 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6081 phba->sli4_hba.lnk_info.lnk_tp);
6082 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6083 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6084 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6085 if (shdr_status || shdr_add_status || rc) {
6086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6087 "3087 Mailbox x%x (x%x/x%x) failed: "
6088 "rc:x%x, status:x%x, add_status:x%x\n",
6089 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6090 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6091 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6092 rc, shdr_status, shdr_add_status);
6093 rc = -ENXIO;
6094 goto out_free_mboxq;
6095 }
6096 switch (phba->sli4_hba.lnk_info.lnk_no) {
6097 case LPFC_LINK_NUMBER_0:
6098 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6099 &get_port_name->u.response);
6100 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6101 break;
6102 case LPFC_LINK_NUMBER_1:
6103 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6104 &get_port_name->u.response);
6105 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6106 break;
6107 case LPFC_LINK_NUMBER_2:
6108 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6109 &get_port_name->u.response);
6110 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6111 break;
6112 case LPFC_LINK_NUMBER_3:
6113 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6114 &get_port_name->u.response);
6115 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6116 break;
6117 default:
6118 break;
6119 }
6120
6121 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6122 phba->Port[0] = cport_name;
6123 phba->Port[1] = '\0';
6124 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6125 "3091 SLI get port name: %s\n", phba->Port);
6126 }
6127
6128 out_free_mboxq:
6129 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6130 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6131 else
6132 mempool_free(mboxq, phba->mbox_mem_pool);
6133 return rc;
6134 }
6135
6136 /**
6137 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6138 * @phba: pointer to lpfc hba data structure.
6139 *
6140 * This routine is called to explicitly arm the SLI4 device's completion and
6141 * event queues
6142 **/
6143 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)6144 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6145 {
6146 int qidx;
6147 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6148 struct lpfc_sli4_hdw_queue *qp;
6149 struct lpfc_queue *eq;
6150
6151 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6152 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6153 if (sli4_hba->nvmels_cq)
6154 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6155 LPFC_QUEUE_REARM);
6156
6157 if (sli4_hba->hdwq) {
6158 /* Loop thru all Hardware Queues */
6159 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6160 qp = &sli4_hba->hdwq[qidx];
6161 /* ARM the corresponding CQ */
6162 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6163 LPFC_QUEUE_REARM);
6164 }
6165
6166 /* Loop thru all IRQ vectors */
6167 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6168 eq = sli4_hba->hba_eq_hdl[qidx].eq;
6169 /* ARM the corresponding EQ */
6170 sli4_hba->sli4_write_eq_db(phba, eq,
6171 0, LPFC_QUEUE_REARM);
6172 }
6173 }
6174
6175 if (phba->nvmet_support) {
6176 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6177 sli4_hba->sli4_write_cq_db(phba,
6178 sli4_hba->nvmet_cqset[qidx], 0,
6179 LPFC_QUEUE_REARM);
6180 }
6181 }
6182 }
6183
6184 /**
6185 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6186 * @phba: Pointer to HBA context object.
6187 * @type: The resource extent type.
6188 * @extnt_count: buffer to hold port available extent count.
6189 * @extnt_size: buffer to hold element count per extent.
6190 *
6191 * This function calls the port and retrievs the number of available
6192 * extents and their size for a particular extent type.
6193 *
6194 * Returns: 0 if successful. Nonzero otherwise.
6195 **/
6196 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)6197 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6198 uint16_t *extnt_count, uint16_t *extnt_size)
6199 {
6200 int rc = 0;
6201 uint32_t length;
6202 uint32_t mbox_tmo;
6203 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6204 LPFC_MBOXQ_t *mbox;
6205
6206 *extnt_count = 0;
6207 *extnt_size = 0;
6208
6209 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6210 if (!mbox)
6211 return -ENOMEM;
6212
6213 /* Find out how many extents are available for this resource type */
6214 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6215 sizeof(struct lpfc_sli4_cfg_mhdr));
6216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6217 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6218 length, LPFC_SLI4_MBX_EMBED);
6219
6220 /* Send an extents count of 0 - the GET doesn't use it. */
6221 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6222 LPFC_SLI4_MBX_EMBED);
6223 if (unlikely(rc)) {
6224 rc = -EIO;
6225 goto err_exit;
6226 }
6227
6228 if (!phba->sli4_hba.intr_enable)
6229 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6230 else {
6231 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6232 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6233 }
6234 if (unlikely(rc)) {
6235 rc = -EIO;
6236 goto err_exit;
6237 }
6238
6239 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6240 if (bf_get(lpfc_mbox_hdr_status,
6241 &rsrc_info->header.cfg_shdr.response)) {
6242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6243 "2930 Failed to get resource extents "
6244 "Status 0x%x Add'l Status 0x%x\n",
6245 bf_get(lpfc_mbox_hdr_status,
6246 &rsrc_info->header.cfg_shdr.response),
6247 bf_get(lpfc_mbox_hdr_add_status,
6248 &rsrc_info->header.cfg_shdr.response));
6249 rc = -EIO;
6250 goto err_exit;
6251 }
6252
6253 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6254 &rsrc_info->u.rsp);
6255 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6256 &rsrc_info->u.rsp);
6257
6258 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6259 "3162 Retrieved extents type-%d from port: count:%d, "
6260 "size:%d\n", type, *extnt_count, *extnt_size);
6261
6262 err_exit:
6263 mempool_free(mbox, phba->mbox_mem_pool);
6264 return rc;
6265 }
6266
6267 /**
6268 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6269 * @phba: Pointer to HBA context object.
6270 * @type: The extent type to check.
6271 *
6272 * This function reads the current available extents from the port and checks
6273 * if the extent count or extent size has changed since the last access.
6274 * Callers use this routine post port reset to understand if there is a
6275 * extent reprovisioning requirement.
6276 *
6277 * Returns:
6278 * -Error: error indicates problem.
6279 * 1: Extent count or size has changed.
6280 * 0: No changes.
6281 **/
6282 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)6283 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6284 {
6285 uint16_t curr_ext_cnt, rsrc_ext_cnt;
6286 uint16_t size_diff, rsrc_ext_size;
6287 int rc = 0;
6288 struct lpfc_rsrc_blks *rsrc_entry;
6289 struct list_head *rsrc_blk_list = NULL;
6290
6291 size_diff = 0;
6292 curr_ext_cnt = 0;
6293 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6294 &rsrc_ext_cnt,
6295 &rsrc_ext_size);
6296 if (unlikely(rc))
6297 return -EIO;
6298
6299 switch (type) {
6300 case LPFC_RSC_TYPE_FCOE_RPI:
6301 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6302 break;
6303 case LPFC_RSC_TYPE_FCOE_VPI:
6304 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6305 break;
6306 case LPFC_RSC_TYPE_FCOE_XRI:
6307 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6308 break;
6309 case LPFC_RSC_TYPE_FCOE_VFI:
6310 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6311 break;
6312 default:
6313 break;
6314 }
6315
6316 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6317 curr_ext_cnt++;
6318 if (rsrc_entry->rsrc_size != rsrc_ext_size)
6319 size_diff++;
6320 }
6321
6322 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6323 rc = 1;
6324
6325 return rc;
6326 }
6327
6328 /**
6329 * lpfc_sli4_cfg_post_extnts -
6330 * @phba: Pointer to HBA context object.
6331 * @extnt_cnt: number of available extents.
6332 * @type: the extent type (rpi, xri, vfi, vpi).
6333 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6334 * @mbox: pointer to the caller's allocated mailbox structure.
6335 *
6336 * This function executes the extents allocation request. It also
6337 * takes care of the amount of memory needed to allocate or get the
6338 * allocated extents. It is the caller's responsibility to evaluate
6339 * the response.
6340 *
6341 * Returns:
6342 * -Error: Error value describes the condition found.
6343 * 0: if successful
6344 **/
6345 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)6346 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6347 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6348 {
6349 int rc = 0;
6350 uint32_t req_len;
6351 uint32_t emb_len;
6352 uint32_t alloc_len, mbox_tmo;
6353
6354 /* Calculate the total requested length of the dma memory */
6355 req_len = extnt_cnt * sizeof(uint16_t);
6356
6357 /*
6358 * Calculate the size of an embedded mailbox. The uint32_t
6359 * accounts for extents-specific word.
6360 */
6361 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6362 sizeof(uint32_t);
6363
6364 /*
6365 * Presume the allocation and response will fit into an embedded
6366 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6367 */
6368 *emb = LPFC_SLI4_MBX_EMBED;
6369 if (req_len > emb_len) {
6370 req_len = extnt_cnt * sizeof(uint16_t) +
6371 sizeof(union lpfc_sli4_cfg_shdr) +
6372 sizeof(uint32_t);
6373 *emb = LPFC_SLI4_MBX_NEMBED;
6374 }
6375
6376 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6377 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6378 req_len, *emb);
6379 if (alloc_len < req_len) {
6380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6381 "2982 Allocated DMA memory size (x%x) is "
6382 "less than the requested DMA memory "
6383 "size (x%x)\n", alloc_len, req_len);
6384 return -ENOMEM;
6385 }
6386 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6387 if (unlikely(rc))
6388 return -EIO;
6389
6390 if (!phba->sli4_hba.intr_enable)
6391 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6392 else {
6393 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6394 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6395 }
6396
6397 if (unlikely(rc))
6398 rc = -EIO;
6399 return rc;
6400 }
6401
6402 /**
6403 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6404 * @phba: Pointer to HBA context object.
6405 * @type: The resource extent type to allocate.
6406 *
6407 * This function allocates the number of elements for the specified
6408 * resource type.
6409 **/
6410 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)6411 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6412 {
6413 bool emb = false;
6414 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6415 uint16_t rsrc_id, rsrc_start, j, k;
6416 uint16_t *ids;
6417 int i, rc;
6418 unsigned long longs;
6419 unsigned long *bmask;
6420 struct lpfc_rsrc_blks *rsrc_blks;
6421 LPFC_MBOXQ_t *mbox;
6422 uint32_t length;
6423 struct lpfc_id_range *id_array = NULL;
6424 void *virtaddr = NULL;
6425 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6426 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6427 struct list_head *ext_blk_list;
6428
6429 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6430 &rsrc_cnt,
6431 &rsrc_size);
6432 if (unlikely(rc))
6433 return -EIO;
6434
6435 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6437 "3009 No available Resource Extents "
6438 "for resource type 0x%x: Count: 0x%x, "
6439 "Size 0x%x\n", type, rsrc_cnt,
6440 rsrc_size);
6441 return -ENOMEM;
6442 }
6443
6444 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6445 "2903 Post resource extents type-0x%x: "
6446 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6447
6448 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6449 if (!mbox)
6450 return -ENOMEM;
6451
6452 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6453 if (unlikely(rc)) {
6454 rc = -EIO;
6455 goto err_exit;
6456 }
6457
6458 /*
6459 * Figure out where the response is located. Then get local pointers
6460 * to the response data. The port does not guarantee to respond to
6461 * all extents counts request so update the local variable with the
6462 * allocated count from the port.
6463 */
6464 if (emb == LPFC_SLI4_MBX_EMBED) {
6465 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6466 id_array = &rsrc_ext->u.rsp.id[0];
6467 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6468 } else {
6469 virtaddr = mbox->sge_array->addr[0];
6470 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6471 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6472 id_array = &n_rsrc->id;
6473 }
6474
6475 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6476 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6477
6478 /*
6479 * Based on the resource size and count, correct the base and max
6480 * resource values.
6481 */
6482 length = sizeof(struct lpfc_rsrc_blks);
6483 switch (type) {
6484 case LPFC_RSC_TYPE_FCOE_RPI:
6485 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6486 sizeof(unsigned long),
6487 GFP_KERNEL);
6488 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6489 rc = -ENOMEM;
6490 goto err_exit;
6491 }
6492 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6493 sizeof(uint16_t),
6494 GFP_KERNEL);
6495 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6496 kfree(phba->sli4_hba.rpi_bmask);
6497 rc = -ENOMEM;
6498 goto err_exit;
6499 }
6500
6501 /*
6502 * The next_rpi was initialized with the maximum available
6503 * count but the port may allocate a smaller number. Catch
6504 * that case and update the next_rpi.
6505 */
6506 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6507
6508 /* Initialize local ptrs for common extent processing later. */
6509 bmask = phba->sli4_hba.rpi_bmask;
6510 ids = phba->sli4_hba.rpi_ids;
6511 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6512 break;
6513 case LPFC_RSC_TYPE_FCOE_VPI:
6514 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6515 GFP_KERNEL);
6516 if (unlikely(!phba->vpi_bmask)) {
6517 rc = -ENOMEM;
6518 goto err_exit;
6519 }
6520 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6521 GFP_KERNEL);
6522 if (unlikely(!phba->vpi_ids)) {
6523 kfree(phba->vpi_bmask);
6524 rc = -ENOMEM;
6525 goto err_exit;
6526 }
6527
6528 /* Initialize local ptrs for common extent processing later. */
6529 bmask = phba->vpi_bmask;
6530 ids = phba->vpi_ids;
6531 ext_blk_list = &phba->lpfc_vpi_blk_list;
6532 break;
6533 case LPFC_RSC_TYPE_FCOE_XRI:
6534 phba->sli4_hba.xri_bmask = kcalloc(longs,
6535 sizeof(unsigned long),
6536 GFP_KERNEL);
6537 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6538 rc = -ENOMEM;
6539 goto err_exit;
6540 }
6541 phba->sli4_hba.max_cfg_param.xri_used = 0;
6542 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6543 sizeof(uint16_t),
6544 GFP_KERNEL);
6545 if (unlikely(!phba->sli4_hba.xri_ids)) {
6546 kfree(phba->sli4_hba.xri_bmask);
6547 rc = -ENOMEM;
6548 goto err_exit;
6549 }
6550
6551 /* Initialize local ptrs for common extent processing later. */
6552 bmask = phba->sli4_hba.xri_bmask;
6553 ids = phba->sli4_hba.xri_ids;
6554 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6555 break;
6556 case LPFC_RSC_TYPE_FCOE_VFI:
6557 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6558 sizeof(unsigned long),
6559 GFP_KERNEL);
6560 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6561 rc = -ENOMEM;
6562 goto err_exit;
6563 }
6564 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6565 sizeof(uint16_t),
6566 GFP_KERNEL);
6567 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6568 kfree(phba->sli4_hba.vfi_bmask);
6569 rc = -ENOMEM;
6570 goto err_exit;
6571 }
6572
6573 /* Initialize local ptrs for common extent processing later. */
6574 bmask = phba->sli4_hba.vfi_bmask;
6575 ids = phba->sli4_hba.vfi_ids;
6576 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6577 break;
6578 default:
6579 /* Unsupported Opcode. Fail call. */
6580 id_array = NULL;
6581 bmask = NULL;
6582 ids = NULL;
6583 ext_blk_list = NULL;
6584 goto err_exit;
6585 }
6586
6587 /*
6588 * Complete initializing the extent configuration with the
6589 * allocated ids assigned to this function. The bitmask serves
6590 * as an index into the array and manages the available ids. The
6591 * array just stores the ids communicated to the port via the wqes.
6592 */
6593 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6594 if ((i % 2) == 0)
6595 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6596 &id_array[k]);
6597 else
6598 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6599 &id_array[k]);
6600
6601 rsrc_blks = kzalloc(length, GFP_KERNEL);
6602 if (unlikely(!rsrc_blks)) {
6603 rc = -ENOMEM;
6604 kfree(bmask);
6605 kfree(ids);
6606 goto err_exit;
6607 }
6608 rsrc_blks->rsrc_start = rsrc_id;
6609 rsrc_blks->rsrc_size = rsrc_size;
6610 list_add_tail(&rsrc_blks->list, ext_blk_list);
6611 rsrc_start = rsrc_id;
6612 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6613 phba->sli4_hba.io_xri_start = rsrc_start +
6614 lpfc_sli4_get_iocb_cnt(phba);
6615 }
6616
6617 while (rsrc_id < (rsrc_start + rsrc_size)) {
6618 ids[j] = rsrc_id;
6619 rsrc_id++;
6620 j++;
6621 }
6622 /* Entire word processed. Get next word.*/
6623 if ((i % 2) == 1)
6624 k++;
6625 }
6626 err_exit:
6627 lpfc_sli4_mbox_cmd_free(phba, mbox);
6628 return rc;
6629 }
6630
6631
6632
6633 /**
6634 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6635 * @phba: Pointer to HBA context object.
6636 * @type: the extent's type.
6637 *
6638 * This function deallocates all extents of a particular resource type.
6639 * SLI4 does not allow for deallocating a particular extent range. It
6640 * is the caller's responsibility to release all kernel memory resources.
6641 **/
6642 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6643 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6644 {
6645 int rc;
6646 uint32_t length, mbox_tmo = 0;
6647 LPFC_MBOXQ_t *mbox;
6648 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6649 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6650
6651 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6652 if (!mbox)
6653 return -ENOMEM;
6654
6655 /*
6656 * This function sends an embedded mailbox because it only sends the
6657 * the resource type. All extents of this type are released by the
6658 * port.
6659 */
6660 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6661 sizeof(struct lpfc_sli4_cfg_mhdr));
6662 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6663 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6664 length, LPFC_SLI4_MBX_EMBED);
6665
6666 /* Send an extents count of 0 - the dealloc doesn't use it. */
6667 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6668 LPFC_SLI4_MBX_EMBED);
6669 if (unlikely(rc)) {
6670 rc = -EIO;
6671 goto out_free_mbox;
6672 }
6673 if (!phba->sli4_hba.intr_enable)
6674 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6675 else {
6676 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6677 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6678 }
6679 if (unlikely(rc)) {
6680 rc = -EIO;
6681 goto out_free_mbox;
6682 }
6683
6684 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6685 if (bf_get(lpfc_mbox_hdr_status,
6686 &dealloc_rsrc->header.cfg_shdr.response)) {
6687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6688 "2919 Failed to release resource extents "
6689 "for type %d - Status 0x%x Add'l Status 0x%x. "
6690 "Resource memory not released.\n",
6691 type,
6692 bf_get(lpfc_mbox_hdr_status,
6693 &dealloc_rsrc->header.cfg_shdr.response),
6694 bf_get(lpfc_mbox_hdr_add_status,
6695 &dealloc_rsrc->header.cfg_shdr.response));
6696 rc = -EIO;
6697 goto out_free_mbox;
6698 }
6699
6700 /* Release kernel memory resources for the specific type. */
6701 switch (type) {
6702 case LPFC_RSC_TYPE_FCOE_VPI:
6703 kfree(phba->vpi_bmask);
6704 kfree(phba->vpi_ids);
6705 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6706 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6707 &phba->lpfc_vpi_blk_list, list) {
6708 list_del_init(&rsrc_blk->list);
6709 kfree(rsrc_blk);
6710 }
6711 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6712 break;
6713 case LPFC_RSC_TYPE_FCOE_XRI:
6714 kfree(phba->sli4_hba.xri_bmask);
6715 kfree(phba->sli4_hba.xri_ids);
6716 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6717 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6718 list_del_init(&rsrc_blk->list);
6719 kfree(rsrc_blk);
6720 }
6721 break;
6722 case LPFC_RSC_TYPE_FCOE_VFI:
6723 kfree(phba->sli4_hba.vfi_bmask);
6724 kfree(phba->sli4_hba.vfi_ids);
6725 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6726 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6727 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6728 list_del_init(&rsrc_blk->list);
6729 kfree(rsrc_blk);
6730 }
6731 break;
6732 case LPFC_RSC_TYPE_FCOE_RPI:
6733 /* RPI bitmask and physical id array are cleaned up earlier. */
6734 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6735 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6736 list_del_init(&rsrc_blk->list);
6737 kfree(rsrc_blk);
6738 }
6739 break;
6740 default:
6741 break;
6742 }
6743
6744 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6745
6746 out_free_mbox:
6747 mempool_free(mbox, phba->mbox_mem_pool);
6748 return rc;
6749 }
6750
6751 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6752 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6753 uint32_t feature)
6754 {
6755 uint32_t len;
6756 u32 sig_freq = 0;
6757
6758 len = sizeof(struct lpfc_mbx_set_feature) -
6759 sizeof(struct lpfc_sli4_cfg_mhdr);
6760 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6761 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6762 LPFC_SLI4_MBX_EMBED);
6763
6764 switch (feature) {
6765 case LPFC_SET_UE_RECOVERY:
6766 bf_set(lpfc_mbx_set_feature_UER,
6767 &mbox->u.mqe.un.set_feature, 1);
6768 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6769 mbox->u.mqe.un.set_feature.param_len = 8;
6770 break;
6771 case LPFC_SET_MDS_DIAGS:
6772 bf_set(lpfc_mbx_set_feature_mds,
6773 &mbox->u.mqe.un.set_feature, 1);
6774 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6775 &mbox->u.mqe.un.set_feature, 1);
6776 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6777 mbox->u.mqe.un.set_feature.param_len = 8;
6778 break;
6779 case LPFC_SET_CGN_SIGNAL:
6780 if (phba->cmf_active_mode == LPFC_CFG_OFF)
6781 sig_freq = 0;
6782 else
6783 sig_freq = phba->cgn_sig_freq;
6784
6785 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6786 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6787 &mbox->u.mqe.un.set_feature, sig_freq);
6788 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6789 &mbox->u.mqe.un.set_feature, sig_freq);
6790 }
6791
6792 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6793 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6794 &mbox->u.mqe.un.set_feature, sig_freq);
6795
6796 if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6797 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6798 sig_freq = 0;
6799 else
6800 sig_freq = lpfc_acqe_cgn_frequency;
6801
6802 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6803 &mbox->u.mqe.un.set_feature, sig_freq);
6804
6805 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6806 mbox->u.mqe.un.set_feature.param_len = 12;
6807 break;
6808 case LPFC_SET_DUAL_DUMP:
6809 bf_set(lpfc_mbx_set_feature_dd,
6810 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6811 bf_set(lpfc_mbx_set_feature_ddquery,
6812 &mbox->u.mqe.un.set_feature, 0);
6813 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6814 mbox->u.mqe.un.set_feature.param_len = 4;
6815 break;
6816 case LPFC_SET_ENABLE_MI:
6817 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6818 mbox->u.mqe.un.set_feature.param_len = 4;
6819 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6820 phba->pport->cfg_lun_queue_depth);
6821 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6822 phba->sli4_hba.pc_sli4_params.mi_ver);
6823 break;
6824 case LPFC_SET_LD_SIGNAL:
6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6826 mbox->u.mqe.un.set_feature.param_len = 16;
6827 bf_set(lpfc_mbx_set_feature_lds_qry,
6828 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6829 break;
6830 case LPFC_SET_ENABLE_CMF:
6831 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6832 mbox->u.mqe.un.set_feature.param_len = 4;
6833 bf_set(lpfc_mbx_set_feature_cmf,
6834 &mbox->u.mqe.un.set_feature, 1);
6835 break;
6836 }
6837 return;
6838 }
6839
6840 /**
6841 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6842 * @phba: Pointer to HBA context object.
6843 *
6844 * Disable FW logging into host memory on the adapter. To
6845 * be done before reading logs from the host memory.
6846 **/
6847 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6848 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6849 {
6850 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6851
6852 spin_lock_irq(&phba->ras_fwlog_lock);
6853 ras_fwlog->state = INACTIVE;
6854 spin_unlock_irq(&phba->ras_fwlog_lock);
6855
6856 /* Disable FW logging to host memory */
6857 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6858 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6859
6860 /* Wait 10ms for firmware to stop using DMA buffer */
6861 usleep_range(10 * 1000, 20 * 1000);
6862 }
6863
6864 /**
6865 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6866 * @phba: Pointer to HBA context object.
6867 *
6868 * This function is called to free memory allocated for RAS FW logging
6869 * support in the driver.
6870 **/
6871 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6872 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6873 {
6874 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6875 struct lpfc_dmabuf *dmabuf, *next;
6876
6877 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6878 list_for_each_entry_safe(dmabuf, next,
6879 &ras_fwlog->fwlog_buff_list,
6880 list) {
6881 list_del(&dmabuf->list);
6882 dma_free_coherent(&phba->pcidev->dev,
6883 LPFC_RAS_MAX_ENTRY_SIZE,
6884 dmabuf->virt, dmabuf->phys);
6885 kfree(dmabuf);
6886 }
6887 }
6888
6889 if (ras_fwlog->lwpd.virt) {
6890 dma_free_coherent(&phba->pcidev->dev,
6891 sizeof(uint32_t) * 2,
6892 ras_fwlog->lwpd.virt,
6893 ras_fwlog->lwpd.phys);
6894 ras_fwlog->lwpd.virt = NULL;
6895 }
6896
6897 spin_lock_irq(&phba->ras_fwlog_lock);
6898 ras_fwlog->state = INACTIVE;
6899 spin_unlock_irq(&phba->ras_fwlog_lock);
6900 }
6901
6902 /**
6903 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6904 * @phba: Pointer to HBA context object.
6905 * @fwlog_buff_count: Count of buffers to be created.
6906 *
6907 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6908 * to update FW log is posted to the adapter.
6909 * Buffer count is calculated based on module param ras_fwlog_buffsize
6910 * Size of each buffer posted to FW is 64K.
6911 **/
6912
6913 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6914 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6915 uint32_t fwlog_buff_count)
6916 {
6917 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6918 struct lpfc_dmabuf *dmabuf;
6919 int rc = 0, i = 0;
6920
6921 /* Initialize List */
6922 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6923
6924 /* Allocate memory for the LWPD */
6925 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6926 sizeof(uint32_t) * 2,
6927 &ras_fwlog->lwpd.phys,
6928 GFP_KERNEL);
6929 if (!ras_fwlog->lwpd.virt) {
6930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6931 "6185 LWPD Memory Alloc Failed\n");
6932
6933 return -ENOMEM;
6934 }
6935
6936 ras_fwlog->fw_buffcount = fwlog_buff_count;
6937 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6938 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6939 GFP_KERNEL);
6940 if (!dmabuf) {
6941 rc = -ENOMEM;
6942 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6943 "6186 Memory Alloc failed FW logging");
6944 goto free_mem;
6945 }
6946
6947 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6948 LPFC_RAS_MAX_ENTRY_SIZE,
6949 &dmabuf->phys, GFP_KERNEL);
6950 if (!dmabuf->virt) {
6951 kfree(dmabuf);
6952 rc = -ENOMEM;
6953 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6954 "6187 DMA Alloc Failed FW logging");
6955 goto free_mem;
6956 }
6957 dmabuf->buffer_tag = i;
6958 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6959 }
6960
6961 free_mem:
6962 if (rc)
6963 lpfc_sli4_ras_dma_free(phba);
6964
6965 return rc;
6966 }
6967
6968 /**
6969 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6970 * @phba: pointer to lpfc hba data structure.
6971 * @pmb: pointer to the driver internal queue element for mailbox command.
6972 *
6973 * Completion handler for driver's RAS MBX command to the device.
6974 **/
6975 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6976 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6977 {
6978 MAILBOX_t *mb;
6979 union lpfc_sli4_cfg_shdr *shdr;
6980 uint32_t shdr_status, shdr_add_status;
6981 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6982
6983 mb = &pmb->u.mb;
6984
6985 shdr = (union lpfc_sli4_cfg_shdr *)
6986 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6987 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6988 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6989
6990 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6992 "6188 FW LOG mailbox "
6993 "completed with status x%x add_status x%x,"
6994 " mbx status x%x\n",
6995 shdr_status, shdr_add_status, mb->mbxStatus);
6996
6997 ras_fwlog->ras_hwsupport = false;
6998 goto disable_ras;
6999 }
7000
7001 spin_lock_irq(&phba->ras_fwlog_lock);
7002 ras_fwlog->state = ACTIVE;
7003 spin_unlock_irq(&phba->ras_fwlog_lock);
7004 mempool_free(pmb, phba->mbox_mem_pool);
7005
7006 return;
7007
7008 disable_ras:
7009 /* Free RAS DMA memory */
7010 lpfc_sli4_ras_dma_free(phba);
7011 mempool_free(pmb, phba->mbox_mem_pool);
7012 }
7013
7014 /**
7015 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7016 * @phba: pointer to lpfc hba data structure.
7017 * @fwlog_level: Logging verbosity level.
7018 * @fwlog_enable: Enable/Disable logging.
7019 *
7020 * Initialize memory and post mailbox command to enable FW logging in host
7021 * memory.
7022 **/
7023 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)7024 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7025 uint32_t fwlog_level,
7026 uint32_t fwlog_enable)
7027 {
7028 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7029 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7030 struct lpfc_dmabuf *dmabuf;
7031 LPFC_MBOXQ_t *mbox;
7032 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7033 int rc = 0;
7034
7035 spin_lock_irq(&phba->ras_fwlog_lock);
7036 ras_fwlog->state = INACTIVE;
7037 spin_unlock_irq(&phba->ras_fwlog_lock);
7038
7039 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7040 phba->cfg_ras_fwlog_buffsize);
7041 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7042
7043 /*
7044 * If re-enabling FW logging support use earlier allocated
7045 * DMA buffers while posting MBX command.
7046 **/
7047 if (!ras_fwlog->lwpd.virt) {
7048 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7049 if (rc) {
7050 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7051 "6189 FW Log Memory Allocation Failed");
7052 return rc;
7053 }
7054 }
7055
7056 /* Setup Mailbox command */
7057 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7058 if (!mbox) {
7059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7060 "6190 RAS MBX Alloc Failed");
7061 rc = -ENOMEM;
7062 goto mem_free;
7063 }
7064
7065 ras_fwlog->fw_loglevel = fwlog_level;
7066 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7067 sizeof(struct lpfc_sli4_cfg_mhdr));
7068
7069 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7070 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7071 len, LPFC_SLI4_MBX_EMBED);
7072
7073 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7074 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7075 fwlog_enable);
7076 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7077 ras_fwlog->fw_loglevel);
7078 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7079 ras_fwlog->fw_buffcount);
7080 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7081 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7082
7083 /* Update DMA buffer address */
7084 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7085 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7086
7087 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7088 putPaddrLow(dmabuf->phys);
7089
7090 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7091 putPaddrHigh(dmabuf->phys);
7092 }
7093
7094 /* Update LPWD address */
7095 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7096 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7097
7098 spin_lock_irq(&phba->ras_fwlog_lock);
7099 ras_fwlog->state = REG_INPROGRESS;
7100 spin_unlock_irq(&phba->ras_fwlog_lock);
7101 mbox->vport = phba->pport;
7102 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7103
7104 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7105
7106 if (rc == MBX_NOT_FINISHED) {
7107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7108 "6191 FW-Log Mailbox failed. "
7109 "status %d mbxStatus : x%x", rc,
7110 bf_get(lpfc_mqe_status, &mbox->u.mqe));
7111 mempool_free(mbox, phba->mbox_mem_pool);
7112 rc = -EIO;
7113 goto mem_free;
7114 } else
7115 rc = 0;
7116 mem_free:
7117 if (rc)
7118 lpfc_sli4_ras_dma_free(phba);
7119
7120 return rc;
7121 }
7122
7123 /**
7124 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7125 * @phba: Pointer to HBA context object.
7126 *
7127 * Check if RAS is supported on the adapter and initialize it.
7128 **/
7129 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)7130 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7131 {
7132 /* Check RAS FW Log needs to be enabled or not */
7133 if (lpfc_check_fwlog_support(phba))
7134 return;
7135
7136 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7137 LPFC_RAS_ENABLE_LOGGING);
7138 }
7139
7140 /**
7141 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7142 * @phba: Pointer to HBA context object.
7143 *
7144 * This function allocates all SLI4 resource identifiers.
7145 **/
7146 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)7147 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7148 {
7149 int i, rc, error = 0;
7150 uint16_t count, base;
7151 unsigned long longs;
7152
7153 if (!phba->sli4_hba.rpi_hdrs_in_use)
7154 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7155 if (phba->sli4_hba.extents_in_use) {
7156 /*
7157 * The port supports resource extents. The XRI, VPI, VFI, RPI
7158 * resource extent count must be read and allocated before
7159 * provisioning the resource id arrays.
7160 */
7161 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7162 LPFC_IDX_RSRC_RDY) {
7163 /*
7164 * Extent-based resources are set - the driver could
7165 * be in a port reset. Figure out if any corrective
7166 * actions need to be taken.
7167 */
7168 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7169 LPFC_RSC_TYPE_FCOE_VFI);
7170 if (rc != 0)
7171 error++;
7172 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7173 LPFC_RSC_TYPE_FCOE_VPI);
7174 if (rc != 0)
7175 error++;
7176 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7177 LPFC_RSC_TYPE_FCOE_XRI);
7178 if (rc != 0)
7179 error++;
7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7181 LPFC_RSC_TYPE_FCOE_RPI);
7182 if (rc != 0)
7183 error++;
7184
7185 /*
7186 * It's possible that the number of resources
7187 * provided to this port instance changed between
7188 * resets. Detect this condition and reallocate
7189 * resources. Otherwise, there is no action.
7190 */
7191 if (error) {
7192 lpfc_printf_log(phba, KERN_INFO,
7193 LOG_MBOX | LOG_INIT,
7194 "2931 Detected extent resource "
7195 "change. Reallocating all "
7196 "extents.\n");
7197 rc = lpfc_sli4_dealloc_extent(phba,
7198 LPFC_RSC_TYPE_FCOE_VFI);
7199 rc = lpfc_sli4_dealloc_extent(phba,
7200 LPFC_RSC_TYPE_FCOE_VPI);
7201 rc = lpfc_sli4_dealloc_extent(phba,
7202 LPFC_RSC_TYPE_FCOE_XRI);
7203 rc = lpfc_sli4_dealloc_extent(phba,
7204 LPFC_RSC_TYPE_FCOE_RPI);
7205 } else
7206 return 0;
7207 }
7208
7209 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7210 if (unlikely(rc))
7211 goto err_exit;
7212
7213 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7214 if (unlikely(rc))
7215 goto err_exit;
7216
7217 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7218 if (unlikely(rc))
7219 goto err_exit;
7220
7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7222 if (unlikely(rc))
7223 goto err_exit;
7224 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7225 LPFC_IDX_RSRC_RDY);
7226 return rc;
7227 } else {
7228 /*
7229 * The port does not support resource extents. The XRI, VPI,
7230 * VFI, RPI resource ids were determined from READ_CONFIG.
7231 * Just allocate the bitmasks and provision the resource id
7232 * arrays. If a port reset is active, the resources don't
7233 * need any action - just exit.
7234 */
7235 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7236 LPFC_IDX_RSRC_RDY) {
7237 lpfc_sli4_dealloc_resource_identifiers(phba);
7238 lpfc_sli4_remove_rpis(phba);
7239 }
7240 /* RPIs. */
7241 count = phba->sli4_hba.max_cfg_param.max_rpi;
7242 if (count <= 0) {
7243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7244 "3279 Invalid provisioning of "
7245 "rpi:%d\n", count);
7246 rc = -EINVAL;
7247 goto err_exit;
7248 }
7249 base = phba->sli4_hba.max_cfg_param.rpi_base;
7250 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7251 phba->sli4_hba.rpi_bmask = kcalloc(longs,
7252 sizeof(unsigned long),
7253 GFP_KERNEL);
7254 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7255 rc = -ENOMEM;
7256 goto err_exit;
7257 }
7258 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7259 GFP_KERNEL);
7260 if (unlikely(!phba->sli4_hba.rpi_ids)) {
7261 rc = -ENOMEM;
7262 goto free_rpi_bmask;
7263 }
7264
7265 for (i = 0; i < count; i++)
7266 phba->sli4_hba.rpi_ids[i] = base + i;
7267
7268 /* VPIs. */
7269 count = phba->sli4_hba.max_cfg_param.max_vpi;
7270 if (count <= 0) {
7271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7272 "3280 Invalid provisioning of "
7273 "vpi:%d\n", count);
7274 rc = -EINVAL;
7275 goto free_rpi_ids;
7276 }
7277 base = phba->sli4_hba.max_cfg_param.vpi_base;
7278 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7279 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7280 GFP_KERNEL);
7281 if (unlikely(!phba->vpi_bmask)) {
7282 rc = -ENOMEM;
7283 goto free_rpi_ids;
7284 }
7285 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7286 GFP_KERNEL);
7287 if (unlikely(!phba->vpi_ids)) {
7288 rc = -ENOMEM;
7289 goto free_vpi_bmask;
7290 }
7291
7292 for (i = 0; i < count; i++)
7293 phba->vpi_ids[i] = base + i;
7294
7295 /* XRIs. */
7296 count = phba->sli4_hba.max_cfg_param.max_xri;
7297 if (count <= 0) {
7298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7299 "3281 Invalid provisioning of "
7300 "xri:%d\n", count);
7301 rc = -EINVAL;
7302 goto free_vpi_ids;
7303 }
7304 base = phba->sli4_hba.max_cfg_param.xri_base;
7305 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7306 phba->sli4_hba.xri_bmask = kcalloc(longs,
7307 sizeof(unsigned long),
7308 GFP_KERNEL);
7309 if (unlikely(!phba->sli4_hba.xri_bmask)) {
7310 rc = -ENOMEM;
7311 goto free_vpi_ids;
7312 }
7313 phba->sli4_hba.max_cfg_param.xri_used = 0;
7314 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7315 GFP_KERNEL);
7316 if (unlikely(!phba->sli4_hba.xri_ids)) {
7317 rc = -ENOMEM;
7318 goto free_xri_bmask;
7319 }
7320
7321 for (i = 0; i < count; i++)
7322 phba->sli4_hba.xri_ids[i] = base + i;
7323
7324 /* VFIs. */
7325 count = phba->sli4_hba.max_cfg_param.max_vfi;
7326 if (count <= 0) {
7327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7328 "3282 Invalid provisioning of "
7329 "vfi:%d\n", count);
7330 rc = -EINVAL;
7331 goto free_xri_ids;
7332 }
7333 base = phba->sli4_hba.max_cfg_param.vfi_base;
7334 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7335 phba->sli4_hba.vfi_bmask = kcalloc(longs,
7336 sizeof(unsigned long),
7337 GFP_KERNEL);
7338 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7339 rc = -ENOMEM;
7340 goto free_xri_ids;
7341 }
7342 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7343 GFP_KERNEL);
7344 if (unlikely(!phba->sli4_hba.vfi_ids)) {
7345 rc = -ENOMEM;
7346 goto free_vfi_bmask;
7347 }
7348
7349 for (i = 0; i < count; i++)
7350 phba->sli4_hba.vfi_ids[i] = base + i;
7351
7352 /*
7353 * Mark all resources ready. An HBA reset doesn't need
7354 * to reset the initialization.
7355 */
7356 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7357 LPFC_IDX_RSRC_RDY);
7358 return 0;
7359 }
7360
7361 free_vfi_bmask:
7362 kfree(phba->sli4_hba.vfi_bmask);
7363 phba->sli4_hba.vfi_bmask = NULL;
7364 free_xri_ids:
7365 kfree(phba->sli4_hba.xri_ids);
7366 phba->sli4_hba.xri_ids = NULL;
7367 free_xri_bmask:
7368 kfree(phba->sli4_hba.xri_bmask);
7369 phba->sli4_hba.xri_bmask = NULL;
7370 free_vpi_ids:
7371 kfree(phba->vpi_ids);
7372 phba->vpi_ids = NULL;
7373 free_vpi_bmask:
7374 kfree(phba->vpi_bmask);
7375 phba->vpi_bmask = NULL;
7376 free_rpi_ids:
7377 kfree(phba->sli4_hba.rpi_ids);
7378 phba->sli4_hba.rpi_ids = NULL;
7379 free_rpi_bmask:
7380 kfree(phba->sli4_hba.rpi_bmask);
7381 phba->sli4_hba.rpi_bmask = NULL;
7382 err_exit:
7383 return rc;
7384 }
7385
7386 /**
7387 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7388 * @phba: Pointer to HBA context object.
7389 *
7390 * This function allocates the number of elements for the specified
7391 * resource type.
7392 **/
7393 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)7394 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7395 {
7396 if (phba->sli4_hba.extents_in_use) {
7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7399 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7400 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7401 } else {
7402 kfree(phba->vpi_bmask);
7403 phba->sli4_hba.max_cfg_param.vpi_used = 0;
7404 kfree(phba->vpi_ids);
7405 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7406 kfree(phba->sli4_hba.xri_bmask);
7407 kfree(phba->sli4_hba.xri_ids);
7408 kfree(phba->sli4_hba.vfi_bmask);
7409 kfree(phba->sli4_hba.vfi_ids);
7410 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7411 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7412 }
7413
7414 return 0;
7415 }
7416
7417 /**
7418 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7419 * @phba: Pointer to HBA context object.
7420 * @type: The resource extent type.
7421 * @extnt_cnt: buffer to hold port extent count response
7422 * @extnt_size: buffer to hold port extent size response.
7423 *
7424 * This function calls the port to read the host allocated extents
7425 * for a particular type.
7426 **/
7427 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)7428 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7429 uint16_t *extnt_cnt, uint16_t *extnt_size)
7430 {
7431 bool emb;
7432 int rc = 0;
7433 uint16_t curr_blks = 0;
7434 uint32_t req_len, emb_len;
7435 uint32_t alloc_len, mbox_tmo;
7436 struct list_head *blk_list_head;
7437 struct lpfc_rsrc_blks *rsrc_blk;
7438 LPFC_MBOXQ_t *mbox;
7439 void *virtaddr = NULL;
7440 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7441 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7442 union lpfc_sli4_cfg_shdr *shdr;
7443
7444 switch (type) {
7445 case LPFC_RSC_TYPE_FCOE_VPI:
7446 blk_list_head = &phba->lpfc_vpi_blk_list;
7447 break;
7448 case LPFC_RSC_TYPE_FCOE_XRI:
7449 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7450 break;
7451 case LPFC_RSC_TYPE_FCOE_VFI:
7452 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7453 break;
7454 case LPFC_RSC_TYPE_FCOE_RPI:
7455 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7456 break;
7457 default:
7458 return -EIO;
7459 }
7460
7461 /* Count the number of extents currently allocatd for this type. */
7462 list_for_each_entry(rsrc_blk, blk_list_head, list) {
7463 if (curr_blks == 0) {
7464 /*
7465 * The GET_ALLOCATED mailbox does not return the size,
7466 * just the count. The size should be just the size
7467 * stored in the current allocated block and all sizes
7468 * for an extent type are the same so set the return
7469 * value now.
7470 */
7471 *extnt_size = rsrc_blk->rsrc_size;
7472 }
7473 curr_blks++;
7474 }
7475
7476 /*
7477 * Calculate the size of an embedded mailbox. The uint32_t
7478 * accounts for extents-specific word.
7479 */
7480 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7481 sizeof(uint32_t);
7482
7483 /*
7484 * Presume the allocation and response will fit into an embedded
7485 * mailbox. If not true, reconfigure to a non-embedded mailbox.
7486 */
7487 emb = LPFC_SLI4_MBX_EMBED;
7488 req_len = emb_len;
7489 if (req_len > emb_len) {
7490 req_len = curr_blks * sizeof(uint16_t) +
7491 sizeof(union lpfc_sli4_cfg_shdr) +
7492 sizeof(uint32_t);
7493 emb = LPFC_SLI4_MBX_NEMBED;
7494 }
7495
7496 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7497 if (!mbox)
7498 return -ENOMEM;
7499 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7500
7501 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7502 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7503 req_len, emb);
7504 if (alloc_len < req_len) {
7505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7506 "2983 Allocated DMA memory size (x%x) is "
7507 "less than the requested DMA memory "
7508 "size (x%x)\n", alloc_len, req_len);
7509 rc = -ENOMEM;
7510 goto err_exit;
7511 }
7512 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7513 if (unlikely(rc)) {
7514 rc = -EIO;
7515 goto err_exit;
7516 }
7517
7518 if (!phba->sli4_hba.intr_enable)
7519 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7520 else {
7521 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7522 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7523 }
7524
7525 if (unlikely(rc)) {
7526 rc = -EIO;
7527 goto err_exit;
7528 }
7529
7530 /*
7531 * Figure out where the response is located. Then get local pointers
7532 * to the response data. The port does not guarantee to respond to
7533 * all extents counts request so update the local variable with the
7534 * allocated count from the port.
7535 */
7536 if (emb == LPFC_SLI4_MBX_EMBED) {
7537 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7538 shdr = &rsrc_ext->header.cfg_shdr;
7539 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7540 } else {
7541 virtaddr = mbox->sge_array->addr[0];
7542 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7543 shdr = &n_rsrc->cfg_shdr;
7544 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7545 }
7546
7547 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7549 "2984 Failed to read allocated resources "
7550 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7551 type,
7552 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7553 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7554 rc = -EIO;
7555 goto err_exit;
7556 }
7557 err_exit:
7558 lpfc_sli4_mbox_cmd_free(phba, mbox);
7559 return rc;
7560 }
7561
7562 /**
7563 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7564 * @phba: pointer to lpfc hba data structure.
7565 * @sgl_list: linked link of sgl buffers to post
7566 * @cnt: number of linked list buffers
7567 *
7568 * This routine walks the list of buffers that have been allocated and
7569 * repost them to the port by using SGL block post. This is needed after a
7570 * pci_function_reset/warm_start or start. It attempts to construct blocks
7571 * of buffer sgls which contains contiguous xris and uses the non-embedded
7572 * SGL block post mailbox commands to post them to the port. For single
7573 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7574 * mailbox command for posting.
7575 *
7576 * Returns: 0 = success, non-zero failure.
7577 **/
7578 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)7579 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7580 struct list_head *sgl_list, int cnt)
7581 {
7582 struct lpfc_sglq *sglq_entry = NULL;
7583 struct lpfc_sglq *sglq_entry_next = NULL;
7584 struct lpfc_sglq *sglq_entry_first = NULL;
7585 int status = 0, total_cnt;
7586 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7587 int last_xritag = NO_XRI;
7588 LIST_HEAD(prep_sgl_list);
7589 LIST_HEAD(blck_sgl_list);
7590 LIST_HEAD(allc_sgl_list);
7591 LIST_HEAD(post_sgl_list);
7592 LIST_HEAD(free_sgl_list);
7593
7594 spin_lock_irq(&phba->hbalock);
7595 spin_lock(&phba->sli4_hba.sgl_list_lock);
7596 list_splice_init(sgl_list, &allc_sgl_list);
7597 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7598 spin_unlock_irq(&phba->hbalock);
7599
7600 total_cnt = cnt;
7601 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7602 &allc_sgl_list, list) {
7603 list_del_init(&sglq_entry->list);
7604 block_cnt++;
7605 if ((last_xritag != NO_XRI) &&
7606 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7607 /* a hole in xri block, form a sgl posting block */
7608 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7609 post_cnt = block_cnt - 1;
7610 /* prepare list for next posting block */
7611 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7612 block_cnt = 1;
7613 } else {
7614 /* prepare list for next posting block */
7615 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7616 /* enough sgls for non-embed sgl mbox command */
7617 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7618 list_splice_init(&prep_sgl_list,
7619 &blck_sgl_list);
7620 post_cnt = block_cnt;
7621 block_cnt = 0;
7622 }
7623 }
7624 num_posted++;
7625
7626 /* keep track of last sgl's xritag */
7627 last_xritag = sglq_entry->sli4_xritag;
7628
7629 /* end of repost sgl list condition for buffers */
7630 if (num_posted == total_cnt) {
7631 if (post_cnt == 0) {
7632 list_splice_init(&prep_sgl_list,
7633 &blck_sgl_list);
7634 post_cnt = block_cnt;
7635 } else if (block_cnt == 1) {
7636 status = lpfc_sli4_post_sgl(phba,
7637 sglq_entry->phys, 0,
7638 sglq_entry->sli4_xritag);
7639 if (!status) {
7640 /* successful, put sgl to posted list */
7641 list_add_tail(&sglq_entry->list,
7642 &post_sgl_list);
7643 } else {
7644 /* Failure, put sgl to free list */
7645 lpfc_printf_log(phba, KERN_WARNING,
7646 LOG_SLI,
7647 "3159 Failed to post "
7648 "sgl, xritag:x%x\n",
7649 sglq_entry->sli4_xritag);
7650 list_add_tail(&sglq_entry->list,
7651 &free_sgl_list);
7652 total_cnt--;
7653 }
7654 }
7655 }
7656
7657 /* continue until a nembed page worth of sgls */
7658 if (post_cnt == 0)
7659 continue;
7660
7661 /* post the buffer list sgls as a block */
7662 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7663 post_cnt);
7664
7665 if (!status) {
7666 /* success, put sgl list to posted sgl list */
7667 list_splice_init(&blck_sgl_list, &post_sgl_list);
7668 } else {
7669 /* Failure, put sgl list to free sgl list */
7670 sglq_entry_first = list_first_entry(&blck_sgl_list,
7671 struct lpfc_sglq,
7672 list);
7673 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7674 "3160 Failed to post sgl-list, "
7675 "xritag:x%x-x%x\n",
7676 sglq_entry_first->sli4_xritag,
7677 (sglq_entry_first->sli4_xritag +
7678 post_cnt - 1));
7679 list_splice_init(&blck_sgl_list, &free_sgl_list);
7680 total_cnt -= post_cnt;
7681 }
7682
7683 /* don't reset xirtag due to hole in xri block */
7684 if (block_cnt == 0)
7685 last_xritag = NO_XRI;
7686
7687 /* reset sgl post count for next round of posting */
7688 post_cnt = 0;
7689 }
7690
7691 /* free the sgls failed to post */
7692 lpfc_free_sgl_list(phba, &free_sgl_list);
7693
7694 /* push sgls posted to the available list */
7695 if (!list_empty(&post_sgl_list)) {
7696 spin_lock_irq(&phba->hbalock);
7697 spin_lock(&phba->sli4_hba.sgl_list_lock);
7698 list_splice_init(&post_sgl_list, sgl_list);
7699 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7700 spin_unlock_irq(&phba->hbalock);
7701 } else {
7702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7703 "3161 Failure to post sgl to port,status %x "
7704 "blkcnt %d totalcnt %d postcnt %d\n",
7705 status, block_cnt, total_cnt, post_cnt);
7706 return -EIO;
7707 }
7708
7709 /* return the number of XRIs actually posted */
7710 return total_cnt;
7711 }
7712
7713 /**
7714 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7715 * @phba: pointer to lpfc hba data structure.
7716 *
7717 * This routine walks the list of nvme buffers that have been allocated and
7718 * repost them to the port by using SGL block post. This is needed after a
7719 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7720 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7721 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7722 *
7723 * Returns: 0 = success, non-zero failure.
7724 **/
7725 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7726 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7727 {
7728 LIST_HEAD(post_nblist);
7729 int num_posted, rc = 0;
7730
7731 /* get all NVME buffers need to repost to a local list */
7732 lpfc_io_buf_flush(phba, &post_nblist);
7733
7734 /* post the list of nvme buffer sgls to port if available */
7735 if (!list_empty(&post_nblist)) {
7736 num_posted = lpfc_sli4_post_io_sgl_list(
7737 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7738 /* failed to post any nvme buffer, return error */
7739 if (num_posted == 0)
7740 rc = -EIO;
7741 }
7742 return rc;
7743 }
7744
7745 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7746 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7747 {
7748 uint32_t len;
7749
7750 len = sizeof(struct lpfc_mbx_set_host_data) -
7751 sizeof(struct lpfc_sli4_cfg_mhdr);
7752 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7753 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7754 LPFC_SLI4_MBX_EMBED);
7755
7756 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7757 mbox->u.mqe.un.set_host_data.param_len =
7758 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7759 snprintf(mbox->u.mqe.un.set_host_data.un.data,
7760 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7761 "Linux %s v"LPFC_DRIVER_VERSION,
7762 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC");
7763 }
7764
7765 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7766 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7767 struct lpfc_queue *drq, int count, int idx)
7768 {
7769 int rc, i;
7770 struct lpfc_rqe hrqe;
7771 struct lpfc_rqe drqe;
7772 struct lpfc_rqb *rqbp;
7773 unsigned long flags;
7774 struct rqb_dmabuf *rqb_buffer;
7775 LIST_HEAD(rqb_buf_list);
7776
7777 rqbp = hrq->rqbp;
7778 for (i = 0; i < count; i++) {
7779 spin_lock_irqsave(&phba->hbalock, flags);
7780 /* IF RQ is already full, don't bother */
7781 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7782 spin_unlock_irqrestore(&phba->hbalock, flags);
7783 break;
7784 }
7785 spin_unlock_irqrestore(&phba->hbalock, flags);
7786
7787 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7788 if (!rqb_buffer)
7789 break;
7790 rqb_buffer->hrq = hrq;
7791 rqb_buffer->drq = drq;
7792 rqb_buffer->idx = idx;
7793 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7794 }
7795
7796 spin_lock_irqsave(&phba->hbalock, flags);
7797 while (!list_empty(&rqb_buf_list)) {
7798 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7799 hbuf.list);
7800
7801 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7802 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7803 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7804 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7805 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7806 if (rc < 0) {
7807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7808 "6421 Cannot post to HRQ %d: %x %x %x "
7809 "DRQ %x %x\n",
7810 hrq->queue_id,
7811 hrq->host_index,
7812 hrq->hba_index,
7813 hrq->entry_count,
7814 drq->host_index,
7815 drq->hba_index);
7816 rqbp->rqb_free_buffer(phba, rqb_buffer);
7817 } else {
7818 list_add_tail(&rqb_buffer->hbuf.list,
7819 &rqbp->rqb_buffer_list);
7820 rqbp->buffer_count++;
7821 }
7822 }
7823 spin_unlock_irqrestore(&phba->hbalock, flags);
7824 return 1;
7825 }
7826
7827 static void
lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7828 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7829 {
7830 union lpfc_sli4_cfg_shdr *shdr;
7831 u32 shdr_status, shdr_add_status;
7832
7833 shdr = (union lpfc_sli4_cfg_shdr *)
7834 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7835 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7836 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7837 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7838 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7839 "4622 SET_FEATURE (x%x) mbox failed, "
7840 "status x%x add_status x%x, mbx status x%x\n",
7841 LPFC_SET_LD_SIGNAL, shdr_status,
7842 shdr_add_status, pmb->u.mb.mbxStatus);
7843 phba->degrade_activate_threshold = 0;
7844 phba->degrade_deactivate_threshold = 0;
7845 phba->fec_degrade_interval = 0;
7846 goto out;
7847 }
7848
7849 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7850 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7851 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7852
7853 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7854 "4624 Success: da x%x dd x%x interval x%x\n",
7855 phba->degrade_activate_threshold,
7856 phba->degrade_deactivate_threshold,
7857 phba->fec_degrade_interval);
7858 out:
7859 mempool_free(pmb, phba->mbox_mem_pool);
7860 }
7861
7862 int
lpfc_read_lds_params(struct lpfc_hba * phba)7863 lpfc_read_lds_params(struct lpfc_hba *phba)
7864 {
7865 LPFC_MBOXQ_t *mboxq;
7866 int rc;
7867
7868 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7869 if (!mboxq)
7870 return -ENOMEM;
7871
7872 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7873 mboxq->vport = phba->pport;
7874 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7875 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7876 if (rc == MBX_NOT_FINISHED) {
7877 mempool_free(mboxq, phba->mbox_mem_pool);
7878 return -EIO;
7879 }
7880 return 0;
7881 }
7882
7883 static void
lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7884 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7885 {
7886 struct lpfc_vport *vport = pmb->vport;
7887 union lpfc_sli4_cfg_shdr *shdr;
7888 u32 shdr_status, shdr_add_status;
7889 u32 sig, acqe;
7890
7891 /* Two outcomes. (1) Set featurs was successul and EDC negotiation
7892 * is done. (2) Mailbox failed and send FPIN support only.
7893 */
7894 shdr = (union lpfc_sli4_cfg_shdr *)
7895 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7898 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7900 "2516 CGN SET_FEATURE mbox failed with "
7901 "status x%x add_status x%x, mbx status x%x "
7902 "Reset Congestion to FPINs only\n",
7903 shdr_status, shdr_add_status,
7904 pmb->u.mb.mbxStatus);
7905 /* If there is a mbox error, move on to RDF */
7906 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7907 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7908 goto out;
7909 }
7910
7911 /* Zero out Congestion Signal ACQE counter */
7912 phba->cgn_acqe_cnt = 0;
7913
7914 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7915 &pmb->u.mqe.un.set_feature);
7916 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7917 &pmb->u.mqe.un.set_feature);
7918 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7919 "4620 SET_FEATURES Success: Freq: %ds %dms "
7920 " Reg: x%x x%x\n", acqe, sig,
7921 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7922 out:
7923 mempool_free(pmb, phba->mbox_mem_pool);
7924
7925 /* Register for FPIN events from the fabric now that the
7926 * EDC common_set_features has completed.
7927 */
7928 lpfc_issue_els_rdf(vport, 0);
7929 }
7930
7931 int
lpfc_config_cgn_signal(struct lpfc_hba * phba)7932 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7933 {
7934 LPFC_MBOXQ_t *mboxq;
7935 u32 rc;
7936
7937 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7938 if (!mboxq)
7939 goto out_rdf;
7940
7941 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7942 mboxq->vport = phba->pport;
7943 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7944
7945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7946 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7947 "Reg: x%x x%x\n",
7948 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7949 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7950
7951 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7952 if (rc == MBX_NOT_FINISHED)
7953 goto out;
7954 return 0;
7955
7956 out:
7957 mempool_free(mboxq, phba->mbox_mem_pool);
7958 out_rdf:
7959 /* If there is a mbox error, move on to RDF */
7960 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7961 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7962 lpfc_issue_els_rdf(phba->pport, 0);
7963 return -EIO;
7964 }
7965
7966 /**
7967 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7968 * @phba: pointer to lpfc hba data structure.
7969 *
7970 * This routine initializes the per-eq idle_stat to dynamically dictate
7971 * polling decisions.
7972 *
7973 * Return codes:
7974 * None
7975 **/
lpfc_init_idle_stat_hb(struct lpfc_hba * phba)7976 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7977 {
7978 int i;
7979 struct lpfc_sli4_hdw_queue *hdwq;
7980 struct lpfc_queue *eq;
7981 struct lpfc_idle_stat *idle_stat;
7982 u64 wall;
7983
7984 for_each_present_cpu(i) {
7985 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7986 eq = hdwq->hba_eq;
7987
7988 /* Skip if we've already handled this eq's primary CPU */
7989 if (eq->chann != i)
7990 continue;
7991
7992 idle_stat = &phba->sli4_hba.idle_stat[i];
7993
7994 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7995 idle_stat->prev_wall = wall;
7996
7997 if (phba->nvmet_support ||
7998 phba->cmf_active_mode != LPFC_CFG_OFF ||
7999 phba->intr_type != MSIX)
8000 eq->poll_mode = LPFC_QUEUE_WORK;
8001 else
8002 eq->poll_mode = LPFC_THREADED_IRQ;
8003 }
8004
8005 if (!phba->nvmet_support && phba->intr_type == MSIX)
8006 schedule_delayed_work(&phba->idle_stat_delay_work,
8007 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
8008 }
8009
lpfc_sli4_dip(struct lpfc_hba * phba)8010 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8011 {
8012 uint32_t if_type;
8013
8014 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8015 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8016 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8017 struct lpfc_register reg_data;
8018
8019 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8020 ®_data.word0))
8021 return;
8022
8023 if (bf_get(lpfc_sliport_status_dip, ®_data))
8024 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8025 "2904 Firmware Dump Image Present"
8026 " on Adapter");
8027 }
8028 }
8029
8030 /**
8031 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8032 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8033 * @entries: Number of rx_info_entry objects to allocate in ring
8034 *
8035 * Return:
8036 * 0 - Success
8037 * ENOMEM - Failure to kmalloc
8038 **/
lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor * rx_monitor,u32 entries)8039 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8040 u32 entries)
8041 {
8042 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8043 GFP_KERNEL);
8044 if (!rx_monitor->ring)
8045 return -ENOMEM;
8046
8047 rx_monitor->head_idx = 0;
8048 rx_monitor->tail_idx = 0;
8049 spin_lock_init(&rx_monitor->lock);
8050 rx_monitor->entries = entries;
8051
8052 return 0;
8053 }
8054
8055 /**
8056 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8057 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8058 *
8059 * Called after cancellation of cmf_timer.
8060 **/
lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor * rx_monitor)8061 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8062 {
8063 kfree(rx_monitor->ring);
8064 rx_monitor->ring = NULL;
8065 rx_monitor->entries = 0;
8066 rx_monitor->head_idx = 0;
8067 rx_monitor->tail_idx = 0;
8068 }
8069
8070 /**
8071 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8072 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8073 * @entry: Pointer to rx_info_entry
8074 *
8075 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a
8076 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8077 *
8078 * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8079 *
8080 * In cases of old data overflow, we do a best effort of FIFO order.
8081 **/
lpfc_rx_monitor_record(struct lpfc_rx_info_monitor * rx_monitor,struct rx_info_entry * entry)8082 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8083 struct rx_info_entry *entry)
8084 {
8085 struct rx_info_entry *ring = rx_monitor->ring;
8086 u32 *head_idx = &rx_monitor->head_idx;
8087 u32 *tail_idx = &rx_monitor->tail_idx;
8088 spinlock_t *ring_lock = &rx_monitor->lock;
8089 u32 ring_size = rx_monitor->entries;
8090
8091 spin_lock(ring_lock);
8092 memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8093 *tail_idx = (*tail_idx + 1) % ring_size;
8094
8095 /* Best effort of FIFO saved data */
8096 if (*tail_idx == *head_idx)
8097 *head_idx = (*head_idx + 1) % ring_size;
8098
8099 spin_unlock(ring_lock);
8100 }
8101
8102 /**
8103 * lpfc_rx_monitor_report - Read out rx_monitor's ring
8104 * @phba: Pointer to lpfc_hba object
8105 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8106 * @buf: Pointer to char buffer that will contain rx monitor info data
8107 * @buf_len: Length buf including null char
8108 * @max_read_entries: Maximum number of entries to read out of ring
8109 *
8110 * Used to dump/read what's in rx_monitor's ring buffer.
8111 *
8112 * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8113 * information to kmsg instead of filling out buf.
8114 *
8115 * Return:
8116 * Number of entries read out of the ring
8117 **/
lpfc_rx_monitor_report(struct lpfc_hba * phba,struct lpfc_rx_info_monitor * rx_monitor,char * buf,u32 buf_len,u32 max_read_entries)8118 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8119 struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8120 u32 buf_len, u32 max_read_entries)
8121 {
8122 struct rx_info_entry *ring = rx_monitor->ring;
8123 struct rx_info_entry *entry;
8124 u32 *head_idx = &rx_monitor->head_idx;
8125 u32 *tail_idx = &rx_monitor->tail_idx;
8126 spinlock_t *ring_lock = &rx_monitor->lock;
8127 u32 ring_size = rx_monitor->entries;
8128 u32 cnt = 0;
8129 char tmp[DBG_LOG_STR_SZ] = {0};
8130 bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8131
8132 if (!log_to_kmsg) {
8133 /* clear the buffer to be sure */
8134 memset(buf, 0, buf_len);
8135
8136 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8137 "%-8s%-8s%-8s%-16s\n",
8138 "MaxBPI", "Tot_Data_CMF",
8139 "Tot_Data_Cmd", "Tot_Data_Cmpl",
8140 "Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8141 "IO_cnt", "Info", "BWutil(ms)");
8142 }
8143
8144 /* Needs to be _irq because record is called from timer interrupt
8145 * context
8146 */
8147 spin_lock_irq(ring_lock);
8148 while (*head_idx != *tail_idx) {
8149 entry = &ring[*head_idx];
8150
8151 /* Read out this entry's data. */
8152 if (!log_to_kmsg) {
8153 /* If !log_to_kmsg, then store to buf. */
8154 scnprintf(tmp, sizeof(tmp),
8155 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8156 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8157 *head_idx, entry->max_bytes_per_interval,
8158 entry->cmf_bytes, entry->total_bytes,
8159 entry->rcv_bytes, entry->avg_io_latency,
8160 entry->avg_io_size, entry->max_read_cnt,
8161 entry->cmf_busy, entry->io_cnt,
8162 entry->cmf_info, entry->timer_utilization,
8163 entry->timer_interval);
8164
8165 /* Check for buffer overflow */
8166 if ((strlen(buf) + strlen(tmp)) >= buf_len)
8167 break;
8168
8169 /* Append entry's data to buffer */
8170 strlcat(buf, tmp, buf_len);
8171 } else {
8172 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8173 "4410 %02u: MBPI %llu Xmit %llu "
8174 "Cmpl %llu Lat %llu ASz %llu Info %02u "
8175 "BWUtil %u Int %u slot %u\n",
8176 cnt, entry->max_bytes_per_interval,
8177 entry->total_bytes, entry->rcv_bytes,
8178 entry->avg_io_latency,
8179 entry->avg_io_size, entry->cmf_info,
8180 entry->timer_utilization,
8181 entry->timer_interval, *head_idx);
8182 }
8183
8184 *head_idx = (*head_idx + 1) % ring_size;
8185
8186 /* Don't feed more than max_read_entries */
8187 cnt++;
8188 if (cnt >= max_read_entries)
8189 break;
8190 }
8191 spin_unlock_irq(ring_lock);
8192
8193 return cnt;
8194 }
8195
8196 /**
8197 * lpfc_cmf_setup - Initialize idle_stat tracking
8198 * @phba: Pointer to HBA context object.
8199 *
8200 * This is called from HBA setup during driver load or when the HBA
8201 * comes online. this does all the initialization to support CMF and MI.
8202 **/
8203 static int
lpfc_cmf_setup(struct lpfc_hba * phba)8204 lpfc_cmf_setup(struct lpfc_hba *phba)
8205 {
8206 LPFC_MBOXQ_t *mboxq;
8207 struct lpfc_dmabuf *mp;
8208 struct lpfc_pc_sli4_params *sli4_params;
8209 int rc, cmf, mi_ver;
8210
8211 rc = lpfc_sli4_refresh_params(phba);
8212 if (unlikely(rc))
8213 return rc;
8214
8215 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8216 if (!mboxq)
8217 return -ENOMEM;
8218
8219 sli4_params = &phba->sli4_hba.pc_sli4_params;
8220
8221 /* Always try to enable MI feature if we can */
8222 if (sli4_params->mi_ver) {
8223 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8224 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8225 mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8226 &mboxq->u.mqe.un.set_feature);
8227
8228 if (rc == MBX_SUCCESS) {
8229 if (mi_ver) {
8230 lpfc_printf_log(phba,
8231 KERN_WARNING, LOG_CGN_MGMT,
8232 "6215 MI is enabled\n");
8233 sli4_params->mi_ver = mi_ver;
8234 } else {
8235 lpfc_printf_log(phba,
8236 KERN_WARNING, LOG_CGN_MGMT,
8237 "6338 MI is disabled\n");
8238 sli4_params->mi_ver = 0;
8239 }
8240 } else {
8241 /* mi_ver is already set from GET_SLI4_PARAMETERS */
8242 lpfc_printf_log(phba, KERN_INFO,
8243 LOG_CGN_MGMT | LOG_INIT,
8244 "6245 Enable MI Mailbox x%x (x%x/x%x) "
8245 "failed, rc:x%x mi:x%x\n",
8246 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8247 lpfc_sli_config_mbox_subsys_get
8248 (phba, mboxq),
8249 lpfc_sli_config_mbox_opcode_get
8250 (phba, mboxq),
8251 rc, sli4_params->mi_ver);
8252 }
8253 } else {
8254 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8255 "6217 MI is disabled\n");
8256 }
8257
8258 /* Ensure FDMI is enabled for MI if enable_mi is set */
8259 if (sli4_params->mi_ver)
8260 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8261
8262 /* Always try to enable CMF feature if we can */
8263 if (sli4_params->cmf) {
8264 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8265 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8266 cmf = bf_get(lpfc_mbx_set_feature_cmf,
8267 &mboxq->u.mqe.un.set_feature);
8268 if (rc == MBX_SUCCESS && cmf) {
8269 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8270 "6218 CMF is enabled: mode %d\n",
8271 phba->cmf_active_mode);
8272 } else {
8273 lpfc_printf_log(phba, KERN_WARNING,
8274 LOG_CGN_MGMT | LOG_INIT,
8275 "6219 Enable CMF Mailbox x%x (x%x/x%x) "
8276 "failed, rc:x%x dd:x%x\n",
8277 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8278 lpfc_sli_config_mbox_subsys_get
8279 (phba, mboxq),
8280 lpfc_sli_config_mbox_opcode_get
8281 (phba, mboxq),
8282 rc, cmf);
8283 sli4_params->cmf = 0;
8284 phba->cmf_active_mode = LPFC_CFG_OFF;
8285 goto no_cmf;
8286 }
8287
8288 /* Allocate Congestion Information Buffer */
8289 if (!phba->cgn_i) {
8290 mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8291 if (mp)
8292 mp->virt = dma_alloc_coherent
8293 (&phba->pcidev->dev,
8294 sizeof(struct lpfc_cgn_info),
8295 &mp->phys, GFP_KERNEL);
8296 if (!mp || !mp->virt) {
8297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8298 "2640 Failed to alloc memory "
8299 "for Congestion Info\n");
8300 kfree(mp);
8301 sli4_params->cmf = 0;
8302 phba->cmf_active_mode = LPFC_CFG_OFF;
8303 goto no_cmf;
8304 }
8305 phba->cgn_i = mp;
8306
8307 /* initialize congestion buffer info */
8308 lpfc_init_congestion_buf(phba);
8309 lpfc_init_congestion_stat(phba);
8310
8311 /* Zero out Congestion Signal counters */
8312 atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8313 atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8314 }
8315
8316 rc = lpfc_sli4_cgn_params_read(phba);
8317 if (rc < 0) {
8318 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8319 "6242 Error reading Cgn Params (%d)\n",
8320 rc);
8321 /* Ensure CGN Mode is off */
8322 sli4_params->cmf = 0;
8323 } else if (!rc) {
8324 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8325 "6243 CGN Event empty object.\n");
8326 /* Ensure CGN Mode is off */
8327 sli4_params->cmf = 0;
8328 }
8329 } else {
8330 no_cmf:
8331 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8332 "6220 CMF is disabled\n");
8333 }
8334
8335 /* Only register congestion buffer with firmware if BOTH
8336 * CMF and E2E are enabled.
8337 */
8338 if (sli4_params->cmf && sli4_params->mi_ver) {
8339 rc = lpfc_reg_congestion_buf(phba);
8340 if (rc) {
8341 dma_free_coherent(&phba->pcidev->dev,
8342 sizeof(struct lpfc_cgn_info),
8343 phba->cgn_i->virt, phba->cgn_i->phys);
8344 kfree(phba->cgn_i);
8345 phba->cgn_i = NULL;
8346 /* Ensure CGN Mode is off */
8347 phba->cmf_active_mode = LPFC_CFG_OFF;
8348 sli4_params->cmf = 0;
8349 return 0;
8350 }
8351 }
8352 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8353 "6470 Setup MI version %d CMF %d mode %d\n",
8354 sli4_params->mi_ver, sli4_params->cmf,
8355 phba->cmf_active_mode);
8356
8357 mempool_free(mboxq, phba->mbox_mem_pool);
8358
8359 /* Initialize atomic counters */
8360 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8361 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8362 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8363 atomic_set(&phba->cgn_sync_warn_cnt, 0);
8364 atomic_set(&phba->cgn_driver_evt_cnt, 0);
8365 atomic_set(&phba->cgn_latency_evt_cnt, 0);
8366 atomic64_set(&phba->cgn_latency_evt, 0);
8367
8368 phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8369
8370 /* Allocate RX Monitor Buffer */
8371 if (!phba->rx_monitor) {
8372 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8373 GFP_KERNEL);
8374
8375 if (!phba->rx_monitor) {
8376 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8377 "2644 Failed to alloc memory "
8378 "for RX Monitor Buffer\n");
8379 return -ENOMEM;
8380 }
8381
8382 /* Instruct the rx_monitor object to instantiate its ring */
8383 if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8384 LPFC_MAX_RXMONITOR_ENTRY)) {
8385 kfree(phba->rx_monitor);
8386 phba->rx_monitor = NULL;
8387 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8388 "2645 Failed to alloc memory "
8389 "for RX Monitor's Ring\n");
8390 return -ENOMEM;
8391 }
8392 }
8393
8394 return 0;
8395 }
8396
8397 static int
lpfc_set_host_tm(struct lpfc_hba * phba)8398 lpfc_set_host_tm(struct lpfc_hba *phba)
8399 {
8400 LPFC_MBOXQ_t *mboxq;
8401 uint32_t len, rc;
8402 struct timespec64 cur_time;
8403 struct tm broken;
8404 uint32_t month, day, year;
8405 uint32_t hour, minute, second;
8406 struct lpfc_mbx_set_host_date_time *tm;
8407
8408 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8409 if (!mboxq)
8410 return -ENOMEM;
8411
8412 len = sizeof(struct lpfc_mbx_set_host_data) -
8413 sizeof(struct lpfc_sli4_cfg_mhdr);
8414 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8415 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8416 LPFC_SLI4_MBX_EMBED);
8417
8418 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8419 mboxq->u.mqe.un.set_host_data.param_len =
8420 sizeof(struct lpfc_mbx_set_host_date_time);
8421 tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8422 ktime_get_real_ts64(&cur_time);
8423 time64_to_tm(cur_time.tv_sec, 0, &broken);
8424 month = broken.tm_mon + 1;
8425 day = broken.tm_mday;
8426 year = broken.tm_year - 100;
8427 hour = broken.tm_hour;
8428 minute = broken.tm_min;
8429 second = broken.tm_sec;
8430 bf_set(lpfc_mbx_set_host_month, tm, month);
8431 bf_set(lpfc_mbx_set_host_day, tm, day);
8432 bf_set(lpfc_mbx_set_host_year, tm, year);
8433 bf_set(lpfc_mbx_set_host_hour, tm, hour);
8434 bf_set(lpfc_mbx_set_host_min, tm, minute);
8435 bf_set(lpfc_mbx_set_host_sec, tm, second);
8436
8437 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8438 mempool_free(mboxq, phba->mbox_mem_pool);
8439 return rc;
8440 }
8441
8442 /**
8443 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8444 * @phba: Pointer to HBA context object.
8445 *
8446 * This function is the main SLI4 device initialization PCI function. This
8447 * function is called by the HBA initialization code, HBA reset code and
8448 * HBA error attention handler code. Caller is not required to hold any
8449 * locks.
8450 **/
8451 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)8452 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8453 {
8454 int rc, i, cnt, len, dd;
8455 LPFC_MBOXQ_t *mboxq;
8456 struct lpfc_mqe *mqe;
8457 uint8_t *vpd;
8458 uint32_t vpd_size;
8459 uint32_t ftr_rsp = 0;
8460 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8461 struct lpfc_vport *vport = phba->pport;
8462 struct lpfc_dmabuf *mp;
8463 struct lpfc_rqb *rqbp;
8464 u32 flg;
8465
8466 /* Perform a PCI function reset to start from clean */
8467 rc = lpfc_pci_function_reset(phba);
8468 if (unlikely(rc))
8469 return -ENODEV;
8470
8471 /* Check the HBA Host Status Register for readyness */
8472 rc = lpfc_sli4_post_status_check(phba);
8473 if (unlikely(rc))
8474 return -ENODEV;
8475 else {
8476 spin_lock_irq(&phba->hbalock);
8477 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8478 flg = phba->sli.sli_flag;
8479 spin_unlock_irq(&phba->hbalock);
8480 /* Allow a little time after setting SLI_ACTIVE for any polled
8481 * MBX commands to complete via BSG.
8482 */
8483 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8484 msleep(20);
8485 spin_lock_irq(&phba->hbalock);
8486 flg = phba->sli.sli_flag;
8487 spin_unlock_irq(&phba->hbalock);
8488 }
8489 }
8490 clear_bit(HBA_SETUP, &phba->hba_flag);
8491
8492 lpfc_sli4_dip(phba);
8493
8494 /*
8495 * Allocate a single mailbox container for initializing the
8496 * port.
8497 */
8498 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8499 if (!mboxq)
8500 return -ENOMEM;
8501
8502 /* Issue READ_REV to collect vpd and FW information. */
8503 vpd_size = SLI4_PAGE_SIZE;
8504 vpd = kzalloc(vpd_size, GFP_KERNEL);
8505 if (!vpd) {
8506 rc = -ENOMEM;
8507 goto out_free_mbox;
8508 }
8509
8510 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8511 if (unlikely(rc)) {
8512 kfree(vpd);
8513 goto out_free_mbox;
8514 }
8515
8516 mqe = &mboxq->u.mqe;
8517 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8518 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8519 set_bit(HBA_FCOE_MODE, &phba->hba_flag);
8520 phba->fcp_embed_io = 0; /* SLI4 FC support only */
8521 } else {
8522 clear_bit(HBA_FCOE_MODE, &phba->hba_flag);
8523 }
8524
8525 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8526 LPFC_DCBX_CEE_MODE)
8527 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8528 else
8529 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
8530
8531 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag);
8532
8533 if (phba->sli_rev != LPFC_SLI_REV4) {
8534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8535 "0376 READ_REV Error. SLI Level %d "
8536 "FCoE enabled %d\n",
8537 phba->sli_rev,
8538 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0);
8539 rc = -EIO;
8540 kfree(vpd);
8541 goto out_free_mbox;
8542 }
8543
8544 rc = lpfc_set_host_tm(phba);
8545 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8546 "6468 Set host date / time: Status x%x:\n", rc);
8547
8548 /*
8549 * Continue initialization with default values even if driver failed
8550 * to read FCoE param config regions, only read parameters if the
8551 * board is FCoE
8552 */
8553 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
8554 lpfc_sli4_read_fcoe_params(phba))
8555 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8556 "2570 Failed to read FCoE parameters\n");
8557
8558 /*
8559 * Retrieve sli4 device physical port name, failure of doing it
8560 * is considered as non-fatal.
8561 */
8562 rc = lpfc_sli4_retrieve_pport_name(phba);
8563 if (!rc)
8564 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8565 "3080 Successful retrieving SLI4 device "
8566 "physical port name: %s.\n", phba->Port);
8567
8568 rc = lpfc_sli4_get_ctl_attr(phba);
8569 if (!rc)
8570 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8571 "8351 Successful retrieving SLI4 device "
8572 "CTL ATTR\n");
8573
8574 /*
8575 * Evaluate the read rev and vpd data. Populate the driver
8576 * state with the results. If this routine fails, the failure
8577 * is not fatal as the driver will use generic values.
8578 */
8579 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8580 if (unlikely(!rc))
8581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8582 "0377 Error %d parsing vpd. "
8583 "Using defaults.\n", rc);
8584 kfree(vpd);
8585
8586 /* Save information as VPD data */
8587 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8588 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8589
8590 /*
8591 * This is because first G7 ASIC doesn't support the standard
8592 * 0x5a NVME cmd descriptor type/subtype
8593 */
8594 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8595 LPFC_SLI_INTF_IF_TYPE_6) &&
8596 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8597 (phba->vpd.rev.smRev == 0) &&
8598 (phba->cfg_nvme_embed_cmd == 1))
8599 phba->cfg_nvme_embed_cmd = 0;
8600
8601 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8602 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8603 &mqe->un.read_rev);
8604 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8605 &mqe->un.read_rev);
8606 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8607 &mqe->un.read_rev);
8608 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8609 &mqe->un.read_rev);
8610 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8611 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8612 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8613 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8614 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8615 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8616 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8617 "(%d):0380 READ_REV Status x%x "
8618 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8619 mboxq->vport ? mboxq->vport->vpi : 0,
8620 bf_get(lpfc_mqe_status, mqe),
8621 phba->vpd.rev.opFwName,
8622 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8623 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8624
8625 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8626 LPFC_SLI_INTF_IF_TYPE_0) {
8627 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8628 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8629 if (rc == MBX_SUCCESS) {
8630 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag);
8631 /* Set 1Sec interval to detect UE */
8632 phba->eratt_poll_interval = 1;
8633 phba->sli4_hba.ue_to_sr = bf_get(
8634 lpfc_mbx_set_feature_UESR,
8635 &mboxq->u.mqe.un.set_feature);
8636 phba->sli4_hba.ue_to_rp = bf_get(
8637 lpfc_mbx_set_feature_UERP,
8638 &mboxq->u.mqe.un.set_feature);
8639 }
8640 }
8641
8642 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8643 /* Enable MDS Diagnostics only if the SLI Port supports it */
8644 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8645 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8646 if (rc != MBX_SUCCESS)
8647 phba->mds_diags_support = 0;
8648 }
8649
8650 /*
8651 * Discover the port's supported feature set and match it against the
8652 * hosts requests.
8653 */
8654 lpfc_request_features(phba, mboxq);
8655 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8656 if (unlikely(rc)) {
8657 rc = -EIO;
8658 goto out_free_mbox;
8659 }
8660
8661 /* Disable VMID if app header is not supported */
8662 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8663 &mqe->un.req_ftrs))) {
8664 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8665 phba->cfg_vmid_app_header = 0;
8666 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8667 "1242 vmid feature not supported\n");
8668 }
8669
8670 /*
8671 * The port must support FCP initiator mode as this is the
8672 * only mode running in the host.
8673 */
8674 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8675 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8676 "0378 No support for fcpi mode.\n");
8677 ftr_rsp++;
8678 }
8679
8680 /* Performance Hints are ONLY for FCoE */
8681 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
8682 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8683 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8684 else
8685 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8686 }
8687
8688 /*
8689 * If the port cannot support the host's requested features
8690 * then turn off the global config parameters to disable the
8691 * feature in the driver. This is not a fatal error.
8692 */
8693 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8694 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8695 phba->cfg_enable_bg = 0;
8696 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8697 ftr_rsp++;
8698 }
8699 }
8700
8701 if (phba->max_vpi && phba->cfg_enable_npiv &&
8702 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8703 ftr_rsp++;
8704
8705 if (ftr_rsp) {
8706 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8707 "0379 Feature Mismatch Data: x%08x %08x "
8708 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8709 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8710 phba->cfg_enable_npiv, phba->max_vpi);
8711 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8712 phba->cfg_enable_bg = 0;
8713 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8714 phba->cfg_enable_npiv = 0;
8715 }
8716
8717 /* These SLI3 features are assumed in SLI4 */
8718 spin_lock_irq(&phba->hbalock);
8719 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8720 spin_unlock_irq(&phba->hbalock);
8721
8722 /* Always try to enable dual dump feature if we can */
8723 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8724 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8725 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8726 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8728 "6448 Dual Dump is enabled\n");
8729 else
8730 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8731 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8732 "rc:x%x dd:x%x\n",
8733 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8734 lpfc_sli_config_mbox_subsys_get(
8735 phba, mboxq),
8736 lpfc_sli_config_mbox_opcode_get(
8737 phba, mboxq),
8738 rc, dd);
8739
8740 /*
8741 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
8742 * calls depends on these resources to complete port setup.
8743 */
8744 rc = lpfc_sli4_alloc_resource_identifiers(phba);
8745 if (rc) {
8746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8747 "2920 Failed to alloc Resource IDs "
8748 "rc = x%x\n", rc);
8749 goto out_free_mbox;
8750 }
8751
8752 lpfc_sli4_node_rpi_restore(phba);
8753
8754 lpfc_set_host_data(phba, mboxq);
8755
8756 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8757 if (rc) {
8758 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8759 "2134 Failed to set host os driver version %x",
8760 rc);
8761 }
8762
8763 /* Read the port's service parameters. */
8764 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8765 if (rc) {
8766 phba->link_state = LPFC_HBA_ERROR;
8767 rc = -ENOMEM;
8768 goto out_free_mbox;
8769 }
8770
8771 mboxq->vport = vport;
8772 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8773 mp = mboxq->ctx_buf;
8774 if (rc == MBX_SUCCESS) {
8775 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8776 rc = 0;
8777 }
8778
8779 /*
8780 * This memory was allocated by the lpfc_read_sparam routine but is
8781 * no longer needed. It is released and ctx_buf NULLed to prevent
8782 * unintended pointer access as the mbox is reused.
8783 */
8784 lpfc_mbuf_free(phba, mp->virt, mp->phys);
8785 kfree(mp);
8786 mboxq->ctx_buf = NULL;
8787 if (unlikely(rc)) {
8788 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8789 "0382 READ_SPARAM command failed "
8790 "status %d, mbxStatus x%x\n",
8791 rc, bf_get(lpfc_mqe_status, mqe));
8792 phba->link_state = LPFC_HBA_ERROR;
8793 rc = -EIO;
8794 goto out_free_mbox;
8795 }
8796
8797 lpfc_update_vport_wwn(vport);
8798
8799 /* Update the fc_host data structures with new wwn. */
8800 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8801 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8802
8803 /* Create all the SLI4 queues */
8804 rc = lpfc_sli4_queue_create(phba);
8805 if (rc) {
8806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8807 "3089 Failed to allocate queues\n");
8808 rc = -ENODEV;
8809 goto out_free_mbox;
8810 }
8811 /* Set up all the queues to the device */
8812 rc = lpfc_sli4_queue_setup(phba);
8813 if (unlikely(rc)) {
8814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8815 "0381 Error %d during queue setup.\n", rc);
8816 goto out_stop_timers;
8817 }
8818 /* Initialize the driver internal SLI layer lists. */
8819 lpfc_sli4_setup(phba);
8820 lpfc_sli4_queue_init(phba);
8821
8822 /* update host els xri-sgl sizes and mappings */
8823 rc = lpfc_sli4_els_sgl_update(phba);
8824 if (unlikely(rc)) {
8825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8826 "1400 Failed to update xri-sgl size and "
8827 "mapping: %d\n", rc);
8828 goto out_destroy_queue;
8829 }
8830
8831 /* register the els sgl pool to the port */
8832 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8833 phba->sli4_hba.els_xri_cnt);
8834 if (unlikely(rc < 0)) {
8835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8836 "0582 Error %d during els sgl post "
8837 "operation\n", rc);
8838 rc = -ENODEV;
8839 goto out_destroy_queue;
8840 }
8841 phba->sli4_hba.els_xri_cnt = rc;
8842
8843 if (phba->nvmet_support) {
8844 /* update host nvmet xri-sgl sizes and mappings */
8845 rc = lpfc_sli4_nvmet_sgl_update(phba);
8846 if (unlikely(rc)) {
8847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8848 "6308 Failed to update nvmet-sgl size "
8849 "and mapping: %d\n", rc);
8850 goto out_destroy_queue;
8851 }
8852
8853 /* register the nvmet sgl pool to the port */
8854 rc = lpfc_sli4_repost_sgl_list(
8855 phba,
8856 &phba->sli4_hba.lpfc_nvmet_sgl_list,
8857 phba->sli4_hba.nvmet_xri_cnt);
8858 if (unlikely(rc < 0)) {
8859 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8860 "3117 Error %d during nvmet "
8861 "sgl post\n", rc);
8862 rc = -ENODEV;
8863 goto out_destroy_queue;
8864 }
8865 phba->sli4_hba.nvmet_xri_cnt = rc;
8866
8867 /* We allocate an iocbq for every receive context SGL.
8868 * The additional allocation is for abort and ls handling.
8869 */
8870 cnt = phba->sli4_hba.nvmet_xri_cnt +
8871 phba->sli4_hba.max_cfg_param.max_xri;
8872 } else {
8873 /* update host common xri-sgl sizes and mappings */
8874 rc = lpfc_sli4_io_sgl_update(phba);
8875 if (unlikely(rc)) {
8876 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8877 "6082 Failed to update nvme-sgl size "
8878 "and mapping: %d\n", rc);
8879 goto out_destroy_queue;
8880 }
8881
8882 /* register the allocated common sgl pool to the port */
8883 rc = lpfc_sli4_repost_io_sgl_list(phba);
8884 if (unlikely(rc)) {
8885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8886 "6116 Error %d during nvme sgl post "
8887 "operation\n", rc);
8888 /* Some NVME buffers were moved to abort nvme list */
8889 /* A pci function reset will repost them */
8890 rc = -ENODEV;
8891 goto out_destroy_queue;
8892 }
8893 /* Each lpfc_io_buf job structure has an iocbq element.
8894 * This cnt provides for abort, els, ct and ls requests.
8895 */
8896 cnt = phba->sli4_hba.max_cfg_param.max_xri;
8897 }
8898
8899 if (!phba->sli.iocbq_lookup) {
8900 /* Initialize and populate the iocb list per host */
8901 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8902 "2821 initialize iocb list with %d entries\n",
8903 cnt);
8904 rc = lpfc_init_iocb_list(phba, cnt);
8905 if (rc) {
8906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8907 "1413 Failed to init iocb list.\n");
8908 goto out_destroy_queue;
8909 }
8910 }
8911
8912 if (phba->nvmet_support)
8913 lpfc_nvmet_create_targetport(phba);
8914
8915 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8916 /* Post initial buffers to all RQs created */
8917 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8918 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8919 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8920 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8921 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8922 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8923 rqbp->buffer_count = 0;
8924
8925 lpfc_post_rq_buffer(
8926 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8927 phba->sli4_hba.nvmet_mrq_data[i],
8928 phba->cfg_nvmet_mrq_post, i);
8929 }
8930 }
8931
8932 /* Post the rpi header region to the device. */
8933 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8934 if (unlikely(rc)) {
8935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8936 "0393 Error %d during rpi post operation\n",
8937 rc);
8938 rc = -ENODEV;
8939 goto out_free_iocblist;
8940 }
8941
8942 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
8943 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8944 /*
8945 * The FC Port needs to register FCFI (index 0)
8946 */
8947 lpfc_reg_fcfi(phba, mboxq);
8948 mboxq->vport = phba->pport;
8949 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8950 if (rc != MBX_SUCCESS)
8951 goto out_unset_queue;
8952 rc = 0;
8953 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8954 &mboxq->u.mqe.un.reg_fcfi);
8955 } else {
8956 /* We are a NVME Target mode with MRQ > 1 */
8957
8958 /* First register the FCFI */
8959 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8960 mboxq->vport = phba->pport;
8961 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8962 if (rc != MBX_SUCCESS)
8963 goto out_unset_queue;
8964 rc = 0;
8965 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8966 &mboxq->u.mqe.un.reg_fcfi_mrq);
8967
8968 /* Next register the MRQs */
8969 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8970 mboxq->vport = phba->pport;
8971 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8972 if (rc != MBX_SUCCESS)
8973 goto out_unset_queue;
8974 rc = 0;
8975 }
8976 /* Check if the port is configured to be disabled */
8977 lpfc_sli_read_link_ste(phba);
8978 }
8979
8980 /* Don't post more new bufs if repost already recovered
8981 * the nvme sgls.
8982 */
8983 if (phba->nvmet_support == 0) {
8984 if (phba->sli4_hba.io_xri_cnt == 0) {
8985 len = lpfc_new_io_buf(
8986 phba, phba->sli4_hba.io_xri_max);
8987 if (len == 0) {
8988 rc = -ENOMEM;
8989 goto out_unset_queue;
8990 }
8991
8992 if (phba->cfg_xri_rebalancing)
8993 lpfc_create_multixri_pools(phba);
8994 }
8995 } else {
8996 phba->cfg_xri_rebalancing = 0;
8997 }
8998
8999 /* Allow asynchronous mailbox command to go through */
9000 spin_lock_irq(&phba->hbalock);
9001 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9002 spin_unlock_irq(&phba->hbalock);
9003
9004 /* Post receive buffers to the device */
9005 lpfc_sli4_rb_setup(phba);
9006
9007 /* Reset HBA FCF states after HBA reset */
9008 phba->fcf.fcf_flag = 0;
9009 phba->fcf.current_rec.flag = 0;
9010
9011 /* Start the ELS watchdog timer */
9012 mod_timer(&vport->els_tmofunc,
9013 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
9014
9015 /* Start heart beat timer */
9016 mod_timer(&phba->hb_tmofunc,
9017 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL));
9018 clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
9019 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
9020 phba->last_completion_time = jiffies;
9021
9022 /* start eq_delay heartbeat */
9023 if (phba->cfg_auto_imax)
9024 queue_delayed_work(phba->wq, &phba->eq_delay_work,
9025 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9026
9027 /* start per phba idle_stat_delay heartbeat */
9028 lpfc_init_idle_stat_hb(phba);
9029
9030 /* Start error attention (ERATT) polling timer */
9031 mod_timer(&phba->eratt_poll,
9032 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
9033
9034 /*
9035 * The port is ready, set the host's link state to LINK_DOWN
9036 * in preparation for link interrupts.
9037 */
9038 spin_lock_irq(&phba->hbalock);
9039 phba->link_state = LPFC_LINK_DOWN;
9040
9041 /* Check if physical ports are trunked */
9042 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9043 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9044 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9045 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9046 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9047 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9048 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9049 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9050 spin_unlock_irq(&phba->hbalock);
9051
9052 /* Arm the CQs and then EQs on device */
9053 lpfc_sli4_arm_cqeq_intr(phba);
9054
9055 /* Indicate device interrupt mode */
9056 phba->sli4_hba.intr_enable = 1;
9057
9058 /* Setup CMF after HBA is initialized */
9059 lpfc_cmf_setup(phba);
9060
9061 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) &&
9062 test_bit(LINK_DISABLED, &phba->hba_flag)) {
9063 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9064 "3103 Adapter Link is disabled.\n");
9065 lpfc_down_link(phba, mboxq);
9066 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9067 if (rc != MBX_SUCCESS) {
9068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9069 "3104 Adapter failed to issue "
9070 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
9071 goto out_io_buff_free;
9072 }
9073 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9074 /* don't perform init_link on SLI4 FC port loopback test */
9075 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9076 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9077 if (rc)
9078 goto out_io_buff_free;
9079 }
9080 }
9081 mempool_free(mboxq, phba->mbox_mem_pool);
9082
9083 /* Enable RAS FW log support */
9084 lpfc_sli4_ras_setup(phba);
9085
9086 set_bit(HBA_SETUP, &phba->hba_flag);
9087 return rc;
9088
9089 out_io_buff_free:
9090 /* Free allocated IO Buffers */
9091 lpfc_io_free(phba);
9092 out_unset_queue:
9093 /* Unset all the queues set up in this routine when error out */
9094 lpfc_sli4_queue_unset(phba);
9095 out_free_iocblist:
9096 lpfc_free_iocb_list(phba);
9097 out_destroy_queue:
9098 lpfc_sli4_queue_destroy(phba);
9099 out_stop_timers:
9100 lpfc_stop_hba_timers(phba);
9101 out_free_mbox:
9102 mempool_free(mboxq, phba->mbox_mem_pool);
9103 return rc;
9104 }
9105
9106 /**
9107 * lpfc_mbox_timeout - Timeout call back function for mbox timer
9108 * @t: Context to fetch pointer to hba structure from.
9109 *
9110 * This is the callback function for mailbox timer. The mailbox
9111 * timer is armed when a new mailbox command is issued and the timer
9112 * is deleted when the mailbox complete. The function is called by
9113 * the kernel timer code when a mailbox does not complete within
9114 * expected time. This function wakes up the worker thread to
9115 * process the mailbox timeout and returns. All the processing is
9116 * done by the worker thread function lpfc_mbox_timeout_handler.
9117 **/
9118 void
lpfc_mbox_timeout(struct timer_list * t)9119 lpfc_mbox_timeout(struct timer_list *t)
9120 {
9121 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
9122 unsigned long iflag;
9123 uint32_t tmo_posted;
9124
9125 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9126 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9127 if (!tmo_posted)
9128 phba->pport->work_port_events |= WORKER_MBOX_TMO;
9129 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9130
9131 if (!tmo_posted)
9132 lpfc_worker_wake_up(phba);
9133 return;
9134 }
9135
9136 /**
9137 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9138 * are pending
9139 * @phba: Pointer to HBA context object.
9140 *
9141 * This function checks if any mailbox completions are present on the mailbox
9142 * completion queue.
9143 **/
9144 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)9145 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9146 {
9147
9148 uint32_t idx;
9149 struct lpfc_queue *mcq;
9150 struct lpfc_mcqe *mcqe;
9151 bool pending_completions = false;
9152 uint8_t qe_valid;
9153
9154 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9155 return false;
9156
9157 /* Check for completions on mailbox completion queue */
9158
9159 mcq = phba->sli4_hba.mbx_cq;
9160 idx = mcq->hba_index;
9161 qe_valid = mcq->qe_valid;
9162 while (bf_get_le32(lpfc_cqe_valid,
9163 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9164 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9165 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9166 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9167 pending_completions = true;
9168 break;
9169 }
9170 idx = (idx + 1) % mcq->entry_count;
9171 if (mcq->hba_index == idx)
9172 break;
9173
9174 /* if the index wrapped around, toggle the valid bit */
9175 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9176 qe_valid = (qe_valid) ? 0 : 1;
9177 }
9178 return pending_completions;
9179
9180 }
9181
9182 /**
9183 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9184 * that were missed.
9185 * @phba: Pointer to HBA context object.
9186 *
9187 * For sli4, it is possible to miss an interrupt. As such mbox completions
9188 * maybe missed causing erroneous mailbox timeouts to occur. This function
9189 * checks to see if mbox completions are on the mailbox completion queue
9190 * and will process all the completions associated with the eq for the
9191 * mailbox completion queue.
9192 **/
9193 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)9194 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9195 {
9196 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9197 uint32_t eqidx;
9198 struct lpfc_queue *fpeq = NULL;
9199 struct lpfc_queue *eq;
9200 bool mbox_pending;
9201
9202 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9203 return false;
9204
9205 /* Find the EQ associated with the mbox CQ */
9206 if (sli4_hba->hdwq) {
9207 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9208 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9209 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9210 fpeq = eq;
9211 break;
9212 }
9213 }
9214 }
9215 if (!fpeq)
9216 return false;
9217
9218 /* Turn off interrupts from this EQ */
9219
9220 sli4_hba->sli4_eq_clr_intr(fpeq);
9221
9222 /* Check to see if a mbox completion is pending */
9223
9224 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9225
9226 /*
9227 * If a mbox completion is pending, process all the events on EQ
9228 * associated with the mbox completion queue (this could include
9229 * mailbox commands, async events, els commands, receive queue data
9230 * and fcp commands)
9231 */
9232
9233 if (mbox_pending)
9234 /* process and rearm the EQ */
9235 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
9236 LPFC_QUEUE_WORK);
9237 else
9238 /* Always clear and re-arm the EQ */
9239 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9240
9241 return mbox_pending;
9242
9243 }
9244
9245 /**
9246 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9247 * @phba: Pointer to HBA context object.
9248 *
9249 * This function is called from worker thread when a mailbox command times out.
9250 * The caller is not required to hold any locks. This function will reset the
9251 * HBA and recover all the pending commands.
9252 **/
9253 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)9254 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9255 {
9256 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9257 MAILBOX_t *mb = NULL;
9258
9259 struct lpfc_sli *psli = &phba->sli;
9260
9261 /* If the mailbox completed, process the completion */
9262 lpfc_sli4_process_missed_mbox_completions(phba);
9263
9264 if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9265 return;
9266
9267 if (pmbox != NULL)
9268 mb = &pmbox->u.mb;
9269 /* Check the pmbox pointer first. There is a race condition
9270 * between the mbox timeout handler getting executed in the
9271 * worklist and the mailbox actually completing. When this
9272 * race condition occurs, the mbox_active will be NULL.
9273 */
9274 spin_lock_irq(&phba->hbalock);
9275 if (pmbox == NULL) {
9276 lpfc_printf_log(phba, KERN_WARNING,
9277 LOG_MBOX | LOG_SLI,
9278 "0353 Active Mailbox cleared - mailbox timeout "
9279 "exiting\n");
9280 spin_unlock_irq(&phba->hbalock);
9281 return;
9282 }
9283
9284 /* Mbox cmd <mbxCommand> timeout */
9285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9286 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9287 mb->mbxCommand,
9288 phba->pport->port_state,
9289 phba->sli.sli_flag,
9290 phba->sli.mbox_active);
9291 spin_unlock_irq(&phba->hbalock);
9292
9293 /* Setting state unknown so lpfc_sli_abort_iocb_ring
9294 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9295 * it to fail all outstanding SCSI IO.
9296 */
9297 set_bit(MBX_TMO_ERR, &phba->bit_flags);
9298 spin_lock_irq(&phba->pport->work_port_lock);
9299 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9300 spin_unlock_irq(&phba->pport->work_port_lock);
9301 spin_lock_irq(&phba->hbalock);
9302 phba->link_state = LPFC_LINK_UNKNOWN;
9303 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9304 spin_unlock_irq(&phba->hbalock);
9305
9306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9307 "0345 Resetting board due to mailbox timeout\n");
9308
9309 /* Reset the HBA device */
9310 lpfc_reset_hba(phba);
9311 }
9312
9313 /**
9314 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9315 * @phba: Pointer to HBA context object.
9316 * @pmbox: Pointer to mailbox object.
9317 * @flag: Flag indicating how the mailbox need to be processed.
9318 *
9319 * This function is called by discovery code and HBA management code
9320 * to submit a mailbox command to firmware with SLI-3 interface spec. This
9321 * function gets the hbalock to protect the data structures.
9322 * The mailbox command can be submitted in polling mode, in which case
9323 * this function will wait in a polling loop for the completion of the
9324 * mailbox.
9325 * If the mailbox is submitted in no_wait mode (not polling) the
9326 * function will submit the command and returns immediately without waiting
9327 * for the mailbox completion. The no_wait is supported only when HBA
9328 * is in SLI2/SLI3 mode - interrupts are enabled.
9329 * The SLI interface allows only one mailbox pending at a time. If the
9330 * mailbox is issued in polling mode and there is already a mailbox
9331 * pending, then the function will return an error. If the mailbox is issued
9332 * in NO_WAIT mode and there is a mailbox pending already, the function
9333 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9334 * The sli layer owns the mailbox object until the completion of mailbox
9335 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9336 * return codes the caller owns the mailbox command after the return of
9337 * the function.
9338 **/
9339 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)9340 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9341 uint32_t flag)
9342 {
9343 MAILBOX_t *mbx;
9344 struct lpfc_sli *psli = &phba->sli;
9345 uint32_t status, evtctr;
9346 uint32_t ha_copy, hc_copy;
9347 int i;
9348 unsigned long timeout;
9349 unsigned long drvr_flag = 0;
9350 uint32_t word0, ldata;
9351 void __iomem *to_slim;
9352 int processing_queue = 0;
9353
9354 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9355 if (!pmbox) {
9356 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9357 /* processing mbox queue from intr_handler */
9358 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9359 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9360 return MBX_SUCCESS;
9361 }
9362 processing_queue = 1;
9363 pmbox = lpfc_mbox_get(phba);
9364 if (!pmbox) {
9365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9366 return MBX_SUCCESS;
9367 }
9368 }
9369
9370 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9371 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9372 if(!pmbox->vport) {
9373 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9374 lpfc_printf_log(phba, KERN_ERR,
9375 LOG_MBOX | LOG_VPORT,
9376 "1806 Mbox x%x failed. No vport\n",
9377 pmbox->u.mb.mbxCommand);
9378 dump_stack();
9379 goto out_not_finished;
9380 }
9381 }
9382
9383 /* If the PCI channel is in offline state, do not post mbox. */
9384 if (unlikely(pci_channel_offline(phba->pcidev))) {
9385 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9386 goto out_not_finished;
9387 }
9388
9389 /* If HBA has a deferred error attention, fail the iocb. */
9390 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
9391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9392 goto out_not_finished;
9393 }
9394
9395 psli = &phba->sli;
9396
9397 mbx = &pmbox->u.mb;
9398 status = MBX_SUCCESS;
9399
9400 if (phba->link_state == LPFC_HBA_ERROR) {
9401 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9402
9403 /* Mbox command <mbxCommand> cannot issue */
9404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9405 "(%d):0311 Mailbox command x%x cannot "
9406 "issue Data: x%x x%x\n",
9407 pmbox->vport ? pmbox->vport->vpi : 0,
9408 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9409 goto out_not_finished;
9410 }
9411
9412 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9413 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9414 !(hc_copy & HC_MBINT_ENA)) {
9415 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9416 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9417 "(%d):2528 Mailbox command x%x cannot "
9418 "issue Data: x%x x%x\n",
9419 pmbox->vport ? pmbox->vport->vpi : 0,
9420 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9421 goto out_not_finished;
9422 }
9423 }
9424
9425 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9426 /* Polling for a mbox command when another one is already active
9427 * is not allowed in SLI. Also, the driver must have established
9428 * SLI2 mode to queue and process multiple mbox commands.
9429 */
9430
9431 if (flag & MBX_POLL) {
9432 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9433
9434 /* Mbox command <mbxCommand> cannot issue */
9435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9436 "(%d):2529 Mailbox command x%x "
9437 "cannot issue Data: x%x x%x\n",
9438 pmbox->vport ? pmbox->vport->vpi : 0,
9439 pmbox->u.mb.mbxCommand,
9440 psli->sli_flag, flag);
9441 goto out_not_finished;
9442 }
9443
9444 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9446 /* Mbox command <mbxCommand> cannot issue */
9447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9448 "(%d):2530 Mailbox command x%x "
9449 "cannot issue Data: x%x x%x\n",
9450 pmbox->vport ? pmbox->vport->vpi : 0,
9451 pmbox->u.mb.mbxCommand,
9452 psli->sli_flag, flag);
9453 goto out_not_finished;
9454 }
9455
9456 /* Another mailbox command is still being processed, queue this
9457 * command to be processed later.
9458 */
9459 lpfc_mbox_put(phba, pmbox);
9460
9461 /* Mbox cmd issue - BUSY */
9462 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9463 "(%d):0308 Mbox cmd issue - BUSY Data: "
9464 "x%x x%x x%x x%x\n",
9465 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9466 mbx->mbxCommand,
9467 phba->pport ? phba->pport->port_state : 0xff,
9468 psli->sli_flag, flag);
9469
9470 psli->slistat.mbox_busy++;
9471 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9472
9473 if (pmbox->vport) {
9474 lpfc_debugfs_disc_trc(pmbox->vport,
9475 LPFC_DISC_TRC_MBOX_VPORT,
9476 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
9477 (uint32_t)mbx->mbxCommand,
9478 mbx->un.varWords[0], mbx->un.varWords[1]);
9479 }
9480 else {
9481 lpfc_debugfs_disc_trc(phba->pport,
9482 LPFC_DISC_TRC_MBOX,
9483 "MBOX Bsy: cmd:x%x mb:x%x x%x",
9484 (uint32_t)mbx->mbxCommand,
9485 mbx->un.varWords[0], mbx->un.varWords[1]);
9486 }
9487
9488 return MBX_BUSY;
9489 }
9490
9491 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9492
9493 /* If we are not polling, we MUST be in SLI2 mode */
9494 if (flag != MBX_POLL) {
9495 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9496 (mbx->mbxCommand != MBX_KILL_BOARD)) {
9497 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9498 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9499 /* Mbox command <mbxCommand> cannot issue */
9500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9501 "(%d):2531 Mailbox command x%x "
9502 "cannot issue Data: x%x x%x\n",
9503 pmbox->vport ? pmbox->vport->vpi : 0,
9504 pmbox->u.mb.mbxCommand,
9505 psli->sli_flag, flag);
9506 goto out_not_finished;
9507 }
9508 /* timeout active mbox command */
9509 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9510 1000);
9511 mod_timer(&psli->mbox_tmo, jiffies + timeout);
9512 }
9513
9514 /* Mailbox cmd <cmd> issue */
9515 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9516 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9517 "x%x\n",
9518 pmbox->vport ? pmbox->vport->vpi : 0,
9519 mbx->mbxCommand,
9520 phba->pport ? phba->pport->port_state : 0xff,
9521 psli->sli_flag, flag);
9522
9523 if (mbx->mbxCommand != MBX_HEARTBEAT) {
9524 if (pmbox->vport) {
9525 lpfc_debugfs_disc_trc(pmbox->vport,
9526 LPFC_DISC_TRC_MBOX_VPORT,
9527 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9528 (uint32_t)mbx->mbxCommand,
9529 mbx->un.varWords[0], mbx->un.varWords[1]);
9530 }
9531 else {
9532 lpfc_debugfs_disc_trc(phba->pport,
9533 LPFC_DISC_TRC_MBOX,
9534 "MBOX Send: cmd:x%x mb:x%x x%x",
9535 (uint32_t)mbx->mbxCommand,
9536 mbx->un.varWords[0], mbx->un.varWords[1]);
9537 }
9538 }
9539
9540 psli->slistat.mbox_cmd++;
9541 evtctr = psli->slistat.mbox_event;
9542
9543 /* next set own bit for the adapter and copy over command word */
9544 mbx->mbxOwner = OWN_CHIP;
9545
9546 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9547 /* Populate mbox extension offset word. */
9548 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9549 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9550 = (uint8_t *)phba->mbox_ext
9551 - (uint8_t *)phba->mbox;
9552 }
9553
9554 /* Copy the mailbox extension data */
9555 if (pmbox->in_ext_byte_len && pmbox->ext_buf) {
9556 lpfc_sli_pcimem_bcopy(pmbox->ext_buf,
9557 (uint8_t *)phba->mbox_ext,
9558 pmbox->in_ext_byte_len);
9559 }
9560 /* Copy command data to host SLIM area */
9561 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9562 } else {
9563 /* Populate mbox extension offset word. */
9564 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9565 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9566 = MAILBOX_HBA_EXT_OFFSET;
9567
9568 /* Copy the mailbox extension data */
9569 if (pmbox->in_ext_byte_len && pmbox->ext_buf)
9570 lpfc_memcpy_to_slim(phba->MBslimaddr +
9571 MAILBOX_HBA_EXT_OFFSET,
9572 pmbox->ext_buf, pmbox->in_ext_byte_len);
9573
9574 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9575 /* copy command data into host mbox for cmpl */
9576 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9577 MAILBOX_CMD_SIZE);
9578
9579 /* First copy mbox command data to HBA SLIM, skip past first
9580 word */
9581 to_slim = phba->MBslimaddr + sizeof (uint32_t);
9582 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9583 MAILBOX_CMD_SIZE - sizeof (uint32_t));
9584
9585 /* Next copy over first word, with mbxOwner set */
9586 ldata = *((uint32_t *)mbx);
9587 to_slim = phba->MBslimaddr;
9588 writel(ldata, to_slim);
9589 readl(to_slim); /* flush */
9590
9591 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9592 /* switch over to host mailbox */
9593 psli->sli_flag |= LPFC_SLI_ACTIVE;
9594 }
9595
9596 wmb();
9597
9598 switch (flag) {
9599 case MBX_NOWAIT:
9600 /* Set up reference to mailbox command */
9601 psli->mbox_active = pmbox;
9602 /* Interrupt board to do it */
9603 writel(CA_MBATT, phba->CAregaddr);
9604 readl(phba->CAregaddr); /* flush */
9605 /* Don't wait for it to finish, just return */
9606 break;
9607
9608 case MBX_POLL:
9609 /* Set up null reference to mailbox command */
9610 psli->mbox_active = NULL;
9611 /* Interrupt board to do it */
9612 writel(CA_MBATT, phba->CAregaddr);
9613 readl(phba->CAregaddr); /* flush */
9614
9615 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9616 /* First read mbox status word */
9617 word0 = *((uint32_t *)phba->mbox);
9618 word0 = le32_to_cpu(word0);
9619 } else {
9620 /* First read mbox status word */
9621 if (lpfc_readl(phba->MBslimaddr, &word0)) {
9622 spin_unlock_irqrestore(&phba->hbalock,
9623 drvr_flag);
9624 goto out_not_finished;
9625 }
9626 }
9627
9628 /* Read the HBA Host Attention Register */
9629 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9630 spin_unlock_irqrestore(&phba->hbalock,
9631 drvr_flag);
9632 goto out_not_finished;
9633 }
9634 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9635 1000) + jiffies;
9636 i = 0;
9637 /* Wait for command to complete */
9638 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9639 (!(ha_copy & HA_MBATT) &&
9640 (phba->link_state > LPFC_WARM_START))) {
9641 if (time_after(jiffies, timeout)) {
9642 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9643 spin_unlock_irqrestore(&phba->hbalock,
9644 drvr_flag);
9645 goto out_not_finished;
9646 }
9647
9648 /* Check if we took a mbox interrupt while we were
9649 polling */
9650 if (((word0 & OWN_CHIP) != OWN_CHIP)
9651 && (evtctr != psli->slistat.mbox_event))
9652 break;
9653
9654 if (i++ > 10) {
9655 spin_unlock_irqrestore(&phba->hbalock,
9656 drvr_flag);
9657 msleep(1);
9658 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9659 }
9660
9661 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9662 /* First copy command data */
9663 word0 = *((uint32_t *)phba->mbox);
9664 word0 = le32_to_cpu(word0);
9665 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9666 MAILBOX_t *slimmb;
9667 uint32_t slimword0;
9668 /* Check real SLIM for any errors */
9669 slimword0 = readl(phba->MBslimaddr);
9670 slimmb = (MAILBOX_t *) & slimword0;
9671 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9672 && slimmb->mbxStatus) {
9673 psli->sli_flag &=
9674 ~LPFC_SLI_ACTIVE;
9675 word0 = slimword0;
9676 }
9677 }
9678 } else {
9679 /* First copy command data */
9680 word0 = readl(phba->MBslimaddr);
9681 }
9682 /* Read the HBA Host Attention Register */
9683 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9684 spin_unlock_irqrestore(&phba->hbalock,
9685 drvr_flag);
9686 goto out_not_finished;
9687 }
9688 }
9689
9690 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9691 /* copy results back to user */
9692 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9693 MAILBOX_CMD_SIZE);
9694 /* Copy the mailbox extension data */
9695 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9696 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9697 pmbox->ext_buf,
9698 pmbox->out_ext_byte_len);
9699 }
9700 } else {
9701 /* First copy command data */
9702 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9703 MAILBOX_CMD_SIZE);
9704 /* Copy the mailbox extension data */
9705 if (pmbox->out_ext_byte_len && pmbox->ext_buf) {
9706 lpfc_memcpy_from_slim(
9707 pmbox->ext_buf,
9708 phba->MBslimaddr +
9709 MAILBOX_HBA_EXT_OFFSET,
9710 pmbox->out_ext_byte_len);
9711 }
9712 }
9713
9714 writel(HA_MBATT, phba->HAregaddr);
9715 readl(phba->HAregaddr); /* flush */
9716
9717 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9718 status = mbx->mbxStatus;
9719 }
9720
9721 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9722 return status;
9723
9724 out_not_finished:
9725 if (processing_queue) {
9726 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9727 lpfc_mbox_cmpl_put(phba, pmbox);
9728 }
9729 return MBX_NOT_FINISHED;
9730 }
9731
9732 /**
9733 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9734 * @phba: Pointer to HBA context object.
9735 *
9736 * The function blocks the posting of SLI4 asynchronous mailbox commands from
9737 * the driver internal pending mailbox queue. It will then try to wait out the
9738 * possible outstanding mailbox command before return.
9739 *
9740 * Returns:
9741 * 0 - the outstanding mailbox command completed; otherwise, the wait for
9742 * the outstanding mailbox command timed out.
9743 **/
9744 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)9745 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9746 {
9747 struct lpfc_sli *psli = &phba->sli;
9748 LPFC_MBOXQ_t *mboxq;
9749 int rc = 0;
9750 unsigned long timeout = 0;
9751 u32 sli_flag;
9752 u8 cmd, subsys, opcode;
9753
9754 /* Mark the asynchronous mailbox command posting as blocked */
9755 spin_lock_irq(&phba->hbalock);
9756 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9757 /* Determine how long we might wait for the active mailbox
9758 * command to be gracefully completed by firmware.
9759 */
9760 if (phba->sli.mbox_active)
9761 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9762 phba->sli.mbox_active) *
9763 1000) + jiffies;
9764 spin_unlock_irq(&phba->hbalock);
9765
9766 /* Make sure the mailbox is really active */
9767 if (timeout)
9768 lpfc_sli4_process_missed_mbox_completions(phba);
9769
9770 /* Wait for the outstanding mailbox command to complete */
9771 while (phba->sli.mbox_active) {
9772 /* Check active mailbox complete status every 2ms */
9773 msleep(2);
9774 if (time_after(jiffies, timeout)) {
9775 /* Timeout, mark the outstanding cmd not complete */
9776
9777 /* Sanity check sli.mbox_active has not completed or
9778 * cancelled from another context during last 2ms sleep,
9779 * so take hbalock to be sure before logging.
9780 */
9781 spin_lock_irq(&phba->hbalock);
9782 if (phba->sli.mbox_active) {
9783 mboxq = phba->sli.mbox_active;
9784 cmd = mboxq->u.mb.mbxCommand;
9785 subsys = lpfc_sli_config_mbox_subsys_get(phba,
9786 mboxq);
9787 opcode = lpfc_sli_config_mbox_opcode_get(phba,
9788 mboxq);
9789 sli_flag = psli->sli_flag;
9790 spin_unlock_irq(&phba->hbalock);
9791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9792 "2352 Mailbox command x%x "
9793 "(x%x/x%x) sli_flag x%x could "
9794 "not complete\n",
9795 cmd, subsys, opcode,
9796 sli_flag);
9797 } else {
9798 spin_unlock_irq(&phba->hbalock);
9799 }
9800
9801 rc = 1;
9802 break;
9803 }
9804 }
9805
9806 /* Can not cleanly block async mailbox command, fails it */
9807 if (rc) {
9808 spin_lock_irq(&phba->hbalock);
9809 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9810 spin_unlock_irq(&phba->hbalock);
9811 }
9812 return rc;
9813 }
9814
9815 /**
9816 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9817 * @phba: Pointer to HBA context object.
9818 *
9819 * The function unblocks and resume posting of SLI4 asynchronous mailbox
9820 * commands from the driver internal pending mailbox queue. It makes sure
9821 * that there is no outstanding mailbox command before resuming posting
9822 * asynchronous mailbox commands. If, for any reason, there is outstanding
9823 * mailbox command, it will try to wait it out before resuming asynchronous
9824 * mailbox command posting.
9825 **/
9826 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)9827 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9828 {
9829 struct lpfc_sli *psli = &phba->sli;
9830
9831 spin_lock_irq(&phba->hbalock);
9832 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9833 /* Asynchronous mailbox posting is not blocked, do nothing */
9834 spin_unlock_irq(&phba->hbalock);
9835 return;
9836 }
9837
9838 /* Outstanding synchronous mailbox command is guaranteed to be done,
9839 * successful or timeout, after timing-out the outstanding mailbox
9840 * command shall always be removed, so just unblock posting async
9841 * mailbox command and resume
9842 */
9843 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9844 spin_unlock_irq(&phba->hbalock);
9845
9846 /* wake up worker thread to post asynchronous mailbox command */
9847 lpfc_worker_wake_up(phba);
9848 }
9849
9850 /**
9851 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9852 * @phba: Pointer to HBA context object.
9853 * @mboxq: Pointer to mailbox object.
9854 *
9855 * The function waits for the bootstrap mailbox register ready bit from
9856 * port for twice the regular mailbox command timeout value.
9857 *
9858 * 0 - no timeout on waiting for bootstrap mailbox register ready.
9859 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port
9860 * is in an unrecoverable state.
9861 **/
9862 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9863 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9864 {
9865 uint32_t db_ready;
9866 unsigned long timeout;
9867 struct lpfc_register bmbx_reg;
9868 struct lpfc_register portstat_reg = {-1};
9869
9870 /* Sanity check - there is no point to wait if the port is in an
9871 * unrecoverable state.
9872 */
9873 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
9874 LPFC_SLI_INTF_IF_TYPE_2) {
9875 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9876 &portstat_reg.word0) ||
9877 lpfc_sli4_unrecoverable_port(&portstat_reg)) {
9878 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9879 "3858 Skipping bmbx ready because "
9880 "Port Status x%x\n",
9881 portstat_reg.word0);
9882 return MBXERR_ERROR;
9883 }
9884 }
9885
9886 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9887 * 1000) + jiffies;
9888
9889 do {
9890 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9891 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9892 if (!db_ready)
9893 mdelay(2);
9894
9895 if (time_after(jiffies, timeout))
9896 return MBXERR_ERROR;
9897 } while (!db_ready);
9898
9899 return 0;
9900 }
9901
9902 /**
9903 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9904 * @phba: Pointer to HBA context object.
9905 * @mboxq: Pointer to mailbox object.
9906 *
9907 * The function posts a mailbox to the port. The mailbox is expected
9908 * to be comletely filled in and ready for the port to operate on it.
9909 * This routine executes a synchronous completion operation on the
9910 * mailbox by polling for its completion.
9911 *
9912 * The caller must not be holding any locks when calling this routine.
9913 *
9914 * Returns:
9915 * MBX_SUCCESS - mailbox posted successfully
9916 * Any of the MBX error values.
9917 **/
9918 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9919 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9920 {
9921 int rc = MBX_SUCCESS;
9922 unsigned long iflag;
9923 uint32_t mcqe_status;
9924 uint32_t mbx_cmnd;
9925 struct lpfc_sli *psli = &phba->sli;
9926 struct lpfc_mqe *mb = &mboxq->u.mqe;
9927 struct lpfc_bmbx_create *mbox_rgn;
9928 struct dma_address *dma_address;
9929
9930 /*
9931 * Only one mailbox can be active to the bootstrap mailbox region
9932 * at a time and there is no queueing provided.
9933 */
9934 spin_lock_irqsave(&phba->hbalock, iflag);
9935 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9936 spin_unlock_irqrestore(&phba->hbalock, iflag);
9937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9938 "(%d):2532 Mailbox command x%x (x%x/x%x) "
9939 "cannot issue Data: x%x x%x\n",
9940 mboxq->vport ? mboxq->vport->vpi : 0,
9941 mboxq->u.mb.mbxCommand,
9942 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9943 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9944 psli->sli_flag, MBX_POLL);
9945 return MBXERR_ERROR;
9946 }
9947 /* The server grabs the token and owns it until release */
9948 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9949 phba->sli.mbox_active = mboxq;
9950 spin_unlock_irqrestore(&phba->hbalock, iflag);
9951
9952 /* wait for bootstrap mbox register for readyness */
9953 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9954 if (rc)
9955 goto exit;
9956 /*
9957 * Initialize the bootstrap memory region to avoid stale data areas
9958 * in the mailbox post. Then copy the caller's mailbox contents to
9959 * the bmbx mailbox region.
9960 */
9961 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9962 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9963 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9964 sizeof(struct lpfc_mqe));
9965
9966 /* Post the high mailbox dma address to the port and wait for ready. */
9967 dma_address = &phba->sli4_hba.bmbx.dma_address;
9968 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9969
9970 /* wait for bootstrap mbox register for hi-address write done */
9971 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9972 if (rc)
9973 goto exit;
9974
9975 /* Post the low mailbox dma address to the port. */
9976 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9977
9978 /* wait for bootstrap mbox register for low address write done */
9979 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9980 if (rc)
9981 goto exit;
9982
9983 /*
9984 * Read the CQ to ensure the mailbox has completed.
9985 * If so, update the mailbox status so that the upper layers
9986 * can complete the request normally.
9987 */
9988 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9989 sizeof(struct lpfc_mqe));
9990 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9991 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9992 sizeof(struct lpfc_mcqe));
9993 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9994 /*
9995 * When the CQE status indicates a failure and the mailbox status
9996 * indicates success then copy the CQE status into the mailbox status
9997 * (and prefix it with x4000).
9998 */
9999 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10000 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
10001 bf_set(lpfc_mqe_status, mb,
10002 (LPFC_MBX_ERROR_RANGE | mcqe_status));
10003 rc = MBXERR_ERROR;
10004 } else
10005 lpfc_sli4_swap_str(phba, mboxq);
10006
10007 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10008 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
10009 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
10010 " x%x x%x CQ: x%x x%x x%x x%x\n",
10011 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10012 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10013 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10014 bf_get(lpfc_mqe_status, mb),
10015 mb->un.mb_words[0], mb->un.mb_words[1],
10016 mb->un.mb_words[2], mb->un.mb_words[3],
10017 mb->un.mb_words[4], mb->un.mb_words[5],
10018 mb->un.mb_words[6], mb->un.mb_words[7],
10019 mb->un.mb_words[8], mb->un.mb_words[9],
10020 mb->un.mb_words[10], mb->un.mb_words[11],
10021 mb->un.mb_words[12], mboxq->mcqe.word0,
10022 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
10023 mboxq->mcqe.trailer);
10024 exit:
10025 /* We are holding the token, no needed for lock when release */
10026 spin_lock_irqsave(&phba->hbalock, iflag);
10027 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10028 phba->sli.mbox_active = NULL;
10029 spin_unlock_irqrestore(&phba->hbalock, iflag);
10030 return rc;
10031 }
10032
10033 /**
10034 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10035 * @phba: Pointer to HBA context object.
10036 * @mboxq: Pointer to mailbox object.
10037 * @flag: Flag indicating how the mailbox need to be processed.
10038 *
10039 * This function is called by discovery code and HBA management code to submit
10040 * a mailbox command to firmware with SLI-4 interface spec.
10041 *
10042 * Return codes the caller owns the mailbox command after the return of the
10043 * function.
10044 **/
10045 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)10046 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10047 uint32_t flag)
10048 {
10049 struct lpfc_sli *psli = &phba->sli;
10050 unsigned long iflags;
10051 int rc;
10052
10053 /* dump from issue mailbox command if setup */
10054 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10055
10056 rc = lpfc_mbox_dev_check(phba);
10057 if (unlikely(rc)) {
10058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10059 "(%d):2544 Mailbox command x%x (x%x/x%x) "
10060 "cannot issue Data: x%x x%x\n",
10061 mboxq->vport ? mboxq->vport->vpi : 0,
10062 mboxq->u.mb.mbxCommand,
10063 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10064 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10065 psli->sli_flag, flag);
10066 goto out_not_finished;
10067 }
10068
10069 /* Detect polling mode and jump to a handler */
10070 if (!phba->sli4_hba.intr_enable) {
10071 if (flag == MBX_POLL)
10072 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10073 else
10074 rc = -EIO;
10075 if (rc != MBX_SUCCESS)
10076 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10077 "(%d):2541 Mailbox command x%x "
10078 "(x%x/x%x) failure: "
10079 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10080 "Data: x%x x%x\n",
10081 mboxq->vport ? mboxq->vport->vpi : 0,
10082 mboxq->u.mb.mbxCommand,
10083 lpfc_sli_config_mbox_subsys_get(phba,
10084 mboxq),
10085 lpfc_sli_config_mbox_opcode_get(phba,
10086 mboxq),
10087 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10088 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10089 bf_get(lpfc_mcqe_ext_status,
10090 &mboxq->mcqe),
10091 psli->sli_flag, flag);
10092 return rc;
10093 } else if (flag == MBX_POLL) {
10094 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10095 "(%d):2542 Try to issue mailbox command "
10096 "x%x (x%x/x%x) synchronously ahead of async "
10097 "mailbox command queue: x%x x%x\n",
10098 mboxq->vport ? mboxq->vport->vpi : 0,
10099 mboxq->u.mb.mbxCommand,
10100 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10101 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10102 psli->sli_flag, flag);
10103 /* Try to block the asynchronous mailbox posting */
10104 rc = lpfc_sli4_async_mbox_block(phba);
10105 if (!rc) {
10106 /* Successfully blocked, now issue sync mbox cmd */
10107 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10108 if (rc != MBX_SUCCESS)
10109 lpfc_printf_log(phba, KERN_WARNING,
10110 LOG_MBOX | LOG_SLI,
10111 "(%d):2597 Sync Mailbox command "
10112 "x%x (x%x/x%x) failure: "
10113 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10114 "Data: x%x x%x\n",
10115 mboxq->vport ? mboxq->vport->vpi : 0,
10116 mboxq->u.mb.mbxCommand,
10117 lpfc_sli_config_mbox_subsys_get(phba,
10118 mboxq),
10119 lpfc_sli_config_mbox_opcode_get(phba,
10120 mboxq),
10121 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10122 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10123 bf_get(lpfc_mcqe_ext_status,
10124 &mboxq->mcqe),
10125 psli->sli_flag, flag);
10126 /* Unblock the async mailbox posting afterward */
10127 lpfc_sli4_async_mbox_unblock(phba);
10128 }
10129 return rc;
10130 }
10131
10132 /* Now, interrupt mode asynchronous mailbox command */
10133 rc = lpfc_mbox_cmd_check(phba, mboxq);
10134 if (rc) {
10135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10136 "(%d):2543 Mailbox command x%x (x%x/x%x) "
10137 "cannot issue Data: x%x x%x\n",
10138 mboxq->vport ? mboxq->vport->vpi : 0,
10139 mboxq->u.mb.mbxCommand,
10140 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10141 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10142 psli->sli_flag, flag);
10143 goto out_not_finished;
10144 }
10145
10146 /* Put the mailbox command to the driver internal FIFO */
10147 psli->slistat.mbox_busy++;
10148 spin_lock_irqsave(&phba->hbalock, iflags);
10149 lpfc_mbox_put(phba, mboxq);
10150 spin_unlock_irqrestore(&phba->hbalock, iflags);
10151 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10152 "(%d):0354 Mbox cmd issue - Enqueue Data: "
10153 "x%x (x%x/x%x) x%x x%x x%x x%x\n",
10154 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10155 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10156 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10157 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10158 mboxq->u.mb.un.varUnregLogin.rpi,
10159 phba->pport->port_state,
10160 psli->sli_flag, MBX_NOWAIT);
10161 /* Wake up worker thread to transport mailbox command from head */
10162 lpfc_worker_wake_up(phba);
10163
10164 return MBX_BUSY;
10165
10166 out_not_finished:
10167 return MBX_NOT_FINISHED;
10168 }
10169
10170 /**
10171 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10172 * @phba: Pointer to HBA context object.
10173 *
10174 * This function is called by worker thread to send a mailbox command to
10175 * SLI4 HBA firmware.
10176 *
10177 **/
10178 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)10179 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10180 {
10181 struct lpfc_sli *psli = &phba->sli;
10182 LPFC_MBOXQ_t *mboxq;
10183 int rc = MBX_SUCCESS;
10184 unsigned long iflags;
10185 struct lpfc_mqe *mqe;
10186 uint32_t mbx_cmnd;
10187
10188 /* Check interrupt mode before post async mailbox command */
10189 if (unlikely(!phba->sli4_hba.intr_enable))
10190 return MBX_NOT_FINISHED;
10191
10192 /* Check for mailbox command service token */
10193 spin_lock_irqsave(&phba->hbalock, iflags);
10194 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10195 spin_unlock_irqrestore(&phba->hbalock, iflags);
10196 return MBX_NOT_FINISHED;
10197 }
10198 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10199 spin_unlock_irqrestore(&phba->hbalock, iflags);
10200 return MBX_NOT_FINISHED;
10201 }
10202 if (unlikely(phba->sli.mbox_active)) {
10203 spin_unlock_irqrestore(&phba->hbalock, iflags);
10204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10205 "0384 There is pending active mailbox cmd\n");
10206 return MBX_NOT_FINISHED;
10207 }
10208 /* Take the mailbox command service token */
10209 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10210
10211 /* Get the next mailbox command from head of queue */
10212 mboxq = lpfc_mbox_get(phba);
10213
10214 /* If no more mailbox command waiting for post, we're done */
10215 if (!mboxq) {
10216 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10217 spin_unlock_irqrestore(&phba->hbalock, iflags);
10218 return MBX_SUCCESS;
10219 }
10220 phba->sli.mbox_active = mboxq;
10221 spin_unlock_irqrestore(&phba->hbalock, iflags);
10222
10223 /* Check device readiness for posting mailbox command */
10224 rc = lpfc_mbox_dev_check(phba);
10225 if (unlikely(rc))
10226 /* Driver clean routine will clean up pending mailbox */
10227 goto out_not_finished;
10228
10229 /* Prepare the mbox command to be posted */
10230 mqe = &mboxq->u.mqe;
10231 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10232
10233 /* Start timer for the mbox_tmo and log some mailbox post messages */
10234 mod_timer(&psli->mbox_tmo, (jiffies +
10235 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
10236
10237 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10238 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10239 "x%x x%x\n",
10240 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10241 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10242 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10243 phba->pport->port_state, psli->sli_flag);
10244
10245 if (mbx_cmnd != MBX_HEARTBEAT) {
10246 if (mboxq->vport) {
10247 lpfc_debugfs_disc_trc(mboxq->vport,
10248 LPFC_DISC_TRC_MBOX_VPORT,
10249 "MBOX Send vport: cmd:x%x mb:x%x x%x",
10250 mbx_cmnd, mqe->un.mb_words[0],
10251 mqe->un.mb_words[1]);
10252 } else {
10253 lpfc_debugfs_disc_trc(phba->pport,
10254 LPFC_DISC_TRC_MBOX,
10255 "MBOX Send: cmd:x%x mb:x%x x%x",
10256 mbx_cmnd, mqe->un.mb_words[0],
10257 mqe->un.mb_words[1]);
10258 }
10259 }
10260 psli->slistat.mbox_cmd++;
10261
10262 /* Post the mailbox command to the port */
10263 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10264 if (rc != MBX_SUCCESS) {
10265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10266 "(%d):2533 Mailbox command x%x (x%x/x%x) "
10267 "cannot issue Data: x%x x%x\n",
10268 mboxq->vport ? mboxq->vport->vpi : 0,
10269 mboxq->u.mb.mbxCommand,
10270 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10271 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10272 psli->sli_flag, MBX_NOWAIT);
10273 goto out_not_finished;
10274 }
10275
10276 return rc;
10277
10278 out_not_finished:
10279 spin_lock_irqsave(&phba->hbalock, iflags);
10280 if (phba->sli.mbox_active) {
10281 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10282 __lpfc_mbox_cmpl_put(phba, mboxq);
10283 /* Release the token */
10284 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10285 phba->sli.mbox_active = NULL;
10286 }
10287 spin_unlock_irqrestore(&phba->hbalock, iflags);
10288
10289 return MBX_NOT_FINISHED;
10290 }
10291
10292 /**
10293 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10294 * @phba: Pointer to HBA context object.
10295 * @pmbox: Pointer to mailbox object.
10296 * @flag: Flag indicating how the mailbox need to be processed.
10297 *
10298 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10299 * the API jump table function pointer from the lpfc_hba struct.
10300 *
10301 * Return codes the caller owns the mailbox command after the return of the
10302 * function.
10303 **/
10304 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)10305 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10306 {
10307 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10308 }
10309
10310 /**
10311 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10312 * @phba: The hba struct for which this call is being executed.
10313 * @dev_grp: The HBA PCI-Device group number.
10314 *
10315 * This routine sets up the mbox interface API function jump table in @phba
10316 * struct.
10317 * Returns: 0 - success, -ENODEV - failure.
10318 **/
10319 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)10320 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10321 {
10322
10323 switch (dev_grp) {
10324 case LPFC_PCI_DEV_LP:
10325 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10326 phba->lpfc_sli_handle_slow_ring_event =
10327 lpfc_sli_handle_slow_ring_event_s3;
10328 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10329 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10330 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10331 break;
10332 case LPFC_PCI_DEV_OC:
10333 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10334 phba->lpfc_sli_handle_slow_ring_event =
10335 lpfc_sli_handle_slow_ring_event_s4;
10336 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10337 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10338 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10339 break;
10340 default:
10341 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10342 "1420 Invalid HBA PCI-device group: 0x%x\n",
10343 dev_grp);
10344 return -ENODEV;
10345 }
10346 return 0;
10347 }
10348
10349 /**
10350 * __lpfc_sli_ringtx_put - Add an iocb to the txq
10351 * @phba: Pointer to HBA context object.
10352 * @pring: Pointer to driver SLI ring object.
10353 * @piocb: Pointer to address of newly added command iocb.
10354 *
10355 * This function is called with hbalock held for SLI3 ports or
10356 * the ring lock held for SLI4 ports to add a command
10357 * iocb to the txq when SLI layer cannot submit the command iocb
10358 * to the ring.
10359 **/
10360 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)10361 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10362 struct lpfc_iocbq *piocb)
10363 {
10364 if (phba->sli_rev == LPFC_SLI_REV4)
10365 lockdep_assert_held(&pring->ring_lock);
10366 else
10367 lockdep_assert_held(&phba->hbalock);
10368 /* Insert the caller's iocb in the txq tail for later processing. */
10369 list_add_tail(&piocb->list, &pring->txq);
10370 }
10371
10372 /**
10373 * lpfc_sli_next_iocb - Get the next iocb in the txq
10374 * @phba: Pointer to HBA context object.
10375 * @pring: Pointer to driver SLI ring object.
10376 * @piocb: Pointer to address of newly added command iocb.
10377 *
10378 * This function is called with hbalock held before a new
10379 * iocb is submitted to the firmware. This function checks
10380 * txq to flush the iocbs in txq to Firmware before
10381 * submitting new iocbs to the Firmware.
10382 * If there are iocbs in the txq which need to be submitted
10383 * to firmware, lpfc_sli_next_iocb returns the first element
10384 * of the txq after dequeuing it from txq.
10385 * If there is no iocb in the txq then the function will return
10386 * *piocb and *piocb is set to NULL. Caller needs to check
10387 * *piocb to find if there are more commands in the txq.
10388 **/
10389 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)10390 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10391 struct lpfc_iocbq **piocb)
10392 {
10393 struct lpfc_iocbq * nextiocb;
10394
10395 lockdep_assert_held(&phba->hbalock);
10396
10397 nextiocb = lpfc_sli_ringtx_get(phba, pring);
10398 if (!nextiocb) {
10399 nextiocb = *piocb;
10400 *piocb = NULL;
10401 }
10402
10403 return nextiocb;
10404 }
10405
10406 /**
10407 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10408 * @phba: Pointer to HBA context object.
10409 * @ring_number: SLI ring number to issue iocb on.
10410 * @piocb: Pointer to command iocb.
10411 * @flag: Flag indicating if this command can be put into txq.
10412 *
10413 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10414 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10415 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10416 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10417 * this function allows only iocbs for posting buffers. This function finds
10418 * next available slot in the command ring and posts the command to the
10419 * available slot and writes the port attention register to request HBA start
10420 * processing new iocb. If there is no slot available in the ring and
10421 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10422 * the function returns IOCB_BUSY.
10423 *
10424 * This function is called with hbalock held. The function will return success
10425 * after it successfully submit the iocb to firmware or after adding to the
10426 * txq.
10427 **/
10428 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10429 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10430 struct lpfc_iocbq *piocb, uint32_t flag)
10431 {
10432 struct lpfc_iocbq *nextiocb;
10433 IOCB_t *iocb;
10434 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10435
10436 lockdep_assert_held(&phba->hbalock);
10437
10438 if (piocb->cmd_cmpl && (!piocb->vport) &&
10439 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10440 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10442 "1807 IOCB x%x failed. No vport\n",
10443 piocb->iocb.ulpCommand);
10444 dump_stack();
10445 return IOCB_ERROR;
10446 }
10447
10448
10449 /* If the PCI channel is in offline state, do not post iocbs. */
10450 if (unlikely(pci_channel_offline(phba->pcidev)))
10451 return IOCB_ERROR;
10452
10453 /* If HBA has a deferred error attention, fail the iocb. */
10454 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
10455 return IOCB_ERROR;
10456
10457 /*
10458 * We should never get an IOCB if we are in a < LINK_DOWN state
10459 */
10460 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10461 return IOCB_ERROR;
10462
10463 /*
10464 * Check to see if we are blocking IOCB processing because of a
10465 * outstanding event.
10466 */
10467 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10468 goto iocb_busy;
10469
10470 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10471 /*
10472 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10473 * can be issued if the link is not up.
10474 */
10475 switch (piocb->iocb.ulpCommand) {
10476 case CMD_QUE_RING_BUF_CN:
10477 case CMD_QUE_RING_BUF64_CN:
10478 /*
10479 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10480 * completion, cmd_cmpl MUST be 0.
10481 */
10482 if (piocb->cmd_cmpl)
10483 piocb->cmd_cmpl = NULL;
10484 fallthrough;
10485 case CMD_CREATE_XRI_CR:
10486 case CMD_CLOSE_XRI_CN:
10487 case CMD_CLOSE_XRI_CX:
10488 break;
10489 default:
10490 goto iocb_busy;
10491 }
10492
10493 /*
10494 * For FCP commands, we must be in a state where we can process link
10495 * attention events.
10496 */
10497 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10498 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10499 goto iocb_busy;
10500 }
10501
10502 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10503 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10504 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10505
10506 if (iocb)
10507 lpfc_sli_update_ring(phba, pring);
10508 else
10509 lpfc_sli_update_full_ring(phba, pring);
10510
10511 if (!piocb)
10512 return IOCB_SUCCESS;
10513
10514 goto out_busy;
10515
10516 iocb_busy:
10517 pring->stats.iocb_cmd_delay++;
10518
10519 out_busy:
10520
10521 if (!(flag & SLI_IOCB_RET_IOCB)) {
10522 __lpfc_sli_ringtx_put(phba, pring, piocb);
10523 return IOCB_SUCCESS;
10524 }
10525
10526 return IOCB_BUSY;
10527 }
10528
10529 /**
10530 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10531 * @phba: Pointer to HBA context object.
10532 * @ring_number: SLI ring number to issue wqe on.
10533 * @piocb: Pointer to command iocb.
10534 * @flag: Flag indicating if this command can be put into txq.
10535 *
10536 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10537 * send an iocb command to an HBA with SLI-3 interface spec.
10538 *
10539 * This function takes the hbalock before invoking the lockless version.
10540 * The function will return success after it successfully submit the wqe to
10541 * firmware or after adding to the txq.
10542 **/
10543 static int
__lpfc_sli_issue_fcp_io_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10544 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10545 struct lpfc_iocbq *piocb, uint32_t flag)
10546 {
10547 unsigned long iflags;
10548 int rc;
10549
10550 spin_lock_irqsave(&phba->hbalock, iflags);
10551 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10552 spin_unlock_irqrestore(&phba->hbalock, iflags);
10553
10554 return rc;
10555 }
10556
10557 /**
10558 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10559 * @phba: Pointer to HBA context object.
10560 * @ring_number: SLI ring number to issue wqe on.
10561 * @piocb: Pointer to command iocb.
10562 * @flag: Flag indicating if this command can be put into txq.
10563 *
10564 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10565 * an wqe command to an HBA with SLI-4 interface spec.
10566 *
10567 * This function is a lockless version. The function will return success
10568 * after it successfully submit the wqe to firmware or after adding to the
10569 * txq.
10570 **/
10571 static int
__lpfc_sli_issue_fcp_io_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10572 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10573 struct lpfc_iocbq *piocb, uint32_t flag)
10574 {
10575 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10576
10577 lpfc_prep_embed_io(phba, lpfc_cmd);
10578 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10579 }
10580
10581 void
lpfc_prep_embed_io(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_cmd)10582 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10583 {
10584 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10585 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10586 struct sli4_sge_le *sgl;
10587 u32 type_size;
10588
10589 /* 128 byte wqe support here */
10590 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl;
10591
10592 if (phba->fcp_embed_io) {
10593 struct fcp_cmnd *fcp_cmnd;
10594 u32 *ptr;
10595
10596 fcp_cmnd = lpfc_cmd->fcp_cmnd;
10597
10598 /* Word 0-2 - FCP_CMND */
10599 type_size = le32_to_cpu(sgl->sge_len);
10600 type_size |= ULP_BDE64_TYPE_BDE_IMMED;
10601 wqe->generic.bde.tus.w = type_size;
10602 wqe->generic.bde.addrHigh = 0;
10603 wqe->generic.bde.addrLow = 72; /* Word 18 */
10604
10605 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10606 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10607
10608 /* Word 18-29 FCP CMND Payload */
10609 ptr = &wqe->words[18];
10610 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len));
10611 } else {
10612 /* Word 0-2 - Inline BDE */
10613 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
10614 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
10615 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi);
10616 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo);
10617
10618 /* Word 10 */
10619 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10620 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10621 }
10622
10623 /* add the VMID tags as per switch response */
10624 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10625 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10626 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10627 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10628 (piocb->vmid_tag.cs_ctl_vmid));
10629 } else if (phba->cfg_vmid_app_header) {
10630 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10631 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10632 wqe->words[31] = piocb->vmid_tag.app_id;
10633 }
10634 }
10635 }
10636
10637 /**
10638 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10639 * @phba: Pointer to HBA context object.
10640 * @ring_number: SLI ring number to issue iocb on.
10641 * @piocb: Pointer to command iocb.
10642 * @flag: Flag indicating if this command can be put into txq.
10643 *
10644 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10645 * an iocb command to an HBA with SLI-4 interface spec.
10646 *
10647 * This function is called with ringlock held. The function will return success
10648 * after it successfully submit the iocb to firmware or after adding to the
10649 * txq.
10650 **/
10651 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10652 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10653 struct lpfc_iocbq *piocb, uint32_t flag)
10654 {
10655 struct lpfc_sglq *sglq;
10656 union lpfc_wqe128 *wqe;
10657 struct lpfc_queue *wq;
10658 struct lpfc_sli_ring *pring;
10659 u32 ulp_command = get_job_cmnd(phba, piocb);
10660
10661 /* Get the WQ */
10662 if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10663 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10664 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10665 } else {
10666 wq = phba->sli4_hba.els_wq;
10667 }
10668
10669 /* Get corresponding ring */
10670 pring = wq->pring;
10671
10672 /*
10673 * The WQE can be either 64 or 128 bytes,
10674 */
10675
10676 lockdep_assert_held(&pring->ring_lock);
10677 wqe = &piocb->wqe;
10678 if (piocb->sli4_xritag == NO_XRI) {
10679 if (ulp_command == CMD_ABORT_XRI_CX)
10680 sglq = NULL;
10681 else {
10682 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10683 if (!sglq) {
10684 if (!(flag & SLI_IOCB_RET_IOCB)) {
10685 __lpfc_sli_ringtx_put(phba,
10686 pring,
10687 piocb);
10688 return IOCB_SUCCESS;
10689 } else {
10690 return IOCB_BUSY;
10691 }
10692 }
10693 }
10694 } else if (piocb->cmd_flag & LPFC_IO_FCP) {
10695 /* These IO's already have an XRI and a mapped sgl. */
10696 sglq = NULL;
10697 }
10698 else {
10699 /*
10700 * This is a continuation of a commandi,(CX) so this
10701 * sglq is on the active list
10702 */
10703 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10704 if (!sglq)
10705 return IOCB_ERROR;
10706 }
10707
10708 if (sglq) {
10709 piocb->sli4_lxritag = sglq->sli4_lxritag;
10710 piocb->sli4_xritag = sglq->sli4_xritag;
10711
10712 /* ABTS sent by initiator to CT exchange, the
10713 * RX_ID field will be filled with the newly
10714 * allocated responder XRI.
10715 */
10716 if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10717 piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10718 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10719 piocb->sli4_xritag);
10720
10721 bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10722 piocb->sli4_xritag);
10723
10724 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10725 return IOCB_ERROR;
10726 }
10727
10728 if (lpfc_sli4_wq_put(wq, wqe))
10729 return IOCB_ERROR;
10730
10731 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10732
10733 return 0;
10734 }
10735
10736 /*
10737 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10738 *
10739 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10740 * or IOCB for sli-3 function.
10741 * pointer from the lpfc_hba struct.
10742 *
10743 * Return codes:
10744 * IOCB_ERROR - Error
10745 * IOCB_SUCCESS - Success
10746 * IOCB_BUSY - Busy
10747 **/
10748 int
lpfc_sli_issue_fcp_io(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10749 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10750 struct lpfc_iocbq *piocb, uint32_t flag)
10751 {
10752 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10753 }
10754
10755 /*
10756 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10757 *
10758 * This routine wraps the actual lockless version for issusing IOCB function
10759 * pointer from the lpfc_hba struct.
10760 *
10761 * Return codes:
10762 * IOCB_ERROR - Error
10763 * IOCB_SUCCESS - Success
10764 * IOCB_BUSY - Busy
10765 **/
10766 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10767 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10768 struct lpfc_iocbq *piocb, uint32_t flag)
10769 {
10770 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10771 }
10772
10773 static void
__lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10774 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10775 struct lpfc_vport *vport,
10776 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10777 u32 elscmd, u8 tmo, u8 expect_rsp)
10778 {
10779 struct lpfc_hba *phba = vport->phba;
10780 IOCB_t *cmd;
10781
10782 cmd = &cmdiocbq->iocb;
10783 memset(cmd, 0, sizeof(*cmd));
10784
10785 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10786 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10787 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10788
10789 if (expect_rsp) {
10790 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10791 cmd->un.elsreq64.remoteID = did; /* DID */
10792 cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10793 cmd->ulpTimeout = tmo;
10794 } else {
10795 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10796 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10797 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10798 cmd->ulpPU = PARM_NPIV_DID;
10799 }
10800 cmd->ulpBdeCount = 1;
10801 cmd->ulpLe = 1;
10802 cmd->ulpClass = CLASS3;
10803
10804 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10805 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10806 if (expect_rsp) {
10807 cmd->un.elsreq64.myID = vport->fc_myDID;
10808
10809 /* For ELS_REQUEST64_CR, use the VPI by default */
10810 cmd->ulpContext = phba->vpi_ids[vport->vpi];
10811 }
10812
10813 cmd->ulpCt_h = 0;
10814 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10815 if (elscmd == ELS_CMD_ECHO)
10816 cmd->ulpCt_l = 0; /* context = invalid RPI */
10817 else
10818 cmd->ulpCt_l = 1; /* context = VPI */
10819 }
10820 }
10821
10822 static void
__lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10823 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10824 struct lpfc_vport *vport,
10825 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10826 u32 elscmd, u8 tmo, u8 expect_rsp)
10827 {
10828 struct lpfc_hba *phba = vport->phba;
10829 union lpfc_wqe128 *wqe;
10830 struct ulp_bde64_le *bde;
10831 u8 els_id;
10832
10833 wqe = &cmdiocbq->wqe;
10834 memset(wqe, 0, sizeof(*wqe));
10835
10836 /* Word 0 - 2 BDE */
10837 bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10838 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10839 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10840 bde->type_size = cpu_to_le32(cmd_size);
10841 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10842
10843 if (expect_rsp) {
10844 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10845
10846 /* Transfer length */
10847 wqe->els_req.payload_len = cmd_size;
10848 wqe->els_req.max_response_payload_len = FCELSSIZE;
10849
10850 /* DID */
10851 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10852
10853 /* Word 11 - ELS_ID */
10854 switch (elscmd) {
10855 case ELS_CMD_PLOGI:
10856 els_id = LPFC_ELS_ID_PLOGI;
10857 break;
10858 case ELS_CMD_FLOGI:
10859 els_id = LPFC_ELS_ID_FLOGI;
10860 break;
10861 case ELS_CMD_LOGO:
10862 els_id = LPFC_ELS_ID_LOGO;
10863 break;
10864 case ELS_CMD_FDISC:
10865 if (!vport->fc_myDID) {
10866 els_id = LPFC_ELS_ID_FDISC;
10867 break;
10868 }
10869 fallthrough;
10870 default:
10871 els_id = LPFC_ELS_ID_DEFAULT;
10872 break;
10873 }
10874
10875 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10876 } else {
10877 /* DID */
10878 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10879
10880 /* Transfer length */
10881 wqe->xmit_els_rsp.response_payload_len = cmd_size;
10882
10883 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10884 CMD_XMIT_ELS_RSP64_WQE);
10885 }
10886
10887 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10888 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10889 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10890
10891 /* If we have NPIV enabled, we want to send ELS traffic by VPI.
10892 * For SLI4, since the driver controls VPIs we also want to include
10893 * all ELS pt2pt protocol traffic as well.
10894 */
10895 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10896 test_bit(FC_PT2PT, &vport->fc_flag)) {
10897 if (expect_rsp) {
10898 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10899
10900 /* For ELS_REQUEST64_WQE, use the VPI by default */
10901 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10902 phba->vpi_ids[vport->vpi]);
10903 }
10904
10905 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10906 if (elscmd == ELS_CMD_ECHO)
10907 bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10908 else
10909 bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10910 }
10911 }
10912
10913 void
lpfc_sli_prep_els_req_rsp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10914 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10915 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10916 u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10917 u8 expect_rsp)
10918 {
10919 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10920 elscmd, tmo, expect_rsp);
10921 }
10922
10923 static void
__lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10924 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10925 u16 rpi, u32 num_entry, u8 tmo)
10926 {
10927 IOCB_t *cmd;
10928
10929 cmd = &cmdiocbq->iocb;
10930 memset(cmd, 0, sizeof(*cmd));
10931
10932 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10933 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10934 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10935 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10936
10937 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10938 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10939 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10940
10941 cmd->ulpContext = rpi;
10942 cmd->ulpClass = CLASS3;
10943 cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10944 cmd->ulpBdeCount = 1;
10945 cmd->ulpLe = 1;
10946 cmd->ulpOwner = OWN_CHIP;
10947 cmd->ulpTimeout = tmo;
10948 }
10949
10950 static void
__lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10951 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10952 u16 rpi, u32 num_entry, u8 tmo)
10953 {
10954 union lpfc_wqe128 *cmdwqe;
10955 struct ulp_bde64_le *bde, *bpl;
10956 u32 xmit_len = 0, total_len = 0, size, type, i;
10957
10958 cmdwqe = &cmdiocbq->wqe;
10959 memset(cmdwqe, 0, sizeof(*cmdwqe));
10960
10961 /* Calculate total_len and xmit_len */
10962 bpl = (struct ulp_bde64_le *)bmp->virt;
10963 for (i = 0; i < num_entry; i++) {
10964 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10965 total_len += size;
10966 }
10967 for (i = 0; i < num_entry; i++) {
10968 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10969 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10970 if (type != ULP_BDE64_TYPE_BDE_64)
10971 break;
10972 xmit_len += size;
10973 }
10974
10975 /* Words 0 - 2 */
10976 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10977 bde->addr_low = bpl->addr_low;
10978 bde->addr_high = bpl->addr_high;
10979 bde->type_size = cpu_to_le32(xmit_len);
10980 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10981
10982 /* Word 3 */
10983 cmdwqe->gen_req.request_payload_len = xmit_len;
10984
10985 /* Word 5 */
10986 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10987 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10988 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10989 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10990
10991 /* Word 6 */
10992 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10993
10994 /* Word 7 */
10995 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
10996 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
10997 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
10998 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
10999
11000 /* Word 12 */
11001 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
11002 }
11003
11004 void
lpfc_sli_prep_gen_req(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)11005 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11006 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
11007 {
11008 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
11009 }
11010
11011 static void
__lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11012 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
11013 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11014 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11015 {
11016 IOCB_t *icmd;
11017
11018 icmd = &cmdiocbq->iocb;
11019 memset(icmd, 0, sizeof(*icmd));
11020
11021 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11022 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11023 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11024 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11025 icmd->un.xseq64.w5.hcsw.Fctl = LA;
11026 if (last_seq)
11027 icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11028 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11029 icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11030 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11031
11032 icmd->ulpBdeCount = 1;
11033 icmd->ulpLe = 1;
11034 icmd->ulpClass = CLASS3;
11035
11036 switch (cr_cx_cmd) {
11037 case CMD_XMIT_SEQUENCE64_CR:
11038 icmd->ulpContext = rpi;
11039 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11040 break;
11041 case CMD_XMIT_SEQUENCE64_CX:
11042 icmd->ulpContext = ox_id;
11043 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11044 break;
11045 default:
11046 break;
11047 }
11048 }
11049
11050 static void
__lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 full_size,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11051 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11052 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11053 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11054 {
11055 union lpfc_wqe128 *wqe;
11056 struct ulp_bde64 *bpl;
11057
11058 wqe = &cmdiocbq->wqe;
11059 memset(wqe, 0, sizeof(*wqe));
11060
11061 /* Words 0 - 2 */
11062 bpl = (struct ulp_bde64 *)bmp->virt;
11063 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11064 wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11065 wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11066
11067 /* Word 5 */
11068 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11069 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11070 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11071 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11072 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11073
11074 /* Word 6 */
11075 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11076
11077 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11078 CMD_XMIT_SEQUENCE64_WQE);
11079
11080 /* Word 7 */
11081 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11082
11083 /* Word 9 */
11084 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11085
11086 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) {
11087 /* Word 10 */
11088 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) {
11089 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1);
11090 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1);
11091 wqe->words[31] = LOOPBACK_SRC_APPID;
11092 }
11093
11094 /* Word 12 */
11095 wqe->xmit_sequence.xmit_len = full_size;
11096 }
11097 else
11098 wqe->xmit_sequence.xmit_len =
11099 wqe->xmit_sequence.bde.tus.f.bdeSize;
11100 }
11101
11102 void
lpfc_sli_prep_xmit_seq64(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11103 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11104 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11105 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11106 {
11107 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11108 rctl, last_seq, cr_cx_cmd);
11109 }
11110
11111 static void
__lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11112 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11113 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11114 bool wqec)
11115 {
11116 IOCB_t *icmd = NULL;
11117
11118 icmd = &cmdiocbq->iocb;
11119 memset(icmd, 0, sizeof(*icmd));
11120
11121 /* Word 5 */
11122 icmd->un.acxri.abortContextTag = ulp_context;
11123 icmd->un.acxri.abortIoTag = iotag;
11124
11125 if (ia) {
11126 /* Word 7 */
11127 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11128 } else {
11129 /* Word 3 */
11130 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11131
11132 /* Word 7 */
11133 icmd->ulpClass = ulp_class;
11134 icmd->ulpCommand = CMD_ABORT_XRI_CN;
11135 }
11136
11137 /* Word 7 */
11138 icmd->ulpLe = 1;
11139 }
11140
11141 static void
__lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11142 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11143 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11144 bool wqec)
11145 {
11146 union lpfc_wqe128 *wqe;
11147
11148 wqe = &cmdiocbq->wqe;
11149 memset(wqe, 0, sizeof(*wqe));
11150
11151 /* Word 3 */
11152 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11153 if (ia)
11154 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11155 else
11156 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11157
11158 /* Word 7 */
11159 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11160
11161 /* Word 8 */
11162 wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11163
11164 /* Word 9 */
11165 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11166
11167 /* Word 10 */
11168 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11169
11170 /* Word 11 */
11171 if (wqec)
11172 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11173 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11174 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11175 }
11176
11177 void
lpfc_sli_prep_abort_xri(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11178 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11179 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11180 bool ia, bool wqec)
11181 {
11182 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11183 cqid, ia, wqec);
11184 }
11185
11186 /**
11187 * lpfc_sli_api_table_setup - Set up sli api function jump table
11188 * @phba: The hba struct for which this call is being executed.
11189 * @dev_grp: The HBA PCI-Device group number.
11190 *
11191 * This routine sets up the SLI interface API function jump table in @phba
11192 * struct.
11193 * Returns: 0 - success, -ENODEV - failure.
11194 **/
11195 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)11196 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11197 {
11198
11199 switch (dev_grp) {
11200 case LPFC_PCI_DEV_LP:
11201 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11202 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11203 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11204 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11205 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11206 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11207 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11208 break;
11209 case LPFC_PCI_DEV_OC:
11210 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11211 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11212 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11213 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11214 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11215 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11216 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11217 break;
11218 default:
11219 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11220 "1419 Invalid HBA PCI-device group: 0x%x\n",
11221 dev_grp);
11222 return -ENODEV;
11223 }
11224 return 0;
11225 }
11226
11227 /**
11228 * lpfc_sli4_calc_ring - Calculates which ring to use
11229 * @phba: Pointer to HBA context object.
11230 * @piocb: Pointer to command iocb.
11231 *
11232 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11233 * hba_wqidx, thus we need to calculate the corresponding ring.
11234 * Since ABORTS must go on the same WQ of the command they are
11235 * aborting, we use command's hba_wqidx.
11236 */
11237 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)11238 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11239 {
11240 struct lpfc_io_buf *lpfc_cmd;
11241
11242 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11243 if (unlikely(!phba->sli4_hba.hdwq))
11244 return NULL;
11245 /*
11246 * for abort iocb hba_wqidx should already
11247 * be setup based on what work queue we used.
11248 */
11249 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11250 lpfc_cmd = piocb->io_buf;
11251 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11252 }
11253 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11254 } else {
11255 if (unlikely(!phba->sli4_hba.els_wq))
11256 return NULL;
11257 piocb->hba_wqidx = 0;
11258 return phba->sli4_hba.els_wq->pring;
11259 }
11260 }
11261
lpfc_sli4_poll_eq(struct lpfc_queue * eq)11262 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq)
11263 {
11264 struct lpfc_hba *phba = eq->phba;
11265
11266 /*
11267 * Unlocking an irq is one of the entry point to check
11268 * for re-schedule, but we are good for io submission
11269 * path as midlayer does a get_cpu to glue us in. Flush
11270 * out the invalidate queue so we can see the updated
11271 * value for flag.
11272 */
11273 smp_rmb();
11274
11275 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
11276 /* We will not likely get the completion for the caller
11277 * during this iteration but i guess that's fine.
11278 * Future io's coming on this eq should be able to
11279 * pick it up. As for the case of single io's, they
11280 * will be handled through a sched from polling timer
11281 * function which is currently triggered every 1msec.
11282 */
11283 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM,
11284 LPFC_QUEUE_WORK);
11285 }
11286
11287 /**
11288 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11289 * @phba: Pointer to HBA context object.
11290 * @ring_number: Ring number
11291 * @piocb: Pointer to command iocb.
11292 * @flag: Flag indicating if this command can be put into txq.
11293 *
11294 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11295 * function. This function gets the hbalock and calls
11296 * __lpfc_sli_issue_iocb function and will return the error returned
11297 * by __lpfc_sli_issue_iocb function. This wrapper is used by
11298 * functions which do not hold hbalock.
11299 **/
11300 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)11301 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11302 struct lpfc_iocbq *piocb, uint32_t flag)
11303 {
11304 struct lpfc_sli_ring *pring;
11305 struct lpfc_queue *eq;
11306 unsigned long iflags;
11307 int rc;
11308
11309 /* If the PCI channel is in offline state, do not post iocbs. */
11310 if (unlikely(pci_channel_offline(phba->pcidev)))
11311 return IOCB_ERROR;
11312
11313 if (phba->sli_rev == LPFC_SLI_REV4) {
11314 lpfc_sli_prep_wqe(phba, piocb);
11315
11316 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11317
11318 pring = lpfc_sli4_calc_ring(phba, piocb);
11319 if (unlikely(pring == NULL))
11320 return IOCB_ERROR;
11321
11322 spin_lock_irqsave(&pring->ring_lock, iflags);
11323 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11324 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11325
11326 lpfc_sli4_poll_eq(eq);
11327 } else {
11328 /* For now, SLI2/3 will still use hbalock */
11329 spin_lock_irqsave(&phba->hbalock, iflags);
11330 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11331 spin_unlock_irqrestore(&phba->hbalock, iflags);
11332 }
11333 return rc;
11334 }
11335
11336 /**
11337 * lpfc_extra_ring_setup - Extra ring setup function
11338 * @phba: Pointer to HBA context object.
11339 *
11340 * This function is called while driver attaches with the
11341 * HBA to setup the extra ring. The extra ring is used
11342 * only when driver needs to support target mode functionality
11343 * or IP over FC functionalities.
11344 *
11345 * This function is called with no lock held. SLI3 only.
11346 **/
11347 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)11348 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11349 {
11350 struct lpfc_sli *psli;
11351 struct lpfc_sli_ring *pring;
11352
11353 psli = &phba->sli;
11354
11355 /* Adjust cmd/rsp ring iocb entries more evenly */
11356
11357 /* Take some away from the FCP ring */
11358 pring = &psli->sli3_ring[LPFC_FCP_RING];
11359 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11360 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11361 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11362 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11363
11364 /* and give them to the extra ring */
11365 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11366
11367 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11368 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11369 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11370 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11371
11372 /* Setup default profile for this ring */
11373 pring->iotag_max = 4096;
11374 pring->num_mask = 1;
11375 pring->prt[0].profile = 0; /* Mask 0 */
11376 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11377 pring->prt[0].type = phba->cfg_multi_ring_type;
11378 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11379 return 0;
11380 }
11381
11382 static void
lpfc_sli_post_recovery_event(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)11383 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11384 struct lpfc_nodelist *ndlp)
11385 {
11386 unsigned long iflags;
11387 struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
11388
11389 /* Hold a node reference for outstanding queued work */
11390 if (!lpfc_nlp_get(ndlp))
11391 return;
11392
11393 spin_lock_irqsave(&phba->hbalock, iflags);
11394 if (!list_empty(&evtp->evt_listp)) {
11395 spin_unlock_irqrestore(&phba->hbalock, iflags);
11396 lpfc_nlp_put(ndlp);
11397 return;
11398 }
11399
11400 evtp->evt_arg1 = ndlp;
11401 evtp->evt = LPFC_EVT_RECOVER_PORT;
11402 list_add_tail(&evtp->evt_listp, &phba->work_list);
11403 spin_unlock_irqrestore(&phba->hbalock, iflags);
11404
11405 lpfc_worker_wake_up(phba);
11406 }
11407
11408 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11409 * @phba: Pointer to HBA context object.
11410 * @iocbq: Pointer to iocb object.
11411 *
11412 * The async_event handler calls this routine when it receives
11413 * an ASYNC_STATUS_CN event from the port. The port generates
11414 * this event when an Abort Sequence request to an rport fails
11415 * twice in succession. The abort could be originated by the
11416 * driver or by the port. The ABTS could have been for an ELS
11417 * or FCP IO. The port only generates this event when an ABTS
11418 * fails to complete after one retry.
11419 */
11420 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)11421 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11422 struct lpfc_iocbq *iocbq)
11423 {
11424 struct lpfc_nodelist *ndlp = NULL;
11425 uint16_t rpi = 0, vpi = 0;
11426 struct lpfc_vport *vport = NULL;
11427
11428 /* The rpi in the ulpContext is vport-sensitive. */
11429 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11430 rpi = iocbq->iocb.ulpContext;
11431
11432 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11433 "3092 Port generated ABTS async event "
11434 "on vpi %d rpi %d status 0x%x\n",
11435 vpi, rpi, iocbq->iocb.ulpStatus);
11436
11437 vport = lpfc_find_vport_by_vpid(phba, vpi);
11438 if (!vport)
11439 goto err_exit;
11440 ndlp = lpfc_findnode_rpi(vport, rpi);
11441 if (!ndlp)
11442 goto err_exit;
11443
11444 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11445 lpfc_sli_abts_recover_port(vport, ndlp);
11446 return;
11447
11448 err_exit:
11449 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11450 "3095 Event Context not found, no "
11451 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11452 vpi, rpi, iocbq->iocb.ulpStatus,
11453 iocbq->iocb.ulpContext);
11454 }
11455
11456 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11457 * @phba: pointer to HBA context object.
11458 * @ndlp: nodelist pointer for the impacted rport.
11459 * @axri: pointer to the wcqe containing the failed exchange.
11460 *
11461 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11462 * port. The port generates this event when an abort exchange request to an
11463 * rport fails twice in succession with no reply. The abort could be originated
11464 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
11465 */
11466 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)11467 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11468 struct lpfc_nodelist *ndlp,
11469 struct sli4_wcqe_xri_aborted *axri)
11470 {
11471 uint32_t ext_status = 0;
11472
11473 if (!ndlp) {
11474 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11475 "3115 Node Context not found, driver "
11476 "ignoring abts err event\n");
11477 return;
11478 }
11479
11480 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11481 "3116 Port generated FCP XRI ABORT event on "
11482 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11483 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11484 bf_get(lpfc_wcqe_xa_xri, axri),
11485 bf_get(lpfc_wcqe_xa_status, axri),
11486 axri->parameter);
11487
11488 /*
11489 * Catch the ABTS protocol failure case. Older OCe FW releases returned
11490 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11491 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11492 */
11493 ext_status = axri->parameter & IOERR_PARAM_MASK;
11494 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11495 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11496 lpfc_sli_post_recovery_event(phba, ndlp);
11497 }
11498
11499 /**
11500 * lpfc_sli_async_event_handler - ASYNC iocb handler function
11501 * @phba: Pointer to HBA context object.
11502 * @pring: Pointer to driver SLI ring object.
11503 * @iocbq: Pointer to iocb object.
11504 *
11505 * This function is called by the slow ring event handler
11506 * function when there is an ASYNC event iocb in the ring.
11507 * This function is called with no lock held.
11508 * Currently this function handles only temperature related
11509 * ASYNC events. The function decodes the temperature sensor
11510 * event message and posts events for the management applications.
11511 **/
11512 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)11513 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11514 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11515 {
11516 IOCB_t *icmd;
11517 uint16_t evt_code;
11518 struct temp_event temp_event_data;
11519 struct Scsi_Host *shost;
11520 uint32_t *iocb_w;
11521
11522 icmd = &iocbq->iocb;
11523 evt_code = icmd->un.asyncstat.evt_code;
11524
11525 switch (evt_code) {
11526 case ASYNC_TEMP_WARN:
11527 case ASYNC_TEMP_SAFE:
11528 temp_event_data.data = (uint32_t) icmd->ulpContext;
11529 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11530 if (evt_code == ASYNC_TEMP_WARN) {
11531 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11533 "0347 Adapter is very hot, please take "
11534 "corrective action. temperature : %d Celsius\n",
11535 (uint32_t) icmd->ulpContext);
11536 } else {
11537 temp_event_data.event_code = LPFC_NORMAL_TEMP;
11538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11539 "0340 Adapter temperature is OK now. "
11540 "temperature : %d Celsius\n",
11541 (uint32_t) icmd->ulpContext);
11542 }
11543
11544 /* Send temperature change event to applications */
11545 shost = lpfc_shost_from_vport(phba->pport);
11546 fc_host_post_vendor_event(shost, fc_get_event_number(),
11547 sizeof(temp_event_data), (char *) &temp_event_data,
11548 LPFC_NL_VENDOR_ID);
11549 break;
11550 case ASYNC_STATUS_CN:
11551 lpfc_sli_abts_err_handler(phba, iocbq);
11552 break;
11553 default:
11554 iocb_w = (uint32_t *) icmd;
11555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11556 "0346 Ring %d handler: unexpected ASYNC_STATUS"
11557 " evt_code 0x%x\n"
11558 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
11559 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
11560 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
11561 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11562 pring->ringno, icmd->un.asyncstat.evt_code,
11563 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11564 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11565 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11566 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11567
11568 break;
11569 }
11570 }
11571
11572
11573 /**
11574 * lpfc_sli4_setup - SLI ring setup function
11575 * @phba: Pointer to HBA context object.
11576 *
11577 * lpfc_sli_setup sets up rings of the SLI interface with
11578 * number of iocbs per ring and iotags. This function is
11579 * called while driver attach to the HBA and before the
11580 * interrupts are enabled. So there is no need for locking.
11581 *
11582 * This function always returns 0.
11583 **/
11584 int
lpfc_sli4_setup(struct lpfc_hba * phba)11585 lpfc_sli4_setup(struct lpfc_hba *phba)
11586 {
11587 struct lpfc_sli_ring *pring;
11588
11589 pring = phba->sli4_hba.els_wq->pring;
11590 pring->num_mask = LPFC_MAX_RING_MASK;
11591 pring->prt[0].profile = 0; /* Mask 0 */
11592 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11593 pring->prt[0].type = FC_TYPE_ELS;
11594 pring->prt[0].lpfc_sli_rcv_unsol_event =
11595 lpfc_els_unsol_event;
11596 pring->prt[1].profile = 0; /* Mask 1 */
11597 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11598 pring->prt[1].type = FC_TYPE_ELS;
11599 pring->prt[1].lpfc_sli_rcv_unsol_event =
11600 lpfc_els_unsol_event;
11601 pring->prt[2].profile = 0; /* Mask 2 */
11602 /* NameServer Inquiry */
11603 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11604 /* NameServer */
11605 pring->prt[2].type = FC_TYPE_CT;
11606 pring->prt[2].lpfc_sli_rcv_unsol_event =
11607 lpfc_ct_unsol_event;
11608 pring->prt[3].profile = 0; /* Mask 3 */
11609 /* NameServer response */
11610 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11611 /* NameServer */
11612 pring->prt[3].type = FC_TYPE_CT;
11613 pring->prt[3].lpfc_sli_rcv_unsol_event =
11614 lpfc_ct_unsol_event;
11615 return 0;
11616 }
11617
11618 /**
11619 * lpfc_sli_setup - SLI ring setup function
11620 * @phba: Pointer to HBA context object.
11621 *
11622 * lpfc_sli_setup sets up rings of the SLI interface with
11623 * number of iocbs per ring and iotags. This function is
11624 * called while driver attach to the HBA and before the
11625 * interrupts are enabled. So there is no need for locking.
11626 *
11627 * This function always returns 0. SLI3 only.
11628 **/
11629 int
lpfc_sli_setup(struct lpfc_hba * phba)11630 lpfc_sli_setup(struct lpfc_hba *phba)
11631 {
11632 int i, totiocbsize = 0;
11633 struct lpfc_sli *psli = &phba->sli;
11634 struct lpfc_sli_ring *pring;
11635
11636 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11637 psli->sli_flag = 0;
11638
11639 psli->iocbq_lookup = NULL;
11640 psli->iocbq_lookup_len = 0;
11641 psli->last_iotag = 0;
11642
11643 for (i = 0; i < psli->num_rings; i++) {
11644 pring = &psli->sli3_ring[i];
11645 switch (i) {
11646 case LPFC_FCP_RING: /* ring 0 - FCP */
11647 /* numCiocb and numRiocb are used in config_port */
11648 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11649 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11650 pring->sli.sli3.numCiocb +=
11651 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11652 pring->sli.sli3.numRiocb +=
11653 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11654 pring->sli.sli3.numCiocb +=
11655 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11656 pring->sli.sli3.numRiocb +=
11657 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11658 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11659 SLI3_IOCB_CMD_SIZE :
11660 SLI2_IOCB_CMD_SIZE;
11661 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11662 SLI3_IOCB_RSP_SIZE :
11663 SLI2_IOCB_RSP_SIZE;
11664 pring->iotag_ctr = 0;
11665 pring->iotag_max =
11666 (phba->cfg_hba_queue_depth * 2);
11667 pring->fast_iotag = pring->iotag_max;
11668 pring->num_mask = 0;
11669 break;
11670 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
11671 /* numCiocb and numRiocb are used in config_port */
11672 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11673 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11674 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11675 SLI3_IOCB_CMD_SIZE :
11676 SLI2_IOCB_CMD_SIZE;
11677 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11678 SLI3_IOCB_RSP_SIZE :
11679 SLI2_IOCB_RSP_SIZE;
11680 pring->iotag_max = phba->cfg_hba_queue_depth;
11681 pring->num_mask = 0;
11682 break;
11683 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
11684 /* numCiocb and numRiocb are used in config_port */
11685 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11686 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11687 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11688 SLI3_IOCB_CMD_SIZE :
11689 SLI2_IOCB_CMD_SIZE;
11690 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11691 SLI3_IOCB_RSP_SIZE :
11692 SLI2_IOCB_RSP_SIZE;
11693 pring->fast_iotag = 0;
11694 pring->iotag_ctr = 0;
11695 pring->iotag_max = 4096;
11696 pring->lpfc_sli_rcv_async_status =
11697 lpfc_sli_async_event_handler;
11698 pring->num_mask = LPFC_MAX_RING_MASK;
11699 pring->prt[0].profile = 0; /* Mask 0 */
11700 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11701 pring->prt[0].type = FC_TYPE_ELS;
11702 pring->prt[0].lpfc_sli_rcv_unsol_event =
11703 lpfc_els_unsol_event;
11704 pring->prt[1].profile = 0; /* Mask 1 */
11705 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11706 pring->prt[1].type = FC_TYPE_ELS;
11707 pring->prt[1].lpfc_sli_rcv_unsol_event =
11708 lpfc_els_unsol_event;
11709 pring->prt[2].profile = 0; /* Mask 2 */
11710 /* NameServer Inquiry */
11711 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11712 /* NameServer */
11713 pring->prt[2].type = FC_TYPE_CT;
11714 pring->prt[2].lpfc_sli_rcv_unsol_event =
11715 lpfc_ct_unsol_event;
11716 pring->prt[3].profile = 0; /* Mask 3 */
11717 /* NameServer response */
11718 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11719 /* NameServer */
11720 pring->prt[3].type = FC_TYPE_CT;
11721 pring->prt[3].lpfc_sli_rcv_unsol_event =
11722 lpfc_ct_unsol_event;
11723 break;
11724 }
11725 totiocbsize += (pring->sli.sli3.numCiocb *
11726 pring->sli.sli3.sizeCiocb) +
11727 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11728 }
11729 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11730 /* Too many cmd / rsp ring entries in SLI2 SLIM */
11731 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11732 "SLI2 SLIM Data: x%x x%lx\n",
11733 phba->brd_no, totiocbsize,
11734 (unsigned long) MAX_SLIM_IOCB_SIZE);
11735 }
11736 if (phba->cfg_multi_ring_support == 2)
11737 lpfc_extra_ring_setup(phba);
11738
11739 return 0;
11740 }
11741
11742 /**
11743 * lpfc_sli4_queue_init - Queue initialization function
11744 * @phba: Pointer to HBA context object.
11745 *
11746 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11747 * ring. This function also initializes ring indices of each ring.
11748 * This function is called during the initialization of the SLI
11749 * interface of an HBA.
11750 * This function is called with no lock held and always returns
11751 * 1.
11752 **/
11753 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)11754 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11755 {
11756 struct lpfc_sli *psli;
11757 struct lpfc_sli_ring *pring;
11758 int i;
11759
11760 psli = &phba->sli;
11761 spin_lock_irq(&phba->hbalock);
11762 INIT_LIST_HEAD(&psli->mboxq);
11763 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11764 /* Initialize list headers for txq and txcmplq as double linked lists */
11765 for (i = 0; i < phba->cfg_hdw_queue; i++) {
11766 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11767 pring->flag = 0;
11768 pring->ringno = LPFC_FCP_RING;
11769 pring->txcmplq_cnt = 0;
11770 INIT_LIST_HEAD(&pring->txq);
11771 INIT_LIST_HEAD(&pring->txcmplq);
11772 INIT_LIST_HEAD(&pring->iocb_continueq);
11773 spin_lock_init(&pring->ring_lock);
11774 }
11775 pring = phba->sli4_hba.els_wq->pring;
11776 pring->flag = 0;
11777 pring->ringno = LPFC_ELS_RING;
11778 pring->txcmplq_cnt = 0;
11779 INIT_LIST_HEAD(&pring->txq);
11780 INIT_LIST_HEAD(&pring->txcmplq);
11781 INIT_LIST_HEAD(&pring->iocb_continueq);
11782 spin_lock_init(&pring->ring_lock);
11783
11784 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11785 pring = phba->sli4_hba.nvmels_wq->pring;
11786 pring->flag = 0;
11787 pring->ringno = LPFC_ELS_RING;
11788 pring->txcmplq_cnt = 0;
11789 INIT_LIST_HEAD(&pring->txq);
11790 INIT_LIST_HEAD(&pring->txcmplq);
11791 INIT_LIST_HEAD(&pring->iocb_continueq);
11792 spin_lock_init(&pring->ring_lock);
11793 }
11794
11795 spin_unlock_irq(&phba->hbalock);
11796 }
11797
11798 /**
11799 * lpfc_sli_queue_init - Queue initialization function
11800 * @phba: Pointer to HBA context object.
11801 *
11802 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11803 * ring. This function also initializes ring indices of each ring.
11804 * This function is called during the initialization of the SLI
11805 * interface of an HBA.
11806 * This function is called with no lock held and always returns
11807 * 1.
11808 **/
11809 void
lpfc_sli_queue_init(struct lpfc_hba * phba)11810 lpfc_sli_queue_init(struct lpfc_hba *phba)
11811 {
11812 struct lpfc_sli *psli;
11813 struct lpfc_sli_ring *pring;
11814 int i;
11815
11816 psli = &phba->sli;
11817 spin_lock_irq(&phba->hbalock);
11818 INIT_LIST_HEAD(&psli->mboxq);
11819 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11820 /* Initialize list headers for txq and txcmplq as double linked lists */
11821 for (i = 0; i < psli->num_rings; i++) {
11822 pring = &psli->sli3_ring[i];
11823 pring->ringno = i;
11824 pring->sli.sli3.next_cmdidx = 0;
11825 pring->sli.sli3.local_getidx = 0;
11826 pring->sli.sli3.cmdidx = 0;
11827 INIT_LIST_HEAD(&pring->iocb_continueq);
11828 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11829 INIT_LIST_HEAD(&pring->postbufq);
11830 pring->flag = 0;
11831 INIT_LIST_HEAD(&pring->txq);
11832 INIT_LIST_HEAD(&pring->txcmplq);
11833 spin_lock_init(&pring->ring_lock);
11834 }
11835 spin_unlock_irq(&phba->hbalock);
11836 }
11837
11838 /**
11839 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11840 * @phba: Pointer to HBA context object.
11841 *
11842 * This routine flushes the mailbox command subsystem. It will unconditionally
11843 * flush all the mailbox commands in the three possible stages in the mailbox
11844 * command sub-system: pending mailbox command queue; the outstanding mailbox
11845 * command; and completed mailbox command queue. It is caller's responsibility
11846 * to make sure that the driver is in the proper state to flush the mailbox
11847 * command sub-system. Namely, the posting of mailbox commands into the
11848 * pending mailbox command queue from the various clients must be stopped;
11849 * either the HBA is in a state that it will never works on the outstanding
11850 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11851 * mailbox command has been completed.
11852 **/
11853 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)11854 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11855 {
11856 LIST_HEAD(completions);
11857 struct lpfc_sli *psli = &phba->sli;
11858 LPFC_MBOXQ_t *pmb;
11859 unsigned long iflag;
11860
11861 /* Disable softirqs, including timers from obtaining phba->hbalock */
11862 local_bh_disable();
11863
11864 /* Flush all the mailbox commands in the mbox system */
11865 spin_lock_irqsave(&phba->hbalock, iflag);
11866
11867 /* The pending mailbox command queue */
11868 list_splice_init(&phba->sli.mboxq, &completions);
11869 /* The outstanding active mailbox command */
11870 if (psli->mbox_active) {
11871 list_add_tail(&psli->mbox_active->list, &completions);
11872 psli->mbox_active = NULL;
11873 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11874 }
11875 /* The completed mailbox command queue */
11876 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11877 spin_unlock_irqrestore(&phba->hbalock, iflag);
11878
11879 /* Enable softirqs again, done with phba->hbalock */
11880 local_bh_enable();
11881
11882 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11883 while (!list_empty(&completions)) {
11884 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11885 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11886 if (pmb->mbox_cmpl)
11887 pmb->mbox_cmpl(phba, pmb);
11888 }
11889 }
11890
11891 /**
11892 * lpfc_sli_host_down - Vport cleanup function
11893 * @vport: Pointer to virtual port object.
11894 *
11895 * lpfc_sli_host_down is called to clean up the resources
11896 * associated with a vport before destroying virtual
11897 * port data structures.
11898 * This function does following operations:
11899 * - Free discovery resources associated with this virtual
11900 * port.
11901 * - Free iocbs associated with this virtual port in
11902 * the txq.
11903 * - Send abort for all iocb commands associated with this
11904 * vport in txcmplq.
11905 *
11906 * This function is called with no lock held and always returns 1.
11907 **/
11908 int
lpfc_sli_host_down(struct lpfc_vport * vport)11909 lpfc_sli_host_down(struct lpfc_vport *vport)
11910 {
11911 LIST_HEAD(completions);
11912 struct lpfc_hba *phba = vport->phba;
11913 struct lpfc_sli *psli = &phba->sli;
11914 struct lpfc_queue *qp = NULL;
11915 struct lpfc_sli_ring *pring;
11916 struct lpfc_iocbq *iocb, *next_iocb;
11917 int i;
11918 unsigned long flags = 0;
11919 uint16_t prev_pring_flag;
11920
11921 lpfc_cleanup_discovery_resources(vport);
11922
11923 spin_lock_irqsave(&phba->hbalock, flags);
11924
11925 /*
11926 * Error everything on the txq since these iocbs
11927 * have not been given to the FW yet.
11928 * Also issue ABTS for everything on the txcmplq
11929 */
11930 if (phba->sli_rev != LPFC_SLI_REV4) {
11931 for (i = 0; i < psli->num_rings; i++) {
11932 pring = &psli->sli3_ring[i];
11933 prev_pring_flag = pring->flag;
11934 /* Only slow rings */
11935 if (pring->ringno == LPFC_ELS_RING) {
11936 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11937 /* Set the lpfc data pending flag */
11938 set_bit(LPFC_DATA_READY, &phba->data_flags);
11939 }
11940 list_for_each_entry_safe(iocb, next_iocb,
11941 &pring->txq, list) {
11942 if (iocb->vport != vport)
11943 continue;
11944 list_move_tail(&iocb->list, &completions);
11945 }
11946 list_for_each_entry_safe(iocb, next_iocb,
11947 &pring->txcmplq, list) {
11948 if (iocb->vport != vport)
11949 continue;
11950 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11951 NULL);
11952 }
11953 pring->flag = prev_pring_flag;
11954 }
11955 } else {
11956 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11957 pring = qp->pring;
11958 if (!pring)
11959 continue;
11960 if (pring == phba->sli4_hba.els_wq->pring) {
11961 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11962 /* Set the lpfc data pending flag */
11963 set_bit(LPFC_DATA_READY, &phba->data_flags);
11964 }
11965 prev_pring_flag = pring->flag;
11966 spin_lock(&pring->ring_lock);
11967 list_for_each_entry_safe(iocb, next_iocb,
11968 &pring->txq, list) {
11969 if (iocb->vport != vport)
11970 continue;
11971 list_move_tail(&iocb->list, &completions);
11972 }
11973 spin_unlock(&pring->ring_lock);
11974 list_for_each_entry_safe(iocb, next_iocb,
11975 &pring->txcmplq, list) {
11976 if (iocb->vport != vport)
11977 continue;
11978 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11979 NULL);
11980 }
11981 pring->flag = prev_pring_flag;
11982 }
11983 }
11984 spin_unlock_irqrestore(&phba->hbalock, flags);
11985
11986 /* Make sure HBA is alive */
11987 lpfc_issue_hb_tmo(phba);
11988
11989 /* Cancel all the IOCBs from the completions list */
11990 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11991 IOERR_SLI_DOWN);
11992 return 1;
11993 }
11994
11995 /**
11996 * lpfc_sli_hba_down - Resource cleanup function for the HBA
11997 * @phba: Pointer to HBA context object.
11998 *
11999 * This function cleans up all iocb, buffers, mailbox commands
12000 * while shutting down the HBA. This function is called with no
12001 * lock held and always returns 1.
12002 * This function does the following to cleanup driver resources:
12003 * - Free discovery resources for each virtual port
12004 * - Cleanup any pending fabric iocbs
12005 * - Iterate through the iocb txq and free each entry
12006 * in the list.
12007 * - Free up any buffer posted to the HBA
12008 * - Free mailbox commands in the mailbox queue.
12009 **/
12010 int
lpfc_sli_hba_down(struct lpfc_hba * phba)12011 lpfc_sli_hba_down(struct lpfc_hba *phba)
12012 {
12013 LIST_HEAD(completions);
12014 struct lpfc_sli *psli = &phba->sli;
12015 struct lpfc_queue *qp = NULL;
12016 struct lpfc_sli_ring *pring;
12017 struct lpfc_dmabuf *buf_ptr;
12018 unsigned long flags = 0;
12019 int i;
12020
12021 /* Shutdown the mailbox command sub-system */
12022 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
12023
12024 lpfc_hba_down_prep(phba);
12025
12026 /* Disable softirqs, including timers from obtaining phba->hbalock */
12027 local_bh_disable();
12028
12029 lpfc_fabric_abort_hba(phba);
12030
12031 spin_lock_irqsave(&phba->hbalock, flags);
12032
12033 /*
12034 * Error everything on the txq since these iocbs
12035 * have not been given to the FW yet.
12036 */
12037 if (phba->sli_rev != LPFC_SLI_REV4) {
12038 for (i = 0; i < psli->num_rings; i++) {
12039 pring = &psli->sli3_ring[i];
12040 /* Only slow rings */
12041 if (pring->ringno == LPFC_ELS_RING) {
12042 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12043 /* Set the lpfc data pending flag */
12044 set_bit(LPFC_DATA_READY, &phba->data_flags);
12045 }
12046 list_splice_init(&pring->txq, &completions);
12047 }
12048 } else {
12049 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12050 pring = qp->pring;
12051 if (!pring)
12052 continue;
12053 spin_lock(&pring->ring_lock);
12054 list_splice_init(&pring->txq, &completions);
12055 spin_unlock(&pring->ring_lock);
12056 if (pring == phba->sli4_hba.els_wq->pring) {
12057 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12058 /* Set the lpfc data pending flag */
12059 set_bit(LPFC_DATA_READY, &phba->data_flags);
12060 }
12061 }
12062 }
12063 spin_unlock_irqrestore(&phba->hbalock, flags);
12064
12065 /* Cancel all the IOCBs from the completions list */
12066 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12067 IOERR_SLI_DOWN);
12068
12069 spin_lock_irqsave(&phba->hbalock, flags);
12070 list_splice_init(&phba->elsbuf, &completions);
12071 phba->elsbuf_cnt = 0;
12072 phba->elsbuf_prev_cnt = 0;
12073 spin_unlock_irqrestore(&phba->hbalock, flags);
12074
12075 while (!list_empty(&completions)) {
12076 list_remove_head(&completions, buf_ptr,
12077 struct lpfc_dmabuf, list);
12078 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12079 kfree(buf_ptr);
12080 }
12081
12082 /* Enable softirqs again, done with phba->hbalock */
12083 local_bh_enable();
12084
12085 /* Return any active mbox cmds */
12086 del_timer_sync(&psli->mbox_tmo);
12087
12088 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12089 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12090 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12091
12092 return 1;
12093 }
12094
12095 /**
12096 * lpfc_sli_pcimem_bcopy - SLI memory copy function
12097 * @srcp: Source memory pointer.
12098 * @destp: Destination memory pointer.
12099 * @cnt: Number of words required to be copied.
12100 *
12101 * This function is used for copying data between driver memory
12102 * and the SLI memory. This function also changes the endianness
12103 * of each word if native endianness is different from SLI
12104 * endianness. This function can be called with or without
12105 * lock.
12106 **/
12107 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)12108 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12109 {
12110 uint32_t *src = srcp;
12111 uint32_t *dest = destp;
12112 uint32_t ldata;
12113 int i;
12114
12115 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12116 ldata = *src;
12117 ldata = le32_to_cpu(ldata);
12118 *dest = ldata;
12119 src++;
12120 dest++;
12121 }
12122 }
12123
12124
12125 /**
12126 * lpfc_sli_bemem_bcopy - SLI memory copy function
12127 * @srcp: Source memory pointer.
12128 * @destp: Destination memory pointer.
12129 * @cnt: Number of words required to be copied.
12130 *
12131 * This function is used for copying data between a data structure
12132 * with big endian representation to local endianness.
12133 * This function can be called with or without lock.
12134 **/
12135 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)12136 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12137 {
12138 uint32_t *src = srcp;
12139 uint32_t *dest = destp;
12140 uint32_t ldata;
12141 int i;
12142
12143 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12144 ldata = *src;
12145 ldata = be32_to_cpu(ldata);
12146 *dest = ldata;
12147 src++;
12148 dest++;
12149 }
12150 }
12151
12152 /**
12153 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12154 * @phba: Pointer to HBA context object.
12155 * @pring: Pointer to driver SLI ring object.
12156 * @mp: Pointer to driver buffer object.
12157 *
12158 * This function is called with no lock held.
12159 * It always return zero after adding the buffer to the postbufq
12160 * buffer list.
12161 **/
12162 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)12163 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12164 struct lpfc_dmabuf *mp)
12165 {
12166 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12167 later */
12168 spin_lock_irq(&phba->hbalock);
12169 list_add_tail(&mp->list, &pring->postbufq);
12170 pring->postbufq_cnt++;
12171 spin_unlock_irq(&phba->hbalock);
12172 return 0;
12173 }
12174
12175 /**
12176 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12177 * @phba: Pointer to HBA context object.
12178 *
12179 * When HBQ is enabled, buffers are searched based on tags. This function
12180 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12181 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12182 * does not conflict with tags of buffer posted for unsolicited events.
12183 * The function returns the allocated tag. The function is called with
12184 * no locks held.
12185 **/
12186 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)12187 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12188 {
12189 spin_lock_irq(&phba->hbalock);
12190 phba->buffer_tag_count++;
12191 /*
12192 * Always set the QUE_BUFTAG_BIT to distiguish between
12193 * a tag assigned by HBQ.
12194 */
12195 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12196 spin_unlock_irq(&phba->hbalock);
12197 return phba->buffer_tag_count;
12198 }
12199
12200 /**
12201 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12202 * @phba: Pointer to HBA context object.
12203 * @pring: Pointer to driver SLI ring object.
12204 * @tag: Buffer tag.
12205 *
12206 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12207 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12208 * iocb is posted to the response ring with the tag of the buffer.
12209 * This function searches the pring->postbufq list using the tag
12210 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12211 * iocb. If the buffer is found then lpfc_dmabuf object of the
12212 * buffer is returned to the caller else NULL is returned.
12213 * This function is called with no lock held.
12214 **/
12215 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)12216 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12217 uint32_t tag)
12218 {
12219 struct lpfc_dmabuf *mp, *next_mp;
12220 struct list_head *slp = &pring->postbufq;
12221
12222 /* Search postbufq, from the beginning, looking for a match on tag */
12223 spin_lock_irq(&phba->hbalock);
12224 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12225 if (mp->buffer_tag == tag) {
12226 list_del_init(&mp->list);
12227 pring->postbufq_cnt--;
12228 spin_unlock_irq(&phba->hbalock);
12229 return mp;
12230 }
12231 }
12232
12233 spin_unlock_irq(&phba->hbalock);
12234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12235 "0402 Cannot find virtual addr for buffer tag on "
12236 "ring %d Data x%lx x%px x%px x%x\n",
12237 pring->ringno, (unsigned long) tag,
12238 slp->next, slp->prev, pring->postbufq_cnt);
12239
12240 return NULL;
12241 }
12242
12243 /**
12244 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12245 * @phba: Pointer to HBA context object.
12246 * @pring: Pointer to driver SLI ring object.
12247 * @phys: DMA address of the buffer.
12248 *
12249 * This function searches the buffer list using the dma_address
12250 * of unsolicited event to find the driver's lpfc_dmabuf object
12251 * corresponding to the dma_address. The function returns the
12252 * lpfc_dmabuf object if a buffer is found else it returns NULL.
12253 * This function is called by the ct and els unsolicited event
12254 * handlers to get the buffer associated with the unsolicited
12255 * event.
12256 *
12257 * This function is called with no lock held.
12258 **/
12259 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)12260 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12261 dma_addr_t phys)
12262 {
12263 struct lpfc_dmabuf *mp, *next_mp;
12264 struct list_head *slp = &pring->postbufq;
12265
12266 /* Search postbufq, from the beginning, looking for a match on phys */
12267 spin_lock_irq(&phba->hbalock);
12268 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12269 if (mp->phys == phys) {
12270 list_del_init(&mp->list);
12271 pring->postbufq_cnt--;
12272 spin_unlock_irq(&phba->hbalock);
12273 return mp;
12274 }
12275 }
12276
12277 spin_unlock_irq(&phba->hbalock);
12278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12279 "0410 Cannot find virtual addr for mapped buf on "
12280 "ring %d Data x%llx x%px x%px x%x\n",
12281 pring->ringno, (unsigned long long)phys,
12282 slp->next, slp->prev, pring->postbufq_cnt);
12283 return NULL;
12284 }
12285
12286 /**
12287 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12288 * @phba: Pointer to HBA context object.
12289 * @cmdiocb: Pointer to driver command iocb object.
12290 * @rspiocb: Pointer to driver response iocb object.
12291 *
12292 * This function is the completion handler for the abort iocbs for
12293 * ELS commands. This function is called from the ELS ring event
12294 * handler with no lock held. This function frees memory resources
12295 * associated with the abort iocb.
12296 **/
12297 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12298 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12299 struct lpfc_iocbq *rspiocb)
12300 {
12301 u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12302 u32 ulp_word4 = get_job_word4(phba, rspiocb);
12303 u8 cmnd = get_job_cmnd(phba, cmdiocb);
12304
12305 if (ulp_status) {
12306 /*
12307 * Assume that the port already completed and returned, or
12308 * will return the iocb. Just Log the message.
12309 */
12310 if (phba->sli_rev < LPFC_SLI_REV4) {
12311 if (cmnd == CMD_ABORT_XRI_CX &&
12312 ulp_status == IOSTAT_LOCAL_REJECT &&
12313 ulp_word4 == IOERR_ABORT_REQUESTED) {
12314 goto release_iocb;
12315 }
12316 }
12317 }
12318
12319 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI,
12320 "0327 Abort els iocb complete x%px with io cmd xri %x "
12321 "abort tag x%x abort status %x abort code %x\n",
12322 cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12323 (phba->sli_rev == LPFC_SLI_REV4) ?
12324 get_wqe_reqtag(cmdiocb) :
12325 cmdiocb->iocb.ulpIoTag,
12326 ulp_status, ulp_word4);
12327 release_iocb:
12328 lpfc_sli_release_iocbq(phba, cmdiocb);
12329 return;
12330 }
12331
12332 /**
12333 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12334 * @phba: Pointer to HBA context object.
12335 * @cmdiocb: Pointer to driver command iocb object.
12336 * @rspiocb: Pointer to driver response iocb object.
12337 *
12338 * The function is called from SLI ring event handler with no
12339 * lock held. This function is the completion handler for ELS commands
12340 * which are aborted. The function frees memory resources used for
12341 * the aborted ELS commands.
12342 **/
12343 void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12344 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12345 struct lpfc_iocbq *rspiocb)
12346 {
12347 struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12348 IOCB_t *irsp;
12349 LPFC_MBOXQ_t *mbox;
12350 u32 ulp_command, ulp_status, ulp_word4, iotag;
12351
12352 ulp_command = get_job_cmnd(phba, cmdiocb);
12353 ulp_status = get_job_ulpstatus(phba, rspiocb);
12354 ulp_word4 = get_job_word4(phba, rspiocb);
12355
12356 if (phba->sli_rev == LPFC_SLI_REV4) {
12357 iotag = get_wqe_reqtag(cmdiocb);
12358 } else {
12359 irsp = &rspiocb->iocb;
12360 iotag = irsp->ulpIoTag;
12361
12362 /* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12363 * The MBX_REG_LOGIN64 mbox command is freed back to the
12364 * mbox_mem_pool here.
12365 */
12366 if (cmdiocb->context_un.mbox) {
12367 mbox = cmdiocb->context_un.mbox;
12368 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12369 cmdiocb->context_un.mbox = NULL;
12370 }
12371 }
12372
12373 /* ELS cmd tag <ulpIoTag> completes */
12374 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12375 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: "
12376 "x%x x%x x%x x%px\n",
12377 ulp_command, kref_read(&cmdiocb->ndlp->kref),
12378 ulp_status, ulp_word4, iotag, cmdiocb->ndlp);
12379 /*
12380 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12381 * if exchange is busy.
12382 */
12383 if (ulp_command == CMD_GEN_REQUEST64_CR)
12384 lpfc_ct_free_iocb(phba, cmdiocb);
12385 else
12386 lpfc_els_free_iocb(phba, cmdiocb);
12387
12388 lpfc_nlp_put(ndlp);
12389 }
12390
12391 /**
12392 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12393 * @phba: Pointer to HBA context object.
12394 * @pring: Pointer to driver SLI ring object.
12395 * @cmdiocb: Pointer to driver command iocb object.
12396 * @cmpl: completion function.
12397 *
12398 * This function issues an abort iocb for the provided command iocb. In case
12399 * of unloading, the abort iocb will not be issued to commands on the ELS
12400 * ring. Instead, the callback function shall be changed to those commands
12401 * so that nothing happens when them finishes. This function is called with
12402 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12403 * when the command iocb is an abort request.
12404 *
12405 **/
12406 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb,void * cmpl)12407 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12408 struct lpfc_iocbq *cmdiocb, void *cmpl)
12409 {
12410 struct lpfc_vport *vport = cmdiocb->vport;
12411 struct lpfc_iocbq *abtsiocbp;
12412 int retval = IOCB_ERROR;
12413 unsigned long iflags;
12414 struct lpfc_nodelist *ndlp = NULL;
12415 u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12416 u16 ulp_context, iotag;
12417 bool ia;
12418
12419 /*
12420 * There are certain command types we don't want to abort. And we
12421 * don't want to abort commands that are already in the process of
12422 * being aborted.
12423 */
12424 if (ulp_command == CMD_ABORT_XRI_WQE ||
12425 ulp_command == CMD_ABORT_XRI_CN ||
12426 ulp_command == CMD_CLOSE_XRI_CN ||
12427 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12428 return IOCB_ABORTING;
12429
12430 if (!pring) {
12431 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12432 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12433 else
12434 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12435 return retval;
12436 }
12437
12438 /*
12439 * If we're unloading, don't abort iocb on the ELS ring, but change
12440 * the callback so that nothing happens when it finishes.
12441 */
12442 if (test_bit(FC_UNLOADING, &vport->load_flag) &&
12443 pring->ringno == LPFC_ELS_RING) {
12444 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12445 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12446 else
12447 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12448 return retval;
12449 }
12450
12451 /* issue ABTS for this IOCB based on iotag */
12452 abtsiocbp = __lpfc_sli_get_iocbq(phba);
12453 if (abtsiocbp == NULL)
12454 return IOCB_NORESOURCE;
12455
12456 /* This signals the response to set the correct status
12457 * before calling the completion handler
12458 */
12459 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12460
12461 if (phba->sli_rev == LPFC_SLI_REV4) {
12462 ulp_context = cmdiocb->sli4_xritag;
12463 iotag = abtsiocbp->iotag;
12464 } else {
12465 iotag = cmdiocb->iocb.ulpIoTag;
12466 if (pring->ringno == LPFC_ELS_RING) {
12467 ndlp = cmdiocb->ndlp;
12468 ulp_context = ndlp->nlp_rpi;
12469 } else {
12470 ulp_context = cmdiocb->iocb.ulpContext;
12471 }
12472 }
12473
12474 /* Just close the exchange under certain conditions. */
12475 if (test_bit(FC_UNLOADING, &vport->load_flag) ||
12476 phba->link_state < LPFC_LINK_UP ||
12477 (phba->sli_rev == LPFC_SLI_REV4 &&
12478 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12479 (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12480 ia = true;
12481 else
12482 ia = false;
12483
12484 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12485 cmdiocb->iocb.ulpClass,
12486 LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12487
12488 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12489 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12490 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12491 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12492
12493 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12494 abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12495
12496 if (cmpl)
12497 abtsiocbp->cmd_cmpl = cmpl;
12498 else
12499 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12500 abtsiocbp->vport = vport;
12501
12502 if (phba->sli_rev == LPFC_SLI_REV4) {
12503 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12504 if (unlikely(pring == NULL))
12505 goto abort_iotag_exit;
12506 /* Note: both hbalock and ring_lock need to be set here */
12507 spin_lock_irqsave(&pring->ring_lock, iflags);
12508 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12509 abtsiocbp, 0);
12510 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12511 } else {
12512 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12513 abtsiocbp, 0);
12514 }
12515
12516 abort_iotag_exit:
12517
12518 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12519 "0339 Abort IO XRI x%x, Original iotag x%x, "
12520 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12521 "retval x%x : IA %d cmd_cmpl %ps\n",
12522 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12523 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12524 retval, ia, abtsiocbp->cmd_cmpl);
12525 if (retval) {
12526 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12527 __lpfc_sli_release_iocbq(phba, abtsiocbp);
12528 }
12529
12530 /*
12531 * Caller to this routine should check for IOCB_ERROR
12532 * and handle it properly. This routine no longer removes
12533 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12534 */
12535 return retval;
12536 }
12537
12538 /**
12539 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12540 * @phba: pointer to lpfc HBA data structure.
12541 *
12542 * This routine will abort all pending and outstanding iocbs to an HBA.
12543 **/
12544 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)12545 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12546 {
12547 struct lpfc_sli *psli = &phba->sli;
12548 struct lpfc_sli_ring *pring;
12549 struct lpfc_queue *qp = NULL;
12550 int i;
12551
12552 if (phba->sli_rev != LPFC_SLI_REV4) {
12553 for (i = 0; i < psli->num_rings; i++) {
12554 pring = &psli->sli3_ring[i];
12555 lpfc_sli_abort_iocb_ring(phba, pring);
12556 }
12557 return;
12558 }
12559 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12560 pring = qp->pring;
12561 if (!pring)
12562 continue;
12563 lpfc_sli_abort_iocb_ring(phba, pring);
12564 }
12565 }
12566
12567 /**
12568 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12569 * @iocbq: Pointer to iocb object.
12570 * @vport: Pointer to driver virtual port object.
12571 *
12572 * This function acts as an iocb filter for functions which abort FCP iocbs.
12573 *
12574 * Return values
12575 * -ENODEV, if a null iocb or vport ptr is encountered
12576 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12577 * driver already started the abort process, or is an abort iocb itself
12578 * 0, passes criteria for aborting the FCP I/O iocb
12579 **/
12580 static int
lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport)12581 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12582 struct lpfc_vport *vport)
12583 {
12584 u8 ulp_command;
12585
12586 /* No null ptr vports */
12587 if (!iocbq || iocbq->vport != vport)
12588 return -ENODEV;
12589
12590 /* iocb must be for FCP IO, already exists on the TX cmpl queue,
12591 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12592 */
12593 ulp_command = get_job_cmnd(vport->phba, iocbq);
12594 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12595 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12596 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12597 (ulp_command == CMD_ABORT_XRI_CN ||
12598 ulp_command == CMD_CLOSE_XRI_CN ||
12599 ulp_command == CMD_ABORT_XRI_WQE))
12600 return -EINVAL;
12601
12602 return 0;
12603 }
12604
12605 /**
12606 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12607 * @iocbq: Pointer to driver iocb object.
12608 * @vport: Pointer to driver virtual port object.
12609 * @tgt_id: SCSI ID of the target.
12610 * @lun_id: LUN ID of the scsi device.
12611 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12612 *
12613 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12614 * host.
12615 *
12616 * It will return
12617 * 0 if the filtering criteria is met for the given iocb and will return
12618 * 1 if the filtering criteria is not met.
12619 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12620 * given iocb is for the SCSI device specified by vport, tgt_id and
12621 * lun_id parameter.
12622 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
12623 * given iocb is for the SCSI target specified by vport and tgt_id
12624 * parameters.
12625 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12626 * given iocb is for the SCSI host associated with the given vport.
12627 * This function is called with no locks held.
12628 **/
12629 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12630 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12631 uint16_t tgt_id, uint64_t lun_id,
12632 lpfc_ctx_cmd ctx_cmd)
12633 {
12634 struct lpfc_io_buf *lpfc_cmd;
12635 int rc = 1;
12636
12637 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12638
12639 if (lpfc_cmd->pCmd == NULL)
12640 return rc;
12641
12642 switch (ctx_cmd) {
12643 case LPFC_CTX_LUN:
12644 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12645 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12646 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12647 rc = 0;
12648 break;
12649 case LPFC_CTX_TGT:
12650 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12651 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12652 rc = 0;
12653 break;
12654 case LPFC_CTX_HOST:
12655 rc = 0;
12656 break;
12657 default:
12658 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12659 __func__, ctx_cmd);
12660 break;
12661 }
12662
12663 return rc;
12664 }
12665
12666 /**
12667 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12668 * @vport: Pointer to virtual port.
12669 * @tgt_id: SCSI ID of the target.
12670 * @lun_id: LUN ID of the scsi device.
12671 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12672 *
12673 * This function returns number of FCP commands pending for the vport.
12674 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12675 * commands pending on the vport associated with SCSI device specified
12676 * by tgt_id and lun_id parameters.
12677 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12678 * commands pending on the vport associated with SCSI target specified
12679 * by tgt_id parameter.
12680 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12681 * commands pending on the vport.
12682 * This function returns the number of iocbs which satisfy the filter.
12683 * This function is called without any lock held.
12684 **/
12685 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12686 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12687 lpfc_ctx_cmd ctx_cmd)
12688 {
12689 struct lpfc_hba *phba = vport->phba;
12690 struct lpfc_iocbq *iocbq;
12691 int sum, i;
12692 unsigned long iflags;
12693 u8 ulp_command;
12694
12695 spin_lock_irqsave(&phba->hbalock, iflags);
12696 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12697 iocbq = phba->sli.iocbq_lookup[i];
12698
12699 if (!iocbq || iocbq->vport != vport)
12700 continue;
12701 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12702 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12703 continue;
12704
12705 /* Include counting outstanding aborts */
12706 ulp_command = get_job_cmnd(phba, iocbq);
12707 if (ulp_command == CMD_ABORT_XRI_CN ||
12708 ulp_command == CMD_CLOSE_XRI_CN ||
12709 ulp_command == CMD_ABORT_XRI_WQE) {
12710 sum++;
12711 continue;
12712 }
12713
12714 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12715 ctx_cmd) == 0)
12716 sum++;
12717 }
12718 spin_unlock_irqrestore(&phba->hbalock, iflags);
12719
12720 return sum;
12721 }
12722
12723 /**
12724 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12725 * @phba: Pointer to HBA context object
12726 * @cmdiocb: Pointer to command iocb object.
12727 * @rspiocb: Pointer to response iocb object.
12728 *
12729 * This function is called when an aborted FCP iocb completes. This
12730 * function is called by the ring event handler with no lock held.
12731 * This function frees the iocb.
12732 **/
12733 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12734 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12735 struct lpfc_iocbq *rspiocb)
12736 {
12737 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12738 "3096 ABORT_XRI_CX completing on rpi x%x "
12739 "original iotag x%x, abort cmd iotag x%x "
12740 "status 0x%x, reason 0x%x\n",
12741 (phba->sli_rev == LPFC_SLI_REV4) ?
12742 cmdiocb->sli4_xritag :
12743 cmdiocb->iocb.un.acxri.abortContextTag,
12744 get_job_abtsiotag(phba, cmdiocb),
12745 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12746 get_job_word4(phba, rspiocb));
12747 lpfc_sli_release_iocbq(phba, cmdiocb);
12748 return;
12749 }
12750
12751 /**
12752 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12753 * @vport: Pointer to virtual port.
12754 * @tgt_id: SCSI ID of the target.
12755 * @lun_id: LUN ID of the scsi device.
12756 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12757 *
12758 * This function sends an abort command for every SCSI command
12759 * associated with the given virtual port pending on the ring
12760 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12761 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12762 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12763 * followed by lpfc_sli_validate_fcp_iocb.
12764 *
12765 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12766 * FCP iocbs associated with lun specified by tgt_id and lun_id
12767 * parameters
12768 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12769 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12770 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12771 * FCP iocbs associated with virtual port.
12772 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12773 * lpfc_sli4_calc_ring is used.
12774 * This function returns number of iocbs it failed to abort.
12775 * This function is called with no locks held.
12776 **/
12777 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,u16 tgt_id,u64 lun_id,lpfc_ctx_cmd abort_cmd)12778 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12779 lpfc_ctx_cmd abort_cmd)
12780 {
12781 struct lpfc_hba *phba = vport->phba;
12782 struct lpfc_sli_ring *pring = NULL;
12783 struct lpfc_iocbq *iocbq;
12784 int errcnt = 0, ret_val = 0;
12785 unsigned long iflags;
12786 int i;
12787
12788 /* all I/Os are in process of being flushed */
12789 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12790 return errcnt;
12791
12792 for (i = 1; i <= phba->sli.last_iotag; i++) {
12793 iocbq = phba->sli.iocbq_lookup[i];
12794
12795 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12796 continue;
12797
12798 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12799 abort_cmd) != 0)
12800 continue;
12801
12802 spin_lock_irqsave(&phba->hbalock, iflags);
12803 if (phba->sli_rev == LPFC_SLI_REV3) {
12804 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12805 } else if (phba->sli_rev == LPFC_SLI_REV4) {
12806 pring = lpfc_sli4_calc_ring(phba, iocbq);
12807 }
12808 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12809 lpfc_sli_abort_fcp_cmpl);
12810 spin_unlock_irqrestore(&phba->hbalock, iflags);
12811 if (ret_val != IOCB_SUCCESS)
12812 errcnt++;
12813 }
12814
12815 return errcnt;
12816 }
12817
12818 /**
12819 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12820 * @vport: Pointer to virtual port.
12821 * @pring: Pointer to driver SLI ring object.
12822 * @tgt_id: SCSI ID of the target.
12823 * @lun_id: LUN ID of the scsi device.
12824 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12825 *
12826 * This function sends an abort command for every SCSI command
12827 * associated with the given virtual port pending on the ring
12828 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12829 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12830 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12831 * followed by lpfc_sli_validate_fcp_iocb.
12832 *
12833 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12834 * FCP iocbs associated with lun specified by tgt_id and lun_id
12835 * parameters
12836 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12837 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12838 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12839 * FCP iocbs associated with virtual port.
12840 * This function returns number of iocbs it aborted .
12841 * This function is called with no locks held right after a taskmgmt
12842 * command is sent.
12843 **/
12844 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)12845 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12846 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12847 {
12848 struct lpfc_hba *phba = vport->phba;
12849 struct lpfc_io_buf *lpfc_cmd;
12850 struct lpfc_iocbq *abtsiocbq;
12851 struct lpfc_nodelist *ndlp = NULL;
12852 struct lpfc_iocbq *iocbq;
12853 int sum, i, ret_val;
12854 unsigned long iflags;
12855 struct lpfc_sli_ring *pring_s4 = NULL;
12856 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12857 bool ia;
12858
12859 /* all I/Os are in process of being flushed */
12860 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
12861 return 0;
12862
12863 sum = 0;
12864
12865 spin_lock_irqsave(&phba->hbalock, iflags);
12866 for (i = 1; i <= phba->sli.last_iotag; i++) {
12867 iocbq = phba->sli.iocbq_lookup[i];
12868
12869 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12870 continue;
12871
12872 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12873 cmd) != 0)
12874 continue;
12875
12876 /* Guard against IO completion being called at same time */
12877 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12878 spin_lock(&lpfc_cmd->buf_lock);
12879
12880 if (!lpfc_cmd->pCmd) {
12881 spin_unlock(&lpfc_cmd->buf_lock);
12882 continue;
12883 }
12884
12885 if (phba->sli_rev == LPFC_SLI_REV4) {
12886 pring_s4 =
12887 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12888 if (!pring_s4) {
12889 spin_unlock(&lpfc_cmd->buf_lock);
12890 continue;
12891 }
12892 /* Note: both hbalock and ring_lock must be set here */
12893 spin_lock(&pring_s4->ring_lock);
12894 }
12895
12896 /*
12897 * If the iocbq is already being aborted, don't take a second
12898 * action, but do count it.
12899 */
12900 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12901 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12902 if (phba->sli_rev == LPFC_SLI_REV4)
12903 spin_unlock(&pring_s4->ring_lock);
12904 spin_unlock(&lpfc_cmd->buf_lock);
12905 continue;
12906 }
12907
12908 /* issue ABTS for this IOCB based on iotag */
12909 abtsiocbq = __lpfc_sli_get_iocbq(phba);
12910 if (!abtsiocbq) {
12911 if (phba->sli_rev == LPFC_SLI_REV4)
12912 spin_unlock(&pring_s4->ring_lock);
12913 spin_unlock(&lpfc_cmd->buf_lock);
12914 continue;
12915 }
12916
12917 if (phba->sli_rev == LPFC_SLI_REV4) {
12918 iotag = abtsiocbq->iotag;
12919 ulp_context = iocbq->sli4_xritag;
12920 cqid = lpfc_cmd->hdwq->io_cq_map;
12921 } else {
12922 iotag = iocbq->iocb.ulpIoTag;
12923 if (pring->ringno == LPFC_ELS_RING) {
12924 ndlp = iocbq->ndlp;
12925 ulp_context = ndlp->nlp_rpi;
12926 } else {
12927 ulp_context = iocbq->iocb.ulpContext;
12928 }
12929 }
12930
12931 ndlp = lpfc_cmd->rdata->pnode;
12932
12933 if (lpfc_is_link_up(phba) &&
12934 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12935 !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
12936 ia = false;
12937 else
12938 ia = true;
12939
12940 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12941 iocbq->iocb.ulpClass, cqid,
12942 ia, false);
12943
12944 abtsiocbq->vport = vport;
12945
12946 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12947 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12948 if (iocbq->cmd_flag & LPFC_IO_FCP)
12949 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12950 if (iocbq->cmd_flag & LPFC_IO_FOF)
12951 abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12952
12953 /* Setup callback routine and issue the command. */
12954 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12955
12956 /*
12957 * Indicate the IO is being aborted by the driver and set
12958 * the caller's flag into the aborted IO.
12959 */
12960 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12961
12962 if (phba->sli_rev == LPFC_SLI_REV4) {
12963 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12964 abtsiocbq, 0);
12965 spin_unlock(&pring_s4->ring_lock);
12966 } else {
12967 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12968 abtsiocbq, 0);
12969 }
12970
12971 spin_unlock(&lpfc_cmd->buf_lock);
12972
12973 if (ret_val == IOCB_ERROR)
12974 __lpfc_sli_release_iocbq(phba, abtsiocbq);
12975 else
12976 sum++;
12977 }
12978 spin_unlock_irqrestore(&phba->hbalock, iflags);
12979 return sum;
12980 }
12981
12982 /**
12983 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12984 * @phba: Pointer to HBA context object.
12985 * @cmdiocbq: Pointer to command iocb.
12986 * @rspiocbq: Pointer to response iocb.
12987 *
12988 * This function is the completion handler for iocbs issued using
12989 * lpfc_sli_issue_iocb_wait function. This function is called by the
12990 * ring event handler function without any lock held. This function
12991 * can be called from both worker thread context and interrupt
12992 * context. This function also can be called from other thread which
12993 * cleans up the SLI layer objects.
12994 * This function copy the contents of the response iocb to the
12995 * response iocb memory object provided by the caller of
12996 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12997 * sleeps for the iocb completion.
12998 **/
12999 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)13000 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
13001 struct lpfc_iocbq *cmdiocbq,
13002 struct lpfc_iocbq *rspiocbq)
13003 {
13004 wait_queue_head_t *pdone_q;
13005 unsigned long iflags;
13006 struct lpfc_io_buf *lpfc_cmd;
13007 size_t offset = offsetof(struct lpfc_iocbq, wqe);
13008
13009 spin_lock_irqsave(&phba->hbalock, iflags);
13010 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
13011
13012 /*
13013 * A time out has occurred for the iocb. If a time out
13014 * completion handler has been supplied, call it. Otherwise,
13015 * just free the iocbq.
13016 */
13017
13018 spin_unlock_irqrestore(&phba->hbalock, iflags);
13019 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
13020 cmdiocbq->wait_cmd_cmpl = NULL;
13021 if (cmdiocbq->cmd_cmpl)
13022 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
13023 else
13024 lpfc_sli_release_iocbq(phba, cmdiocbq);
13025 return;
13026 }
13027
13028 /* Copy the contents of the local rspiocb into the caller's buffer. */
13029 cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13030 if (cmdiocbq->rsp_iocb && rspiocbq)
13031 memcpy((char *)cmdiocbq->rsp_iocb + offset,
13032 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13033
13034 /* Set the exchange busy flag for task management commands */
13035 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13036 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13037 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13038 cur_iocbq);
13039 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13040 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13041 else
13042 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13043 }
13044
13045 pdone_q = cmdiocbq->context_un.wait_queue;
13046 if (pdone_q)
13047 wake_up(pdone_q);
13048 spin_unlock_irqrestore(&phba->hbalock, iflags);
13049 return;
13050 }
13051
13052 /**
13053 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13054 * @phba: Pointer to HBA context object..
13055 * @piocbq: Pointer to command iocb.
13056 * @flag: Flag to test.
13057 *
13058 * This routine grabs the hbalock and then test the cmd_flag to
13059 * see if the passed in flag is set.
13060 * Returns:
13061 * 1 if flag is set.
13062 * 0 if flag is not set.
13063 **/
13064 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)13065 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13066 struct lpfc_iocbq *piocbq, uint32_t flag)
13067 {
13068 unsigned long iflags;
13069 int ret;
13070
13071 spin_lock_irqsave(&phba->hbalock, iflags);
13072 ret = piocbq->cmd_flag & flag;
13073 spin_unlock_irqrestore(&phba->hbalock, iflags);
13074 return ret;
13075
13076 }
13077
13078 /**
13079 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13080 * @phba: Pointer to HBA context object..
13081 * @ring_number: Ring number
13082 * @piocb: Pointer to command iocb.
13083 * @prspiocbq: Pointer to response iocb.
13084 * @timeout: Timeout in number of seconds.
13085 *
13086 * This function issues the iocb to firmware and waits for the
13087 * iocb to complete. The cmd_cmpl field of the shall be used
13088 * to handle iocbs which time out. If the field is NULL, the
13089 * function shall free the iocbq structure. If more clean up is
13090 * needed, the caller is expected to provide a completion function
13091 * that will provide the needed clean up. If the iocb command is
13092 * not completed within timeout seconds, the function will either
13093 * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13094 * completion function set in the cmd_cmpl field and then return
13095 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
13096 * resources if this function returns IOCB_TIMEDOUT.
13097 * The function waits for the iocb completion using an
13098 * non-interruptible wait.
13099 * This function will sleep while waiting for iocb completion.
13100 * So, this function should not be called from any context which
13101 * does not allow sleeping. Due to the same reason, this function
13102 * cannot be called with interrupt disabled.
13103 * This function assumes that the iocb completions occur while
13104 * this function sleep. So, this function cannot be called from
13105 * the thread which process iocb completion for this ring.
13106 * This function clears the cmd_flag of the iocb object before
13107 * issuing the iocb and the iocb completion handler sets this
13108 * flag and wakes this thread when the iocb completes.
13109 * The contents of the response iocb will be copied to prspiocbq
13110 * by the completion handler when the command completes.
13111 * This function returns IOCB_SUCCESS when success.
13112 * This function is called with no lock held.
13113 **/
13114 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)13115 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13116 uint32_t ring_number,
13117 struct lpfc_iocbq *piocb,
13118 struct lpfc_iocbq *prspiocbq,
13119 uint32_t timeout)
13120 {
13121 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13122 long timeleft, timeout_req = 0;
13123 int retval = IOCB_SUCCESS;
13124 uint32_t creg_val;
13125 struct lpfc_iocbq *iocb;
13126 int txq_cnt = 0;
13127 int txcmplq_cnt = 0;
13128 struct lpfc_sli_ring *pring;
13129 unsigned long iflags;
13130 bool iocb_completed = true;
13131
13132 if (phba->sli_rev >= LPFC_SLI_REV4) {
13133 lpfc_sli_prep_wqe(phba, piocb);
13134
13135 pring = lpfc_sli4_calc_ring(phba, piocb);
13136 } else
13137 pring = &phba->sli.sli3_ring[ring_number];
13138 /*
13139 * If the caller has provided a response iocbq buffer, then rsp_iocb
13140 * is NULL or its an error.
13141 */
13142 if (prspiocbq) {
13143 if (piocb->rsp_iocb)
13144 return IOCB_ERROR;
13145 piocb->rsp_iocb = prspiocbq;
13146 }
13147
13148 piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13149 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13150 piocb->context_un.wait_queue = &done_q;
13151 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13152
13153 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13154 if (lpfc_readl(phba->HCregaddr, &creg_val))
13155 return IOCB_ERROR;
13156 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13157 writel(creg_val, phba->HCregaddr);
13158 readl(phba->HCregaddr); /* flush */
13159 }
13160
13161 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13162 SLI_IOCB_RET_IOCB);
13163 if (retval == IOCB_SUCCESS) {
13164 timeout_req = msecs_to_jiffies(timeout * 1000);
13165 timeleft = wait_event_timeout(done_q,
13166 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13167 timeout_req);
13168 spin_lock_irqsave(&phba->hbalock, iflags);
13169 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13170
13171 /*
13172 * IOCB timed out. Inform the wake iocb wait
13173 * completion function and set local status
13174 */
13175
13176 iocb_completed = false;
13177 piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13178 }
13179 spin_unlock_irqrestore(&phba->hbalock, iflags);
13180 if (iocb_completed) {
13181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13182 "0331 IOCB wake signaled\n");
13183 /* Note: we are not indicating if the IOCB has a success
13184 * status or not - that's for the caller to check.
13185 * IOCB_SUCCESS means just that the command was sent and
13186 * completed. Not that it completed successfully.
13187 * */
13188 } else if (timeleft == 0) {
13189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13190 "0338 IOCB wait timeout error - no "
13191 "wake response Data x%x\n", timeout);
13192 retval = IOCB_TIMEDOUT;
13193 } else {
13194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13195 "0330 IOCB wake NOT set, "
13196 "Data x%x x%lx\n",
13197 timeout, (timeleft / jiffies));
13198 retval = IOCB_TIMEDOUT;
13199 }
13200 } else if (retval == IOCB_BUSY) {
13201 if (phba->cfg_log_verbose & LOG_SLI) {
13202 list_for_each_entry(iocb, &pring->txq, list) {
13203 txq_cnt++;
13204 }
13205 list_for_each_entry(iocb, &pring->txcmplq, list) {
13206 txcmplq_cnt++;
13207 }
13208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13209 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13210 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13211 }
13212 return retval;
13213 } else {
13214 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13215 "0332 IOCB wait issue failed, Data x%x\n",
13216 retval);
13217 retval = IOCB_ERROR;
13218 }
13219
13220 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13221 if (lpfc_readl(phba->HCregaddr, &creg_val))
13222 return IOCB_ERROR;
13223 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13224 writel(creg_val, phba->HCregaddr);
13225 readl(phba->HCregaddr); /* flush */
13226 }
13227
13228 if (prspiocbq)
13229 piocb->rsp_iocb = NULL;
13230
13231 piocb->context_un.wait_queue = NULL;
13232 piocb->cmd_cmpl = NULL;
13233 return retval;
13234 }
13235
13236 /**
13237 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13238 * @phba: Pointer to HBA context object.
13239 * @pmboxq: Pointer to driver mailbox object.
13240 * @timeout: Timeout in number of seconds.
13241 *
13242 * This function issues the mailbox to firmware and waits for the
13243 * mailbox command to complete. If the mailbox command is not
13244 * completed within timeout seconds, it returns MBX_TIMEOUT.
13245 * The function waits for the mailbox completion using an
13246 * interruptible wait. If the thread is woken up due to a
13247 * signal, MBX_TIMEOUT error is returned to the caller. Caller
13248 * should not free the mailbox resources, if this function returns
13249 * MBX_TIMEOUT.
13250 * This function will sleep while waiting for mailbox completion.
13251 * So, this function should not be called from any context which
13252 * does not allow sleeping. Due to the same reason, this function
13253 * cannot be called with interrupt disabled.
13254 * This function assumes that the mailbox completion occurs while
13255 * this function sleep. So, this function cannot be called from
13256 * the worker thread which processes mailbox completion.
13257 * This function is called in the context of HBA management
13258 * applications.
13259 * This function returns MBX_SUCCESS when successful.
13260 * This function is called with no lock held.
13261 **/
13262 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)13263 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13264 uint32_t timeout)
13265 {
13266 struct completion mbox_done;
13267 int retval;
13268 unsigned long flag;
13269
13270 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13271 /* setup wake call as IOCB callback */
13272 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13273
13274 /* setup ctx_u field to pass wait_queue pointer to wake function */
13275 init_completion(&mbox_done);
13276 pmboxq->ctx_u.mbox_wait = &mbox_done;
13277 /* now issue the command */
13278 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13279 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13280 wait_for_completion_timeout(&mbox_done,
13281 msecs_to_jiffies(timeout * 1000));
13282
13283 spin_lock_irqsave(&phba->hbalock, flag);
13284 pmboxq->ctx_u.mbox_wait = NULL;
13285 /*
13286 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13287 * else do not free the resources.
13288 */
13289 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13290 retval = MBX_SUCCESS;
13291 } else {
13292 retval = MBX_TIMEOUT;
13293 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13294 }
13295 spin_unlock_irqrestore(&phba->hbalock, flag);
13296 }
13297 return retval;
13298 }
13299
13300 /**
13301 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13302 * @phba: Pointer to HBA context.
13303 * @mbx_action: Mailbox shutdown options.
13304 *
13305 * This function is called to shutdown the driver's mailbox sub-system.
13306 * It first marks the mailbox sub-system is in a block state to prevent
13307 * the asynchronous mailbox command from issued off the pending mailbox
13308 * command queue. If the mailbox command sub-system shutdown is due to
13309 * HBA error conditions such as EEH or ERATT, this routine shall invoke
13310 * the mailbox sub-system flush routine to forcefully bring down the
13311 * mailbox sub-system. Otherwise, if it is due to normal condition (such
13312 * as with offline or HBA function reset), this routine will wait for the
13313 * outstanding mailbox command to complete before invoking the mailbox
13314 * sub-system flush routine to gracefully bring down mailbox sub-system.
13315 **/
13316 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)13317 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13318 {
13319 struct lpfc_sli *psli = &phba->sli;
13320 unsigned long timeout;
13321
13322 if (mbx_action == LPFC_MBX_NO_WAIT) {
13323 /* delay 100ms for port state */
13324 msleep(100);
13325 lpfc_sli_mbox_sys_flush(phba);
13326 return;
13327 }
13328 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies;
13329
13330 /* Disable softirqs, including timers from obtaining phba->hbalock */
13331 local_bh_disable();
13332
13333 spin_lock_irq(&phba->hbalock);
13334 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13335
13336 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13337 /* Determine how long we might wait for the active mailbox
13338 * command to be gracefully completed by firmware.
13339 */
13340 if (phba->sli.mbox_active)
13341 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13342 phba->sli.mbox_active) *
13343 1000) + jiffies;
13344 spin_unlock_irq(&phba->hbalock);
13345
13346 /* Enable softirqs again, done with phba->hbalock */
13347 local_bh_enable();
13348
13349 while (phba->sli.mbox_active) {
13350 /* Check active mailbox complete status every 2ms */
13351 msleep(2);
13352 if (time_after(jiffies, timeout))
13353 /* Timeout, let the mailbox flush routine to
13354 * forcefully release active mailbox command
13355 */
13356 break;
13357 }
13358 } else {
13359 spin_unlock_irq(&phba->hbalock);
13360
13361 /* Enable softirqs again, done with phba->hbalock */
13362 local_bh_enable();
13363 }
13364
13365 lpfc_sli_mbox_sys_flush(phba);
13366 }
13367
13368 /**
13369 * lpfc_sli_eratt_read - read sli-3 error attention events
13370 * @phba: Pointer to HBA context.
13371 *
13372 * This function is called to read the SLI3 device error attention registers
13373 * for possible error attention events. The caller must hold the hostlock
13374 * with spin_lock_irq().
13375 *
13376 * This function returns 1 when there is Error Attention in the Host Attention
13377 * Register and returns 0 otherwise.
13378 **/
13379 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)13380 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13381 {
13382 uint32_t ha_copy;
13383
13384 /* Read chip Host Attention (HA) register */
13385 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13386 goto unplug_err;
13387
13388 if (ha_copy & HA_ERATT) {
13389 /* Read host status register to retrieve error event */
13390 if (lpfc_sli_read_hs(phba))
13391 goto unplug_err;
13392
13393 /* Check if there is a deferred error condition is active */
13394 if ((HS_FFER1 & phba->work_hs) &&
13395 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13396 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13397 set_bit(DEFER_ERATT, &phba->hba_flag);
13398 /* Clear all interrupt enable conditions */
13399 writel(0, phba->HCregaddr);
13400 readl(phba->HCregaddr);
13401 }
13402
13403 /* Set the driver HA work bitmap */
13404 phba->work_ha |= HA_ERATT;
13405 /* Indicate polling handles this ERATT */
13406 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13407 return 1;
13408 }
13409 return 0;
13410
13411 unplug_err:
13412 /* Set the driver HS work bitmap */
13413 phba->work_hs |= UNPLUG_ERR;
13414 /* Set the driver HA work bitmap */
13415 phba->work_ha |= HA_ERATT;
13416 /* Indicate polling handles this ERATT */
13417 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13418 return 1;
13419 }
13420
13421 /**
13422 * lpfc_sli4_eratt_read - read sli-4 error attention events
13423 * @phba: Pointer to HBA context.
13424 *
13425 * This function is called to read the SLI4 device error attention registers
13426 * for possible error attention events. The caller must hold the hostlock
13427 * with spin_lock_irq().
13428 *
13429 * This function returns 1 when there is Error Attention in the Host Attention
13430 * Register and returns 0 otherwise.
13431 **/
13432 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)13433 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13434 {
13435 uint32_t uerr_sta_hi, uerr_sta_lo;
13436 uint32_t if_type, portsmphr;
13437 struct lpfc_register portstat_reg;
13438 u32 logmask;
13439
13440 /*
13441 * For now, use the SLI4 device internal unrecoverable error
13442 * registers for error attention. This can be changed later.
13443 */
13444 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13445 switch (if_type) {
13446 case LPFC_SLI_INTF_IF_TYPE_0:
13447 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13448 &uerr_sta_lo) ||
13449 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13450 &uerr_sta_hi)) {
13451 phba->work_hs |= UNPLUG_ERR;
13452 phba->work_ha |= HA_ERATT;
13453 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13454 return 1;
13455 }
13456 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13457 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13458 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13459 "1423 HBA Unrecoverable error: "
13460 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13461 "ue_mask_lo_reg=0x%x, "
13462 "ue_mask_hi_reg=0x%x\n",
13463 uerr_sta_lo, uerr_sta_hi,
13464 phba->sli4_hba.ue_mask_lo,
13465 phba->sli4_hba.ue_mask_hi);
13466 phba->work_status[0] = uerr_sta_lo;
13467 phba->work_status[1] = uerr_sta_hi;
13468 phba->work_ha |= HA_ERATT;
13469 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13470 return 1;
13471 }
13472 break;
13473 case LPFC_SLI_INTF_IF_TYPE_2:
13474 case LPFC_SLI_INTF_IF_TYPE_6:
13475 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13476 &portstat_reg.word0) ||
13477 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13478 &portsmphr)){
13479 phba->work_hs |= UNPLUG_ERR;
13480 phba->work_ha |= HA_ERATT;
13481 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13482 return 1;
13483 }
13484 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13485 phba->work_status[0] =
13486 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13487 phba->work_status[1] =
13488 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13489 logmask = LOG_TRACE_EVENT;
13490 if (phba->work_status[0] ==
13491 SLIPORT_ERR1_REG_ERR_CODE_2 &&
13492 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13493 logmask = LOG_SLI;
13494 lpfc_printf_log(phba, KERN_ERR, logmask,
13495 "2885 Port Status Event: "
13496 "port status reg 0x%x, "
13497 "port smphr reg 0x%x, "
13498 "error 1=0x%x, error 2=0x%x\n",
13499 portstat_reg.word0,
13500 portsmphr,
13501 phba->work_status[0],
13502 phba->work_status[1]);
13503 phba->work_ha |= HA_ERATT;
13504 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
13505 return 1;
13506 }
13507 break;
13508 case LPFC_SLI_INTF_IF_TYPE_1:
13509 default:
13510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13511 "2886 HBA Error Attention on unsupported "
13512 "if type %d.", if_type);
13513 return 1;
13514 }
13515
13516 return 0;
13517 }
13518
13519 /**
13520 * lpfc_sli_check_eratt - check error attention events
13521 * @phba: Pointer to HBA context.
13522 *
13523 * This function is called from timer soft interrupt context to check HBA's
13524 * error attention register bit for error attention events.
13525 *
13526 * This function returns 1 when there is Error Attention in the Host Attention
13527 * Register and returns 0 otherwise.
13528 **/
13529 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)13530 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13531 {
13532 uint32_t ha_copy;
13533
13534 /* If somebody is waiting to handle an eratt, don't process it
13535 * here. The brdkill function will do this.
13536 */
13537 if (phba->link_flag & LS_IGNORE_ERATT)
13538 return 0;
13539
13540 /* Check if interrupt handler handles this ERATT */
13541 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
13542 /* Interrupt handler has handled ERATT */
13543 return 0;
13544
13545 /*
13546 * If there is deferred error attention, do not check for error
13547 * attention
13548 */
13549 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
13550 return 0;
13551
13552 spin_lock_irq(&phba->hbalock);
13553 /* If PCI channel is offline, don't process it */
13554 if (unlikely(pci_channel_offline(phba->pcidev))) {
13555 spin_unlock_irq(&phba->hbalock);
13556 return 0;
13557 }
13558
13559 switch (phba->sli_rev) {
13560 case LPFC_SLI_REV2:
13561 case LPFC_SLI_REV3:
13562 /* Read chip Host Attention (HA) register */
13563 ha_copy = lpfc_sli_eratt_read(phba);
13564 break;
13565 case LPFC_SLI_REV4:
13566 /* Read device Uncoverable Error (UERR) registers */
13567 ha_copy = lpfc_sli4_eratt_read(phba);
13568 break;
13569 default:
13570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13571 "0299 Invalid SLI revision (%d)\n",
13572 phba->sli_rev);
13573 ha_copy = 0;
13574 break;
13575 }
13576 spin_unlock_irq(&phba->hbalock);
13577
13578 return ha_copy;
13579 }
13580
13581 /**
13582 * lpfc_intr_state_check - Check device state for interrupt handling
13583 * @phba: Pointer to HBA context.
13584 *
13585 * This inline routine checks whether a device or its PCI slot is in a state
13586 * that the interrupt should be handled.
13587 *
13588 * This function returns 0 if the device or the PCI slot is in a state that
13589 * interrupt should be handled, otherwise -EIO.
13590 */
13591 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)13592 lpfc_intr_state_check(struct lpfc_hba *phba)
13593 {
13594 /* If the pci channel is offline, ignore all the interrupts */
13595 if (unlikely(pci_channel_offline(phba->pcidev)))
13596 return -EIO;
13597
13598 /* Update device level interrupt statistics */
13599 phba->sli.slistat.sli_intr++;
13600
13601 /* Ignore all interrupts during initialization. */
13602 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13603 return -EIO;
13604
13605 return 0;
13606 }
13607
13608 /**
13609 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13610 * @irq: Interrupt number.
13611 * @dev_id: The device context pointer.
13612 *
13613 * This function is directly called from the PCI layer as an interrupt
13614 * service routine when device with SLI-3 interface spec is enabled with
13615 * MSI-X multi-message interrupt mode and there are slow-path events in
13616 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13617 * interrupt mode, this function is called as part of the device-level
13618 * interrupt handler. When the PCI slot is in error recovery or the HBA
13619 * is undergoing initialization, the interrupt handler will not process
13620 * the interrupt. The link attention and ELS ring attention events are
13621 * handled by the worker thread. The interrupt handler signals the worker
13622 * thread and returns for these events. This function is called without
13623 * any lock held. It gets the hbalock to access and update SLI data
13624 * structures.
13625 *
13626 * This function returns IRQ_HANDLED when interrupt is handled else it
13627 * returns IRQ_NONE.
13628 **/
13629 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)13630 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13631 {
13632 struct lpfc_hba *phba;
13633 uint32_t ha_copy, hc_copy;
13634 uint32_t work_ha_copy;
13635 unsigned long status;
13636 unsigned long iflag;
13637 uint32_t control;
13638
13639 MAILBOX_t *mbox, *pmbox;
13640 struct lpfc_vport *vport;
13641 struct lpfc_nodelist *ndlp;
13642 struct lpfc_dmabuf *mp;
13643 LPFC_MBOXQ_t *pmb;
13644 int rc;
13645
13646 /*
13647 * Get the driver's phba structure from the dev_id and
13648 * assume the HBA is not interrupting.
13649 */
13650 phba = (struct lpfc_hba *)dev_id;
13651
13652 if (unlikely(!phba))
13653 return IRQ_NONE;
13654
13655 /*
13656 * Stuff needs to be attented to when this function is invoked as an
13657 * individual interrupt handler in MSI-X multi-message interrupt mode
13658 */
13659 if (phba->intr_type == MSIX) {
13660 /* Check device state for handling interrupt */
13661 if (lpfc_intr_state_check(phba))
13662 return IRQ_NONE;
13663 /* Need to read HA REG for slow-path events */
13664 spin_lock_irqsave(&phba->hbalock, iflag);
13665 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13666 goto unplug_error;
13667 /* If somebody is waiting to handle an eratt don't process it
13668 * here. The brdkill function will do this.
13669 */
13670 if (phba->link_flag & LS_IGNORE_ERATT)
13671 ha_copy &= ~HA_ERATT;
13672 /* Check the need for handling ERATT in interrupt handler */
13673 if (ha_copy & HA_ERATT) {
13674 if (test_and_set_bit(HBA_ERATT_HANDLED,
13675 &phba->hba_flag))
13676 /* ERATT polling has handled ERATT */
13677 ha_copy &= ~HA_ERATT;
13678 }
13679
13680 /*
13681 * If there is deferred error attention, do not check for any
13682 * interrupt.
13683 */
13684 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
13685 spin_unlock_irqrestore(&phba->hbalock, iflag);
13686 return IRQ_NONE;
13687 }
13688
13689 /* Clear up only attention source related to slow-path */
13690 if (lpfc_readl(phba->HCregaddr, &hc_copy))
13691 goto unplug_error;
13692
13693 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13694 HC_LAINT_ENA | HC_ERINT_ENA),
13695 phba->HCregaddr);
13696 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13697 phba->HAregaddr);
13698 writel(hc_copy, phba->HCregaddr);
13699 readl(phba->HAregaddr); /* flush */
13700 spin_unlock_irqrestore(&phba->hbalock, iflag);
13701 } else
13702 ha_copy = phba->ha_copy;
13703
13704 work_ha_copy = ha_copy & phba->work_ha_mask;
13705
13706 if (work_ha_copy) {
13707 if (work_ha_copy & HA_LATT) {
13708 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13709 /*
13710 * Turn off Link Attention interrupts
13711 * until CLEAR_LA done
13712 */
13713 spin_lock_irqsave(&phba->hbalock, iflag);
13714 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13715 if (lpfc_readl(phba->HCregaddr, &control))
13716 goto unplug_error;
13717 control &= ~HC_LAINT_ENA;
13718 writel(control, phba->HCregaddr);
13719 readl(phba->HCregaddr); /* flush */
13720 spin_unlock_irqrestore(&phba->hbalock, iflag);
13721 }
13722 else
13723 work_ha_copy &= ~HA_LATT;
13724 }
13725
13726 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13727 /*
13728 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13729 * the only slow ring.
13730 */
13731 status = (work_ha_copy &
13732 (HA_RXMASK << (4*LPFC_ELS_RING)));
13733 status >>= (4*LPFC_ELS_RING);
13734 if (status & HA_RXMASK) {
13735 spin_lock_irqsave(&phba->hbalock, iflag);
13736 if (lpfc_readl(phba->HCregaddr, &control))
13737 goto unplug_error;
13738
13739 lpfc_debugfs_slow_ring_trc(phba,
13740 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
13741 control, status,
13742 (uint32_t)phba->sli.slistat.sli_intr);
13743
13744 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13745 lpfc_debugfs_slow_ring_trc(phba,
13746 "ISR Disable ring:"
13747 "pwork:x%x hawork:x%x wait:x%x",
13748 phba->work_ha, work_ha_copy,
13749 (uint32_t)((unsigned long)
13750 &phba->work_waitq));
13751
13752 control &=
13753 ~(HC_R0INT_ENA << LPFC_ELS_RING);
13754 writel(control, phba->HCregaddr);
13755 readl(phba->HCregaddr); /* flush */
13756 }
13757 else {
13758 lpfc_debugfs_slow_ring_trc(phba,
13759 "ISR slow ring: pwork:"
13760 "x%x hawork:x%x wait:x%x",
13761 phba->work_ha, work_ha_copy,
13762 (uint32_t)((unsigned long)
13763 &phba->work_waitq));
13764 }
13765 spin_unlock_irqrestore(&phba->hbalock, iflag);
13766 }
13767 }
13768 spin_lock_irqsave(&phba->hbalock, iflag);
13769 if (work_ha_copy & HA_ERATT) {
13770 if (lpfc_sli_read_hs(phba))
13771 goto unplug_error;
13772 /*
13773 * Check if there is a deferred error condition
13774 * is active
13775 */
13776 if ((HS_FFER1 & phba->work_hs) &&
13777 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13778 HS_FFER6 | HS_FFER7 | HS_FFER8) &
13779 phba->work_hs)) {
13780 set_bit(DEFER_ERATT, &phba->hba_flag);
13781 /* Clear all interrupt enable conditions */
13782 writel(0, phba->HCregaddr);
13783 readl(phba->HCregaddr);
13784 }
13785 }
13786
13787 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13788 pmb = phba->sli.mbox_active;
13789 pmbox = &pmb->u.mb;
13790 mbox = phba->mbox;
13791 vport = pmb->vport;
13792
13793 /* First check out the status word */
13794 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13795 if (pmbox->mbxOwner != OWN_HOST) {
13796 spin_unlock_irqrestore(&phba->hbalock, iflag);
13797 /*
13798 * Stray Mailbox Interrupt, mbxCommand <cmd>
13799 * mbxStatus <status>
13800 */
13801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13802 "(%d):0304 Stray Mailbox "
13803 "Interrupt mbxCommand x%x "
13804 "mbxStatus x%x\n",
13805 (vport ? vport->vpi : 0),
13806 pmbox->mbxCommand,
13807 pmbox->mbxStatus);
13808 /* clear mailbox attention bit */
13809 work_ha_copy &= ~HA_MBATT;
13810 } else {
13811 phba->sli.mbox_active = NULL;
13812 spin_unlock_irqrestore(&phba->hbalock, iflag);
13813 phba->last_completion_time = jiffies;
13814 del_timer(&phba->sli.mbox_tmo);
13815 if (pmb->mbox_cmpl) {
13816 lpfc_sli_pcimem_bcopy(mbox, pmbox,
13817 MAILBOX_CMD_SIZE);
13818 if (pmb->out_ext_byte_len &&
13819 pmb->ext_buf)
13820 lpfc_sli_pcimem_bcopy(
13821 phba->mbox_ext,
13822 pmb->ext_buf,
13823 pmb->out_ext_byte_len);
13824 }
13825 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13826 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13827
13828 lpfc_debugfs_disc_trc(vport,
13829 LPFC_DISC_TRC_MBOX_VPORT,
13830 "MBOX dflt rpi: : "
13831 "status:x%x rpi:x%x",
13832 (uint32_t)pmbox->mbxStatus,
13833 pmbox->un.varWords[0], 0);
13834
13835 if (!pmbox->mbxStatus) {
13836 mp = pmb->ctx_buf;
13837 ndlp = pmb->ctx_ndlp;
13838
13839 /* Reg_LOGIN of dflt RPI was
13840 * successful. new lets get
13841 * rid of the RPI using the
13842 * same mbox buffer.
13843 */
13844 lpfc_unreg_login(phba,
13845 vport->vpi,
13846 pmbox->un.varWords[0],
13847 pmb);
13848 pmb->mbox_cmpl =
13849 lpfc_mbx_cmpl_dflt_rpi;
13850 pmb->ctx_buf = mp;
13851 pmb->ctx_ndlp = ndlp;
13852 pmb->vport = vport;
13853 rc = lpfc_sli_issue_mbox(phba,
13854 pmb,
13855 MBX_NOWAIT);
13856 if (rc != MBX_BUSY)
13857 lpfc_printf_log(phba,
13858 KERN_ERR,
13859 LOG_TRACE_EVENT,
13860 "0350 rc should have"
13861 "been MBX_BUSY\n");
13862 if (rc != MBX_NOT_FINISHED)
13863 goto send_current_mbox;
13864 }
13865 }
13866 spin_lock_irqsave(
13867 &phba->pport->work_port_lock,
13868 iflag);
13869 phba->pport->work_port_events &=
13870 ~WORKER_MBOX_TMO;
13871 spin_unlock_irqrestore(
13872 &phba->pport->work_port_lock,
13873 iflag);
13874
13875 /* Do NOT queue MBX_HEARTBEAT to the worker
13876 * thread for processing.
13877 */
13878 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13879 /* Process mbox now */
13880 phba->sli.mbox_active = NULL;
13881 phba->sli.sli_flag &=
13882 ~LPFC_SLI_MBOX_ACTIVE;
13883 if (pmb->mbox_cmpl)
13884 pmb->mbox_cmpl(phba, pmb);
13885 } else {
13886 /* Queue to worker thread to process */
13887 lpfc_mbox_cmpl_put(phba, pmb);
13888 }
13889 }
13890 } else
13891 spin_unlock_irqrestore(&phba->hbalock, iflag);
13892
13893 if ((work_ha_copy & HA_MBATT) &&
13894 (phba->sli.mbox_active == NULL)) {
13895 send_current_mbox:
13896 /* Process next mailbox command if there is one */
13897 do {
13898 rc = lpfc_sli_issue_mbox(phba, NULL,
13899 MBX_NOWAIT);
13900 } while (rc == MBX_NOT_FINISHED);
13901 if (rc != MBX_SUCCESS)
13902 lpfc_printf_log(phba, KERN_ERR,
13903 LOG_TRACE_EVENT,
13904 "0349 rc should be "
13905 "MBX_SUCCESS\n");
13906 }
13907
13908 spin_lock_irqsave(&phba->hbalock, iflag);
13909 phba->work_ha |= work_ha_copy;
13910 spin_unlock_irqrestore(&phba->hbalock, iflag);
13911 lpfc_worker_wake_up(phba);
13912 }
13913 return IRQ_HANDLED;
13914 unplug_error:
13915 spin_unlock_irqrestore(&phba->hbalock, iflag);
13916 return IRQ_HANDLED;
13917
13918 } /* lpfc_sli_sp_intr_handler */
13919
13920 /**
13921 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13922 * @irq: Interrupt number.
13923 * @dev_id: The device context pointer.
13924 *
13925 * This function is directly called from the PCI layer as an interrupt
13926 * service routine when device with SLI-3 interface spec is enabled with
13927 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13928 * ring event in the HBA. However, when the device is enabled with either
13929 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13930 * device-level interrupt handler. When the PCI slot is in error recovery
13931 * or the HBA is undergoing initialization, the interrupt handler will not
13932 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13933 * the intrrupt context. This function is called without any lock held.
13934 * It gets the hbalock to access and update SLI data structures.
13935 *
13936 * This function returns IRQ_HANDLED when interrupt is handled else it
13937 * returns IRQ_NONE.
13938 **/
13939 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)13940 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13941 {
13942 struct lpfc_hba *phba;
13943 uint32_t ha_copy;
13944 unsigned long status;
13945 unsigned long iflag;
13946 struct lpfc_sli_ring *pring;
13947
13948 /* Get the driver's phba structure from the dev_id and
13949 * assume the HBA is not interrupting.
13950 */
13951 phba = (struct lpfc_hba *) dev_id;
13952
13953 if (unlikely(!phba))
13954 return IRQ_NONE;
13955
13956 /*
13957 * Stuff needs to be attented to when this function is invoked as an
13958 * individual interrupt handler in MSI-X multi-message interrupt mode
13959 */
13960 if (phba->intr_type == MSIX) {
13961 /* Check device state for handling interrupt */
13962 if (lpfc_intr_state_check(phba))
13963 return IRQ_NONE;
13964 /* Need to read HA REG for FCP ring and other ring events */
13965 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13966 return IRQ_HANDLED;
13967
13968 /*
13969 * If there is deferred error attention, do not check for
13970 * any interrupt.
13971 */
13972 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag)))
13973 return IRQ_NONE;
13974
13975 /* Clear up only attention source related to fast-path */
13976 spin_lock_irqsave(&phba->hbalock, iflag);
13977 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13978 phba->HAregaddr);
13979 readl(phba->HAregaddr); /* flush */
13980 spin_unlock_irqrestore(&phba->hbalock, iflag);
13981 } else
13982 ha_copy = phba->ha_copy;
13983
13984 /*
13985 * Process all events on FCP ring. Take the optimized path for FCP IO.
13986 */
13987 ha_copy &= ~(phba->work_ha_mask);
13988
13989 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13990 status >>= (4*LPFC_FCP_RING);
13991 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13992 if (status & HA_RXMASK)
13993 lpfc_sli_handle_fast_ring_event(phba, pring, status);
13994
13995 if (phba->cfg_multi_ring_support == 2) {
13996 /*
13997 * Process all events on extra ring. Take the optimized path
13998 * for extra ring IO.
13999 */
14000 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14001 status >>= (4*LPFC_EXTRA_RING);
14002 if (status & HA_RXMASK) {
14003 lpfc_sli_handle_fast_ring_event(phba,
14004 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
14005 status);
14006 }
14007 }
14008 return IRQ_HANDLED;
14009 } /* lpfc_sli_fp_intr_handler */
14010
14011 /**
14012 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
14013 * @irq: Interrupt number.
14014 * @dev_id: The device context pointer.
14015 *
14016 * This function is the HBA device-level interrupt handler to device with
14017 * SLI-3 interface spec, called from the PCI layer when either MSI or
14018 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14019 * requires driver attention. This function invokes the slow-path interrupt
14020 * attention handling function and fast-path interrupt attention handling
14021 * function in turn to process the relevant HBA attention events. This
14022 * function is called without any lock held. It gets the hbalock to access
14023 * and update SLI data structures.
14024 *
14025 * This function returns IRQ_HANDLED when interrupt is handled, else it
14026 * returns IRQ_NONE.
14027 **/
14028 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)14029 lpfc_sli_intr_handler(int irq, void *dev_id)
14030 {
14031 struct lpfc_hba *phba;
14032 irqreturn_t sp_irq_rc, fp_irq_rc;
14033 unsigned long status1, status2;
14034 uint32_t hc_copy;
14035
14036 /*
14037 * Get the driver's phba structure from the dev_id and
14038 * assume the HBA is not interrupting.
14039 */
14040 phba = (struct lpfc_hba *) dev_id;
14041
14042 if (unlikely(!phba))
14043 return IRQ_NONE;
14044
14045 /* Check device state for handling interrupt */
14046 if (lpfc_intr_state_check(phba))
14047 return IRQ_NONE;
14048
14049 spin_lock(&phba->hbalock);
14050 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14051 spin_unlock(&phba->hbalock);
14052 return IRQ_HANDLED;
14053 }
14054
14055 if (unlikely(!phba->ha_copy)) {
14056 spin_unlock(&phba->hbalock);
14057 return IRQ_NONE;
14058 } else if (phba->ha_copy & HA_ERATT) {
14059 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag))
14060 /* ERATT polling has handled ERATT */
14061 phba->ha_copy &= ~HA_ERATT;
14062 }
14063
14064 /*
14065 * If there is deferred error attention, do not check for any interrupt.
14066 */
14067 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) {
14068 spin_unlock(&phba->hbalock);
14069 return IRQ_NONE;
14070 }
14071
14072 /* Clear attention sources except link and error attentions */
14073 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14074 spin_unlock(&phba->hbalock);
14075 return IRQ_HANDLED;
14076 }
14077 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14078 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14079 phba->HCregaddr);
14080 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14081 writel(hc_copy, phba->HCregaddr);
14082 readl(phba->HAregaddr); /* flush */
14083 spin_unlock(&phba->hbalock);
14084
14085 /*
14086 * Invokes slow-path host attention interrupt handling as appropriate.
14087 */
14088
14089 /* status of events with mailbox and link attention */
14090 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14091
14092 /* status of events with ELS ring */
14093 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
14094 status2 >>= (4*LPFC_ELS_RING);
14095
14096 if (status1 || (status2 & HA_RXMASK))
14097 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14098 else
14099 sp_irq_rc = IRQ_NONE;
14100
14101 /*
14102 * Invoke fast-path host attention interrupt handling as appropriate.
14103 */
14104
14105 /* status of events with FCP ring */
14106 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14107 status1 >>= (4*LPFC_FCP_RING);
14108
14109 /* status of events with extra ring */
14110 if (phba->cfg_multi_ring_support == 2) {
14111 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14112 status2 >>= (4*LPFC_EXTRA_RING);
14113 } else
14114 status2 = 0;
14115
14116 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14117 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14118 else
14119 fp_irq_rc = IRQ_NONE;
14120
14121 /* Return device-level interrupt handling status */
14122 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14123 } /* lpfc_sli_intr_handler */
14124
14125 /**
14126 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14127 * @phba: pointer to lpfc hba data structure.
14128 *
14129 * This routine is invoked by the worker thread to process all the pending
14130 * SLI4 els abort xri events.
14131 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)14132 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14133 {
14134 struct lpfc_cq_event *cq_event;
14135 unsigned long iflags;
14136
14137 /* First, declare the els xri abort event has been handled */
14138 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14139
14140 /* Now, handle all the els xri abort events */
14141 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14142 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14143 /* Get the first event from the head of the event queue */
14144 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14145 cq_event, struct lpfc_cq_event, list);
14146 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14147 iflags);
14148 /* Notify aborted XRI for ELS work queue */
14149 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14150
14151 /* Free the event processed back to the free pool */
14152 lpfc_sli4_cq_event_release(phba, cq_event);
14153 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14154 iflags);
14155 }
14156 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14157 }
14158
14159 /**
14160 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14161 * @phba: Pointer to HBA context object.
14162 * @irspiocbq: Pointer to work-queue completion queue entry.
14163 *
14164 * This routine handles an ELS work-queue completion event and construct
14165 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14166 * discovery engine to handle.
14167 *
14168 * Return: Pointer to the receive IOCBQ, NULL otherwise.
14169 **/
14170 static struct lpfc_iocbq *
lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)14171 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14172 struct lpfc_iocbq *irspiocbq)
14173 {
14174 struct lpfc_sli_ring *pring;
14175 struct lpfc_iocbq *cmdiocbq;
14176 struct lpfc_wcqe_complete *wcqe;
14177 unsigned long iflags;
14178
14179 pring = lpfc_phba_elsring(phba);
14180 if (unlikely(!pring))
14181 return NULL;
14182
14183 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14184 spin_lock_irqsave(&pring->ring_lock, iflags);
14185 pring->stats.iocb_event++;
14186 /* Look up the ELS command IOCB and create pseudo response IOCB */
14187 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14188 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14189 if (unlikely(!cmdiocbq)) {
14190 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14191 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14192 "0386 ELS complete with no corresponding "
14193 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14194 wcqe->word0, wcqe->total_data_placed,
14195 wcqe->parameter, wcqe->word3);
14196 lpfc_sli_release_iocbq(phba, irspiocbq);
14197 return NULL;
14198 }
14199
14200 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14201 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14202
14203 /* Put the iocb back on the txcmplq */
14204 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14205 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14206
14207 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14208 spin_lock_irqsave(&phba->hbalock, iflags);
14209 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14210 spin_unlock_irqrestore(&phba->hbalock, iflags);
14211 }
14212
14213 return irspiocbq;
14214 }
14215
14216 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)14217 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14218 {
14219 struct lpfc_cq_event *cq_event;
14220
14221 /* Allocate a new internal CQ_EVENT entry */
14222 cq_event = lpfc_sli4_cq_event_alloc(phba);
14223 if (!cq_event) {
14224 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14225 "0602 Failed to alloc CQ_EVENT entry\n");
14226 return NULL;
14227 }
14228
14229 /* Move the CQE into the event */
14230 memcpy(&cq_event->cqe, entry, size);
14231 return cq_event;
14232 }
14233
14234 /**
14235 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14236 * @phba: Pointer to HBA context object.
14237 * @mcqe: Pointer to mailbox completion queue entry.
14238 *
14239 * This routine process a mailbox completion queue entry with asynchronous
14240 * event.
14241 *
14242 * Return: true if work posted to worker thread, otherwise false.
14243 **/
14244 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14245 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14246 {
14247 struct lpfc_cq_event *cq_event;
14248 unsigned long iflags;
14249
14250 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14251 "0392 Async Event: word0:x%x, word1:x%x, "
14252 "word2:x%x, word3:x%x\n", mcqe->word0,
14253 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14254
14255 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14256 if (!cq_event)
14257 return false;
14258
14259 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14260 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14261 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14262
14263 /* Set the async event flag */
14264 set_bit(ASYNC_EVENT, &phba->hba_flag);
14265
14266 return true;
14267 }
14268
14269 /**
14270 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14271 * @phba: Pointer to HBA context object.
14272 * @mcqe: Pointer to mailbox completion queue entry.
14273 *
14274 * This routine process a mailbox completion queue entry with mailbox
14275 * completion event.
14276 *
14277 * Return: true if work posted to worker thread, otherwise false.
14278 **/
14279 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14280 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14281 {
14282 uint32_t mcqe_status;
14283 MAILBOX_t *mbox, *pmbox;
14284 struct lpfc_mqe *mqe;
14285 struct lpfc_vport *vport;
14286 struct lpfc_nodelist *ndlp;
14287 struct lpfc_dmabuf *mp;
14288 unsigned long iflags;
14289 LPFC_MBOXQ_t *pmb;
14290 bool workposted = false;
14291 int rc;
14292
14293 /* If not a mailbox complete MCQE, out by checking mailbox consume */
14294 if (!bf_get(lpfc_trailer_completed, mcqe))
14295 goto out_no_mqe_complete;
14296
14297 /* Get the reference to the active mbox command */
14298 spin_lock_irqsave(&phba->hbalock, iflags);
14299 pmb = phba->sli.mbox_active;
14300 if (unlikely(!pmb)) {
14301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14302 "1832 No pending MBOX command to handle\n");
14303 spin_unlock_irqrestore(&phba->hbalock, iflags);
14304 goto out_no_mqe_complete;
14305 }
14306 spin_unlock_irqrestore(&phba->hbalock, iflags);
14307 mqe = &pmb->u.mqe;
14308 pmbox = (MAILBOX_t *)&pmb->u.mqe;
14309 mbox = phba->mbox;
14310 vport = pmb->vport;
14311
14312 /* Reset heartbeat timer */
14313 phba->last_completion_time = jiffies;
14314 del_timer(&phba->sli.mbox_tmo);
14315
14316 /* Move mbox data to caller's mailbox region, do endian swapping */
14317 if (pmb->mbox_cmpl && mbox)
14318 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14319
14320 /*
14321 * For mcqe errors, conditionally move a modified error code to
14322 * the mbox so that the error will not be missed.
14323 */
14324 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14325 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14326 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14327 bf_set(lpfc_mqe_status, mqe,
14328 (LPFC_MBX_ERROR_RANGE | mcqe_status));
14329 }
14330 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14331 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14332 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14333 "MBOX dflt rpi: status:x%x rpi:x%x",
14334 mcqe_status,
14335 pmbox->un.varWords[0], 0);
14336 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14337 mp = pmb->ctx_buf;
14338 ndlp = pmb->ctx_ndlp;
14339
14340 /* Reg_LOGIN of dflt RPI was successful. Mark the
14341 * node as having an UNREG_LOGIN in progress to stop
14342 * an unsolicited PLOGI from the same NPortId from
14343 * starting another mailbox transaction.
14344 */
14345 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag);
14346 lpfc_unreg_login(phba, vport->vpi,
14347 pmbox->un.varWords[0], pmb);
14348 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14349 pmb->ctx_buf = mp;
14350
14351 /* No reference taken here. This is a default
14352 * RPI reg/immediate unreg cycle. The reference was
14353 * taken in the reg rpi path and is released when
14354 * this mailbox completes.
14355 */
14356 pmb->ctx_ndlp = ndlp;
14357 pmb->vport = vport;
14358 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14359 if (rc != MBX_BUSY)
14360 lpfc_printf_log(phba, KERN_ERR,
14361 LOG_TRACE_EVENT,
14362 "0385 rc should "
14363 "have been MBX_BUSY\n");
14364 if (rc != MBX_NOT_FINISHED)
14365 goto send_current_mbox;
14366 }
14367 }
14368 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14369 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14370 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14371
14372 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14373 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14374 spin_lock_irqsave(&phba->hbalock, iflags);
14375 /* Release the mailbox command posting token */
14376 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14377 phba->sli.mbox_active = NULL;
14378 if (bf_get(lpfc_trailer_consumed, mcqe))
14379 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14380 spin_unlock_irqrestore(&phba->hbalock, iflags);
14381
14382 /* Post the next mbox command, if there is one */
14383 lpfc_sli4_post_async_mbox(phba);
14384
14385 /* Process cmpl now */
14386 if (pmb->mbox_cmpl)
14387 pmb->mbox_cmpl(phba, pmb);
14388 return false;
14389 }
14390
14391 /* There is mailbox completion work to queue to the worker thread */
14392 spin_lock_irqsave(&phba->hbalock, iflags);
14393 __lpfc_mbox_cmpl_put(phba, pmb);
14394 phba->work_ha |= HA_MBATT;
14395 spin_unlock_irqrestore(&phba->hbalock, iflags);
14396 workposted = true;
14397
14398 send_current_mbox:
14399 spin_lock_irqsave(&phba->hbalock, iflags);
14400 /* Release the mailbox command posting token */
14401 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14402 /* Setting active mailbox pointer need to be in sync to flag clear */
14403 phba->sli.mbox_active = NULL;
14404 if (bf_get(lpfc_trailer_consumed, mcqe))
14405 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14406 spin_unlock_irqrestore(&phba->hbalock, iflags);
14407 /* Wake up worker thread to post the next pending mailbox command */
14408 lpfc_worker_wake_up(phba);
14409 return workposted;
14410
14411 out_no_mqe_complete:
14412 spin_lock_irqsave(&phba->hbalock, iflags);
14413 if (bf_get(lpfc_trailer_consumed, mcqe))
14414 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14415 spin_unlock_irqrestore(&phba->hbalock, iflags);
14416 return false;
14417 }
14418
14419 /**
14420 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14421 * @phba: Pointer to HBA context object.
14422 * @cq: Pointer to associated CQ
14423 * @cqe: Pointer to mailbox completion queue entry.
14424 *
14425 * This routine process a mailbox completion queue entry, it invokes the
14426 * proper mailbox complete handling or asynchronous event handling routine
14427 * according to the MCQE's async bit.
14428 *
14429 * Return: true if work posted to worker thread, otherwise false.
14430 **/
14431 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14432 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14433 struct lpfc_cqe *cqe)
14434 {
14435 struct lpfc_mcqe mcqe;
14436 bool workposted;
14437
14438 cq->CQ_mbox++;
14439
14440 /* Copy the mailbox MCQE and convert endian order as needed */
14441 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14442
14443 /* Invoke the proper event handling routine */
14444 if (!bf_get(lpfc_trailer_async, &mcqe))
14445 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14446 else
14447 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14448 return workposted;
14449 }
14450
14451 /**
14452 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14453 * @phba: Pointer to HBA context object.
14454 * @cq: Pointer to associated CQ
14455 * @wcqe: Pointer to work-queue completion queue entry.
14456 *
14457 * This routine handles an ELS work-queue completion event.
14458 *
14459 * Return: true if work posted to worker thread, otherwise false.
14460 **/
14461 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)14462 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14463 struct lpfc_wcqe_complete *wcqe)
14464 {
14465 struct lpfc_iocbq *irspiocbq;
14466 unsigned long iflags;
14467 struct lpfc_sli_ring *pring = cq->pring;
14468 int txq_cnt = 0;
14469 int txcmplq_cnt = 0;
14470
14471 /* Check for response status */
14472 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14473 /* Log the error status */
14474 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14475 "0357 ELS CQE error: status=x%x: "
14476 "CQE: %08x %08x %08x %08x\n",
14477 bf_get(lpfc_wcqe_c_status, wcqe),
14478 wcqe->word0, wcqe->total_data_placed,
14479 wcqe->parameter, wcqe->word3);
14480 }
14481
14482 /* Get an irspiocbq for later ELS response processing use */
14483 irspiocbq = lpfc_sli_get_iocbq(phba);
14484 if (!irspiocbq) {
14485 if (!list_empty(&pring->txq))
14486 txq_cnt++;
14487 if (!list_empty(&pring->txcmplq))
14488 txcmplq_cnt++;
14489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14490 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14491 "els_txcmplq_cnt=%d\n",
14492 txq_cnt, phba->iocb_cnt,
14493 txcmplq_cnt);
14494 return false;
14495 }
14496
14497 /* Save off the slow-path queue event for work thread to process */
14498 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14499 spin_lock_irqsave(&phba->hbalock, iflags);
14500 list_add_tail(&irspiocbq->cq_event.list,
14501 &phba->sli4_hba.sp_queue_event);
14502 spin_unlock_irqrestore(&phba->hbalock, iflags);
14503 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14504
14505 return true;
14506 }
14507
14508 /**
14509 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14510 * @phba: Pointer to HBA context object.
14511 * @wcqe: Pointer to work-queue completion queue entry.
14512 *
14513 * This routine handles slow-path WQ entry consumed event by invoking the
14514 * proper WQ release routine to the slow-path WQ.
14515 **/
14516 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)14517 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14518 struct lpfc_wcqe_release *wcqe)
14519 {
14520 /* sanity check on queue memory */
14521 if (unlikely(!phba->sli4_hba.els_wq))
14522 return;
14523 /* Check for the slow-path ELS work queue */
14524 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14525 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14526 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14527 else
14528 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14529 "2579 Slow-path wqe consume event carries "
14530 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14531 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14532 phba->sli4_hba.els_wq->queue_id);
14533 }
14534
14535 /**
14536 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14537 * @phba: Pointer to HBA context object.
14538 * @cq: Pointer to a WQ completion queue.
14539 * @wcqe: Pointer to work-queue completion queue entry.
14540 *
14541 * This routine handles an XRI abort event.
14542 *
14543 * Return: true if work posted to worker thread, otherwise false.
14544 **/
14545 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)14546 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14547 struct lpfc_queue *cq,
14548 struct sli4_wcqe_xri_aborted *wcqe)
14549 {
14550 bool workposted = false;
14551 struct lpfc_cq_event *cq_event;
14552 unsigned long iflags;
14553
14554 switch (cq->subtype) {
14555 case LPFC_IO:
14556 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14557 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14558 /* Notify aborted XRI for NVME work queue */
14559 if (phba->nvmet_support)
14560 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14561 }
14562 workposted = false;
14563 break;
14564 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14565 case LPFC_ELS:
14566 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14567 if (!cq_event) {
14568 workposted = false;
14569 break;
14570 }
14571 cq_event->hdwq = cq->hdwq;
14572 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14573 iflags);
14574 list_add_tail(&cq_event->list,
14575 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14576 /* Set the els xri abort event flag */
14577 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag);
14578 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14579 iflags);
14580 workposted = true;
14581 break;
14582 default:
14583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14584 "0603 Invalid CQ subtype %d: "
14585 "%08x %08x %08x %08x\n",
14586 cq->subtype, wcqe->word0, wcqe->parameter,
14587 wcqe->word2, wcqe->word3);
14588 workposted = false;
14589 break;
14590 }
14591 return workposted;
14592 }
14593
14594 #define FC_RCTL_MDS_DIAGS 0xF4
14595
14596 /**
14597 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14598 * @phba: Pointer to HBA context object.
14599 * @rcqe: Pointer to receive-queue completion queue entry.
14600 *
14601 * This routine process a receive-queue completion queue entry.
14602 *
14603 * Return: true if work posted to worker thread, otherwise false.
14604 **/
14605 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)14606 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14607 {
14608 bool workposted = false;
14609 struct fc_frame_header *fc_hdr;
14610 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14611 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14612 struct lpfc_nvmet_tgtport *tgtp;
14613 struct hbq_dmabuf *dma_buf;
14614 uint32_t status, rq_id;
14615 unsigned long iflags;
14616
14617 /* sanity check on queue memory */
14618 if (unlikely(!hrq) || unlikely(!drq))
14619 return workposted;
14620
14621 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14622 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14623 else
14624 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14625 if (rq_id != hrq->queue_id)
14626 goto out;
14627
14628 status = bf_get(lpfc_rcqe_status, rcqe);
14629 switch (status) {
14630 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14632 "2537 Receive Frame Truncated!!\n");
14633 fallthrough;
14634 case FC_STATUS_RQ_SUCCESS:
14635 spin_lock_irqsave(&phba->hbalock, iflags);
14636 lpfc_sli4_rq_release(hrq, drq);
14637 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14638 if (!dma_buf) {
14639 hrq->RQ_no_buf_found++;
14640 spin_unlock_irqrestore(&phba->hbalock, iflags);
14641 goto out;
14642 }
14643 hrq->RQ_rcv_buf++;
14644 hrq->RQ_buf_posted--;
14645 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14646
14647 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14648
14649 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14650 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14651 spin_unlock_irqrestore(&phba->hbalock, iflags);
14652 /* Handle MDS Loopback frames */
14653 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
14654 lpfc_sli4_handle_mds_loopback(phba->pport,
14655 dma_buf);
14656 else
14657 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14658 break;
14659 }
14660
14661 /* save off the frame for the work thread to process */
14662 list_add_tail(&dma_buf->cq_event.list,
14663 &phba->sli4_hba.sp_queue_event);
14664 spin_unlock_irqrestore(&phba->hbalock, iflags);
14665 /* Frame received */
14666 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
14667 workposted = true;
14668 break;
14669 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14670 if (phba->nvmet_support) {
14671 tgtp = phba->targetport->private;
14672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14673 "6402 RQE Error x%x, posted %d err_cnt "
14674 "%d: %x %x %x\n",
14675 status, hrq->RQ_buf_posted,
14676 hrq->RQ_no_posted_buf,
14677 atomic_read(&tgtp->rcv_fcp_cmd_in),
14678 atomic_read(&tgtp->rcv_fcp_cmd_out),
14679 atomic_read(&tgtp->xmt_fcp_release));
14680 }
14681 fallthrough;
14682
14683 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14684 hrq->RQ_no_posted_buf++;
14685 /* Post more buffers if possible */
14686 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag);
14687 workposted = true;
14688 break;
14689 case FC_STATUS_RQ_DMA_FAILURE:
14690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14691 "2564 RQE DMA Error x%x, x%08x x%08x x%08x "
14692 "x%08x\n",
14693 status, rcqe->word0, rcqe->word1,
14694 rcqe->word2, rcqe->word3);
14695
14696 /* If IV set, no further recovery */
14697 if (bf_get(lpfc_rcqe_iv, rcqe))
14698 break;
14699
14700 /* recycle consumed resource */
14701 spin_lock_irqsave(&phba->hbalock, iflags);
14702 lpfc_sli4_rq_release(hrq, drq);
14703 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14704 if (!dma_buf) {
14705 hrq->RQ_no_buf_found++;
14706 spin_unlock_irqrestore(&phba->hbalock, iflags);
14707 break;
14708 }
14709 hrq->RQ_rcv_buf++;
14710 hrq->RQ_buf_posted--;
14711 spin_unlock_irqrestore(&phba->hbalock, iflags);
14712 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14713 break;
14714 default:
14715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14716 "2565 Unexpected RQE Status x%x, w0-3 x%08x "
14717 "x%08x x%08x x%08x\n",
14718 status, rcqe->word0, rcqe->word1,
14719 rcqe->word2, rcqe->word3);
14720 break;
14721 }
14722 out:
14723 return workposted;
14724 }
14725
14726 /**
14727 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14728 * @phba: Pointer to HBA context object.
14729 * @cq: Pointer to the completion queue.
14730 * @cqe: Pointer to a completion queue entry.
14731 *
14732 * This routine process a slow-path work-queue or receive queue completion queue
14733 * entry.
14734 *
14735 * Return: true if work posted to worker thread, otherwise false.
14736 **/
14737 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14738 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14739 struct lpfc_cqe *cqe)
14740 {
14741 struct lpfc_cqe cqevt;
14742 bool workposted = false;
14743
14744 /* Copy the work queue CQE and convert endian order if needed */
14745 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14746
14747 /* Check and process for different type of WCQE and dispatch */
14748 switch (bf_get(lpfc_cqe_code, &cqevt)) {
14749 case CQE_CODE_COMPL_WQE:
14750 /* Process the WQ/RQ complete event */
14751 phba->last_completion_time = jiffies;
14752 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14753 (struct lpfc_wcqe_complete *)&cqevt);
14754 break;
14755 case CQE_CODE_RELEASE_WQE:
14756 /* Process the WQ release event */
14757 lpfc_sli4_sp_handle_rel_wcqe(phba,
14758 (struct lpfc_wcqe_release *)&cqevt);
14759 break;
14760 case CQE_CODE_XRI_ABORTED:
14761 /* Process the WQ XRI abort event */
14762 phba->last_completion_time = jiffies;
14763 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14764 (struct sli4_wcqe_xri_aborted *)&cqevt);
14765 break;
14766 case CQE_CODE_RECEIVE:
14767 case CQE_CODE_RECEIVE_V1:
14768 /* Process the RQ event */
14769 phba->last_completion_time = jiffies;
14770 workposted = lpfc_sli4_sp_handle_rcqe(phba,
14771 (struct lpfc_rcqe *)&cqevt);
14772 break;
14773 default:
14774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14775 "0388 Not a valid WCQE code: x%x\n",
14776 bf_get(lpfc_cqe_code, &cqevt));
14777 break;
14778 }
14779 return workposted;
14780 }
14781
14782 /**
14783 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14784 * @phba: Pointer to HBA context object.
14785 * @eqe: Pointer to fast-path event queue entry.
14786 * @speq: Pointer to slow-path event queue.
14787 *
14788 * This routine process a event queue entry from the slow-path event queue.
14789 * It will check the MajorCode and MinorCode to determine this is for a
14790 * completion event on a completion queue, if not, an error shall be logged
14791 * and just return. Otherwise, it will get to the corresponding completion
14792 * queue and process all the entries on that completion queue, rearm the
14793 * completion queue, and then return.
14794 *
14795 **/
14796 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)14797 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14798 struct lpfc_queue *speq)
14799 {
14800 struct lpfc_queue *cq = NULL, *childq;
14801 uint16_t cqid;
14802 int ret = 0;
14803
14804 /* Get the reference to the corresponding CQ */
14805 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14806
14807 list_for_each_entry(childq, &speq->child_list, list) {
14808 if (childq->queue_id == cqid) {
14809 cq = childq;
14810 break;
14811 }
14812 }
14813 if (unlikely(!cq)) {
14814 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14816 "0365 Slow-path CQ identifier "
14817 "(%d) does not exist\n", cqid);
14818 return;
14819 }
14820
14821 /* Save EQ associated with this CQ */
14822 cq->assoc_qp = speq;
14823
14824 if (is_kdump_kernel())
14825 ret = queue_work(phba->wq, &cq->spwork);
14826 else
14827 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14828
14829 if (!ret)
14830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14831 "0390 Cannot schedule queue work "
14832 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14833 cqid, cq->queue_id, raw_smp_processor_id());
14834 }
14835
14836 /**
14837 * __lpfc_sli4_process_cq - Process elements of a CQ
14838 * @phba: Pointer to HBA context object.
14839 * @cq: Pointer to CQ to be processed
14840 * @handler: Routine to process each cqe
14841 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14842 *
14843 * This routine processes completion queue entries in a CQ. While a valid
14844 * queue element is found, the handler is called. During processing checks
14845 * are made for periodic doorbell writes to let the hardware know of
14846 * element consumption.
14847 *
14848 * If the max limit on cqes to process is hit, or there are no more valid
14849 * entries, the loop stops. If we processed a sufficient number of elements,
14850 * meaning there is sufficient load, rather than rearming and generating
14851 * another interrupt, a cq rescheduling delay will be set. A delay of 0
14852 * indicates no rescheduling.
14853 *
14854 * Returns True if work scheduled, False otherwise.
14855 **/
14856 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay)14857 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14858 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14859 struct lpfc_cqe *), unsigned long *delay)
14860 {
14861 struct lpfc_cqe *cqe;
14862 bool workposted = false;
14863 int count = 0, consumed = 0;
14864 bool arm = true;
14865
14866 /* default - no reschedule */
14867 *delay = 0;
14868
14869 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14870 goto rearm_and_exit;
14871
14872 /* Process all the entries to the CQ */
14873 cq->q_flag = 0;
14874 cqe = lpfc_sli4_cq_get(cq);
14875 while (cqe) {
14876 workposted |= handler(phba, cq, cqe);
14877 __lpfc_sli4_consume_cqe(phba, cq, cqe);
14878
14879 consumed++;
14880 if (!(++count % cq->max_proc_limit))
14881 break;
14882
14883 if (!(count % cq->notify_interval)) {
14884 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14885 LPFC_QUEUE_NOARM);
14886 consumed = 0;
14887 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14888 }
14889
14890 if (count == LPFC_NVMET_CQ_NOTIFY)
14891 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14892
14893 cqe = lpfc_sli4_cq_get(cq);
14894 }
14895 if (count >= phba->cfg_cq_poll_threshold) {
14896 *delay = 1;
14897 arm = false;
14898 }
14899
14900 /* Track the max number of CQEs processed in 1 EQ */
14901 if (count > cq->CQ_max_cqe)
14902 cq->CQ_max_cqe = count;
14903
14904 cq->assoc_qp->EQ_cqe_cnt += count;
14905
14906 /* Catch the no cq entry condition */
14907 if (unlikely(count == 0))
14908 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14909 "0369 No entry from completion queue "
14910 "qid=%d\n", cq->queue_id);
14911
14912 xchg(&cq->queue_claimed, 0);
14913
14914 rearm_and_exit:
14915 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14916 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14917
14918 return workposted;
14919 }
14920
14921 /**
14922 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14923 * @cq: pointer to CQ to process
14924 *
14925 * This routine calls the cq processing routine with a handler specific
14926 * to the type of queue bound to it.
14927 *
14928 * The CQ routine returns two values: the first is the calling status,
14929 * which indicates whether work was queued to the background discovery
14930 * thread. If true, the routine should wakeup the discovery thread;
14931 * the second is the delay parameter. If non-zero, rather than rearming
14932 * the CQ and yet another interrupt, the CQ handler should be queued so
14933 * that it is processed in a subsequent polling action. The value of
14934 * the delay indicates when to reschedule it.
14935 **/
14936 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)14937 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14938 {
14939 struct lpfc_hba *phba = cq->phba;
14940 unsigned long delay;
14941 bool workposted = false;
14942 int ret = 0;
14943
14944 /* Process and rearm the CQ */
14945 switch (cq->type) {
14946 case LPFC_MCQ:
14947 workposted |= __lpfc_sli4_process_cq(phba, cq,
14948 lpfc_sli4_sp_handle_mcqe,
14949 &delay);
14950 break;
14951 case LPFC_WCQ:
14952 if (cq->subtype == LPFC_IO)
14953 workposted |= __lpfc_sli4_process_cq(phba, cq,
14954 lpfc_sli4_fp_handle_cqe,
14955 &delay);
14956 else
14957 workposted |= __lpfc_sli4_process_cq(phba, cq,
14958 lpfc_sli4_sp_handle_cqe,
14959 &delay);
14960 break;
14961 default:
14962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14963 "0370 Invalid completion queue type (%d)\n",
14964 cq->type);
14965 return;
14966 }
14967
14968 if (delay) {
14969 if (is_kdump_kernel())
14970 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14971 delay);
14972 else
14973 ret = queue_delayed_work_on(cq->chann, phba->wq,
14974 &cq->sched_spwork, delay);
14975 if (!ret)
14976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14977 "0394 Cannot schedule queue work "
14978 "for cqid=%d on CPU %d\n",
14979 cq->queue_id, cq->chann);
14980 }
14981
14982 /* wake up worker thread if there are works to be done */
14983 if (workposted)
14984 lpfc_worker_wake_up(phba);
14985 }
14986
14987 /**
14988 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14989 * interrupt
14990 * @work: pointer to work element
14991 *
14992 * translates from the work handler and calls the slow-path handler.
14993 **/
14994 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)14995 lpfc_sli4_sp_process_cq(struct work_struct *work)
14996 {
14997 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14998
14999 __lpfc_sli4_sp_process_cq(cq);
15000 }
15001
15002 /**
15003 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
15004 * @work: pointer to work element
15005 *
15006 * translates from the work handler and calls the slow-path handler.
15007 **/
15008 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)15009 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
15010 {
15011 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15012 struct lpfc_queue, sched_spwork);
15013
15014 __lpfc_sli4_sp_process_cq(cq);
15015 }
15016
15017 /**
15018 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
15019 * @phba: Pointer to HBA context object.
15020 * @cq: Pointer to associated CQ
15021 * @wcqe: Pointer to work-queue completion queue entry.
15022 *
15023 * This routine process a fast-path work queue completion entry from fast-path
15024 * event queue for FCP command response completion.
15025 **/
15026 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)15027 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15028 struct lpfc_wcqe_complete *wcqe)
15029 {
15030 struct lpfc_sli_ring *pring = cq->pring;
15031 struct lpfc_iocbq *cmdiocbq;
15032 unsigned long iflags;
15033
15034 /* Check for response status */
15035 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15036 /* If resource errors reported from HBA, reduce queue
15037 * depth of the SCSI device.
15038 */
15039 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15040 IOSTAT_LOCAL_REJECT)) &&
15041 ((wcqe->parameter & IOERR_PARAM_MASK) ==
15042 IOERR_NO_RESOURCES))
15043 phba->lpfc_rampdown_queue_depth(phba);
15044
15045 /* Log the cmpl status */
15046 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15047 "0373 FCP CQE cmpl: status=x%x: "
15048 "CQE: %08x %08x %08x %08x\n",
15049 bf_get(lpfc_wcqe_c_status, wcqe),
15050 wcqe->word0, wcqe->total_data_placed,
15051 wcqe->parameter, wcqe->word3);
15052 }
15053
15054 /* Look up the FCP command IOCB and create pseudo response IOCB */
15055 spin_lock_irqsave(&pring->ring_lock, iflags);
15056 pring->stats.iocb_event++;
15057 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15058 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15059 spin_unlock_irqrestore(&pring->ring_lock, iflags);
15060 if (unlikely(!cmdiocbq)) {
15061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15062 "0374 FCP complete with no corresponding "
15063 "cmdiocb: iotag (%d)\n",
15064 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15065 return;
15066 }
15067 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15068 cmdiocbq->isr_timestamp = cq->isr_timestamp;
15069 #endif
15070 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15071 spin_lock_irqsave(&phba->hbalock, iflags);
15072 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15073 spin_unlock_irqrestore(&phba->hbalock, iflags);
15074 }
15075
15076 if (cmdiocbq->cmd_cmpl) {
15077 /* For FCP the flag is cleared in cmd_cmpl */
15078 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15079 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15080 spin_lock_irqsave(&phba->hbalock, iflags);
15081 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15082 spin_unlock_irqrestore(&phba->hbalock, iflags);
15083 }
15084
15085 /* Pass the cmd_iocb and the wcqe to the upper layer */
15086 memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15087 sizeof(struct lpfc_wcqe_complete));
15088 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15089 } else {
15090 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15091 "0375 FCP cmdiocb not callback function "
15092 "iotag: (%d)\n",
15093 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15094 }
15095 }
15096
15097 /**
15098 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15099 * @phba: Pointer to HBA context object.
15100 * @cq: Pointer to completion queue.
15101 * @wcqe: Pointer to work-queue completion queue entry.
15102 *
15103 * This routine handles an fast-path WQ entry consumed event by invoking the
15104 * proper WQ release routine to the slow-path WQ.
15105 **/
15106 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)15107 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15108 struct lpfc_wcqe_release *wcqe)
15109 {
15110 struct lpfc_queue *childwq;
15111 bool wqid_matched = false;
15112 uint16_t hba_wqid;
15113
15114 /* Check for fast-path FCP work queue release */
15115 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15116 list_for_each_entry(childwq, &cq->child_list, list) {
15117 if (childwq->queue_id == hba_wqid) {
15118 lpfc_sli4_wq_release(childwq,
15119 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15120 if (childwq->q_flag & HBA_NVMET_WQFULL)
15121 lpfc_nvmet_wqfull_process(phba, childwq);
15122 wqid_matched = true;
15123 break;
15124 }
15125 }
15126 /* Report warning log message if no match found */
15127 if (wqid_matched != true)
15128 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15129 "2580 Fast-path wqe consume event carries "
15130 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15131 }
15132
15133 /**
15134 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15135 * @phba: Pointer to HBA context object.
15136 * @cq: Pointer to completion queue.
15137 * @rcqe: Pointer to receive-queue completion queue entry.
15138 *
15139 * This routine process a receive-queue completion queue entry.
15140 *
15141 * Return: true if work posted to worker thread, otherwise false.
15142 **/
15143 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)15144 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15145 struct lpfc_rcqe *rcqe)
15146 {
15147 bool workposted = false;
15148 struct lpfc_queue *hrq;
15149 struct lpfc_queue *drq;
15150 struct rqb_dmabuf *dma_buf;
15151 struct fc_frame_header *fc_hdr;
15152 struct lpfc_nvmet_tgtport *tgtp;
15153 uint32_t status, rq_id;
15154 unsigned long iflags;
15155 uint32_t fctl, idx;
15156
15157 if ((phba->nvmet_support == 0) ||
15158 (phba->sli4_hba.nvmet_cqset == NULL))
15159 return workposted;
15160
15161 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15162 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15163 drq = phba->sli4_hba.nvmet_mrq_data[idx];
15164
15165 /* sanity check on queue memory */
15166 if (unlikely(!hrq) || unlikely(!drq))
15167 return workposted;
15168
15169 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15170 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15171 else
15172 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15173
15174 if ((phba->nvmet_support == 0) ||
15175 (rq_id != hrq->queue_id))
15176 return workposted;
15177
15178 status = bf_get(lpfc_rcqe_status, rcqe);
15179 switch (status) {
15180 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15182 "6126 Receive Frame Truncated!!\n");
15183 fallthrough;
15184 case FC_STATUS_RQ_SUCCESS:
15185 spin_lock_irqsave(&phba->hbalock, iflags);
15186 lpfc_sli4_rq_release(hrq, drq);
15187 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15188 if (!dma_buf) {
15189 hrq->RQ_no_buf_found++;
15190 spin_unlock_irqrestore(&phba->hbalock, iflags);
15191 goto out;
15192 }
15193 spin_unlock_irqrestore(&phba->hbalock, iflags);
15194 hrq->RQ_rcv_buf++;
15195 hrq->RQ_buf_posted--;
15196 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15197
15198 /* Just some basic sanity checks on FCP Command frame */
15199 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15200 fc_hdr->fh_f_ctl[1] << 8 |
15201 fc_hdr->fh_f_ctl[2]);
15202 if (((fctl &
15203 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15204 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15205 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15206 goto drop;
15207
15208 if (fc_hdr->fh_type == FC_TYPE_FCP) {
15209 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15210 lpfc_nvmet_unsol_fcp_event(
15211 phba, idx, dma_buf, cq->isr_timestamp,
15212 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15213 return false;
15214 }
15215 drop:
15216 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15217 break;
15218 case FC_STATUS_INSUFF_BUF_FRM_DISC:
15219 if (phba->nvmet_support) {
15220 tgtp = phba->targetport->private;
15221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15222 "6401 RQE Error x%x, posted %d err_cnt "
15223 "%d: %x %x %x\n",
15224 status, hrq->RQ_buf_posted,
15225 hrq->RQ_no_posted_buf,
15226 atomic_read(&tgtp->rcv_fcp_cmd_in),
15227 atomic_read(&tgtp->rcv_fcp_cmd_out),
15228 atomic_read(&tgtp->xmt_fcp_release));
15229 }
15230 fallthrough;
15231
15232 case FC_STATUS_INSUFF_BUF_NEED_BUF:
15233 hrq->RQ_no_posted_buf++;
15234 /* Post more buffers if possible */
15235 break;
15236 case FC_STATUS_RQ_DMA_FAILURE:
15237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15238 "2575 RQE DMA Error x%x, x%08x x%08x x%08x "
15239 "x%08x\n",
15240 status, rcqe->word0, rcqe->word1,
15241 rcqe->word2, rcqe->word3);
15242
15243 /* If IV set, no further recovery */
15244 if (bf_get(lpfc_rcqe_iv, rcqe))
15245 break;
15246
15247 /* recycle consumed resource */
15248 spin_lock_irqsave(&phba->hbalock, iflags);
15249 lpfc_sli4_rq_release(hrq, drq);
15250 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15251 if (!dma_buf) {
15252 hrq->RQ_no_buf_found++;
15253 spin_unlock_irqrestore(&phba->hbalock, iflags);
15254 break;
15255 }
15256 hrq->RQ_rcv_buf++;
15257 hrq->RQ_buf_posted--;
15258 spin_unlock_irqrestore(&phba->hbalock, iflags);
15259 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15260 break;
15261 default:
15262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15263 "2576 Unexpected RQE Status x%x, w0-3 x%08x "
15264 "x%08x x%08x x%08x\n",
15265 status, rcqe->word0, rcqe->word1,
15266 rcqe->word2, rcqe->word3);
15267 break;
15268 }
15269 out:
15270 return workposted;
15271 }
15272
15273 /**
15274 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15275 * @phba: adapter with cq
15276 * @cq: Pointer to the completion queue.
15277 * @cqe: Pointer to fast-path completion queue entry.
15278 *
15279 * This routine process a fast-path work queue completion entry from fast-path
15280 * event queue for FCP command response completion.
15281 *
15282 * Return: true if work posted to worker thread, otherwise false.
15283 **/
15284 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)15285 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15286 struct lpfc_cqe *cqe)
15287 {
15288 struct lpfc_wcqe_release wcqe;
15289 bool workposted = false;
15290
15291 /* Copy the work queue CQE and convert endian order if needed */
15292 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15293
15294 /* Check and process for different type of WCQE and dispatch */
15295 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15296 case CQE_CODE_COMPL_WQE:
15297 case CQE_CODE_NVME_ERSP:
15298 cq->CQ_wq++;
15299 /* Process the WQ complete event */
15300 phba->last_completion_time = jiffies;
15301 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15302 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15303 (struct lpfc_wcqe_complete *)&wcqe);
15304 break;
15305 case CQE_CODE_RELEASE_WQE:
15306 cq->CQ_release_wqe++;
15307 /* Process the WQ release event */
15308 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15309 (struct lpfc_wcqe_release *)&wcqe);
15310 break;
15311 case CQE_CODE_XRI_ABORTED:
15312 cq->CQ_xri_aborted++;
15313 /* Process the WQ XRI abort event */
15314 phba->last_completion_time = jiffies;
15315 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15316 (struct sli4_wcqe_xri_aborted *)&wcqe);
15317 break;
15318 case CQE_CODE_RECEIVE_V1:
15319 case CQE_CODE_RECEIVE:
15320 phba->last_completion_time = jiffies;
15321 if (cq->subtype == LPFC_NVMET) {
15322 workposted = lpfc_sli4_nvmet_handle_rcqe(
15323 phba, cq, (struct lpfc_rcqe *)&wcqe);
15324 }
15325 break;
15326 default:
15327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15328 "0144 Not a valid CQE code: x%x\n",
15329 bf_get(lpfc_wcqe_c_code, &wcqe));
15330 break;
15331 }
15332 return workposted;
15333 }
15334
15335 /**
15336 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15337 * @cq: Pointer to CQ to be processed
15338 *
15339 * This routine calls the cq processing routine with the handler for
15340 * fast path CQEs.
15341 *
15342 * The CQ routine returns two values: the first is the calling status,
15343 * which indicates whether work was queued to the background discovery
15344 * thread. If true, the routine should wakeup the discovery thread;
15345 * the second is the delay parameter. If non-zero, rather than rearming
15346 * the CQ and yet another interrupt, the CQ handler should be queued so
15347 * that it is processed in a subsequent polling action. The value of
15348 * the delay indicates when to reschedule it.
15349 **/
15350 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq)15351 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
15352 {
15353 struct lpfc_hba *phba = cq->phba;
15354 unsigned long delay;
15355 bool workposted = false;
15356 int ret;
15357
15358 /* process and rearm the CQ */
15359 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15360 &delay);
15361
15362 if (delay) {
15363 if (is_kdump_kernel())
15364 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15365 delay);
15366 else
15367 ret = queue_delayed_work_on(cq->chann, phba->wq,
15368 &cq->sched_irqwork, delay);
15369 if (!ret)
15370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15371 "0367 Cannot schedule queue work "
15372 "for cqid=%d on CPU %d\n",
15373 cq->queue_id, cq->chann);
15374 }
15375
15376 /* wake up worker thread if there are works to be done */
15377 if (workposted)
15378 lpfc_worker_wake_up(phba);
15379 }
15380
15381 /**
15382 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15383 * interrupt
15384 * @work: pointer to work element
15385 *
15386 * translates from the work handler and calls the fast-path handler.
15387 **/
15388 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)15389 lpfc_sli4_hba_process_cq(struct work_struct *work)
15390 {
15391 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15392
15393 __lpfc_sli4_hba_process_cq(cq);
15394 }
15395
15396 /**
15397 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15398 * @phba: Pointer to HBA context object.
15399 * @eq: Pointer to the queue structure.
15400 * @eqe: Pointer to fast-path event queue entry.
15401 * @poll_mode: poll_mode to execute processing the cq.
15402 *
15403 * This routine process a event queue entry from the fast-path event queue.
15404 * It will check the MajorCode and MinorCode to determine this is for a
15405 * completion event on a completion queue, if not, an error shall be logged
15406 * and just return. Otherwise, it will get to the corresponding completion
15407 * queue and process all the entries on the completion queue, rearm the
15408 * completion queue, and then return.
15409 **/
15410 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe,enum lpfc_poll_mode poll_mode)15411 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15412 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode)
15413 {
15414 struct lpfc_queue *cq = NULL;
15415 uint32_t qidx = eq->hdwq;
15416 uint16_t cqid, id;
15417 int ret;
15418
15419 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15421 "0366 Not a valid completion "
15422 "event: majorcode=x%x, minorcode=x%x\n",
15423 bf_get_le32(lpfc_eqe_major_code, eqe),
15424 bf_get_le32(lpfc_eqe_minor_code, eqe));
15425 return;
15426 }
15427
15428 /* Get the reference to the corresponding CQ */
15429 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15430
15431 /* Use the fast lookup method first */
15432 if (cqid <= phba->sli4_hba.cq_max) {
15433 cq = phba->sli4_hba.cq_lookup[cqid];
15434 if (cq)
15435 goto work_cq;
15436 }
15437
15438 /* Next check for NVMET completion */
15439 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15440 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15441 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15442 /* Process NVMET unsol rcv */
15443 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15444 goto process_cq;
15445 }
15446 }
15447
15448 if (phba->sli4_hba.nvmels_cq &&
15449 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15450 /* Process NVME unsol rcv */
15451 cq = phba->sli4_hba.nvmels_cq;
15452 }
15453
15454 /* Otherwise this is a Slow path event */
15455 if (cq == NULL) {
15456 lpfc_sli4_sp_handle_eqe(phba, eqe,
15457 phba->sli4_hba.hdwq[qidx].hba_eq);
15458 return;
15459 }
15460
15461 process_cq:
15462 if (unlikely(cqid != cq->queue_id)) {
15463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15464 "0368 Miss-matched fast-path completion "
15465 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
15466 cqid, cq->queue_id);
15467 return;
15468 }
15469
15470 work_cq:
15471 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15472 if (phba->ktime_on)
15473 cq->isr_timestamp = ktime_get_ns();
15474 else
15475 cq->isr_timestamp = 0;
15476 #endif
15477
15478 switch (poll_mode) {
15479 case LPFC_THREADED_IRQ:
15480 __lpfc_sli4_hba_process_cq(cq);
15481 break;
15482 case LPFC_QUEUE_WORK:
15483 default:
15484 if (is_kdump_kernel())
15485 ret = queue_work(phba->wq, &cq->irqwork);
15486 else
15487 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15488 if (!ret)
15489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15490 "0383 Cannot schedule queue work "
15491 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15492 cqid, cq->queue_id,
15493 raw_smp_processor_id());
15494 break;
15495 }
15496 }
15497
15498 /**
15499 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15500 * @work: pointer to work element
15501 *
15502 * translates from the work handler and calls the fast-path handler.
15503 **/
15504 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)15505 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15506 {
15507 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15508 struct lpfc_queue, sched_irqwork);
15509
15510 __lpfc_sli4_hba_process_cq(cq);
15511 }
15512
15513 /**
15514 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15515 * @irq: Interrupt number.
15516 * @dev_id: The device context pointer.
15517 *
15518 * This function is directly called from the PCI layer as an interrupt
15519 * service routine when device with SLI-4 interface spec is enabled with
15520 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15521 * ring event in the HBA. However, when the device is enabled with either
15522 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15523 * device-level interrupt handler. When the PCI slot is in error recovery
15524 * or the HBA is undergoing initialization, the interrupt handler will not
15525 * process the interrupt. The SCSI FCP fast-path ring event are handled in
15526 * the intrrupt context. This function is called without any lock held.
15527 * It gets the hbalock to access and update SLI data structures. Note that,
15528 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15529 * equal to that of FCP CQ index.
15530 *
15531 * The link attention and ELS ring attention events are handled
15532 * by the worker thread. The interrupt handler signals the worker thread
15533 * and returns for these events. This function is called without any lock
15534 * held. It gets the hbalock to access and update SLI data structures.
15535 *
15536 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD
15537 * when interrupt is scheduled to be handled from a threaded irq context, or
15538 * else returns IRQ_NONE.
15539 **/
15540 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)15541 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15542 {
15543 struct lpfc_hba *phba;
15544 struct lpfc_hba_eq_hdl *hba_eq_hdl;
15545 struct lpfc_queue *fpeq;
15546 unsigned long iflag;
15547 int hba_eqidx;
15548 int ecount = 0;
15549 struct lpfc_eq_intr_info *eqi;
15550
15551 /* Get the driver's phba structure from the dev_id */
15552 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15553 phba = hba_eq_hdl->phba;
15554 hba_eqidx = hba_eq_hdl->idx;
15555
15556 if (unlikely(!phba))
15557 return IRQ_NONE;
15558 if (unlikely(!phba->sli4_hba.hdwq))
15559 return IRQ_NONE;
15560
15561 /* Get to the EQ struct associated with this vector */
15562 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15563 if (unlikely(!fpeq))
15564 return IRQ_NONE;
15565
15566 /* Check device state for handling interrupt */
15567 if (unlikely(lpfc_intr_state_check(phba))) {
15568 /* Check again for link_state with lock held */
15569 spin_lock_irqsave(&phba->hbalock, iflag);
15570 if (phba->link_state < LPFC_LINK_DOWN)
15571 /* Flush, clear interrupt, and rearm the EQ */
15572 lpfc_sli4_eqcq_flush(phba, fpeq);
15573 spin_unlock_irqrestore(&phba->hbalock, iflag);
15574 return IRQ_NONE;
15575 }
15576
15577 switch (fpeq->poll_mode) {
15578 case LPFC_THREADED_IRQ:
15579 /* CGN mgmt is mutually exclusive from irq processing */
15580 if (phba->cmf_active_mode == LPFC_CFG_OFF)
15581 return IRQ_WAKE_THREAD;
15582 fallthrough;
15583 case LPFC_QUEUE_WORK:
15584 default:
15585 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15586 eqi->icnt++;
15587
15588 fpeq->last_cpu = raw_smp_processor_id();
15589
15590 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15591 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15592 phba->cfg_auto_imax &&
15593 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15594 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15595 lpfc_sli4_mod_hba_eq_delay(phba, fpeq,
15596 LPFC_MAX_AUTO_EQ_DELAY);
15597
15598 /* process and rearm the EQ */
15599 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
15600 LPFC_QUEUE_WORK);
15601
15602 if (unlikely(ecount == 0)) {
15603 fpeq->EQ_no_entry++;
15604 if (phba->intr_type == MSIX)
15605 /* MSI-X treated interrupt served as no EQ share INT */
15606 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15607 "0358 MSI-X interrupt with no EQE\n");
15608 else
15609 /* Non MSI-X treated on interrupt as EQ share INT */
15610 return IRQ_NONE;
15611 }
15612 }
15613
15614 return IRQ_HANDLED;
15615 } /* lpfc_sli4_hba_intr_handler */
15616
15617 /**
15618 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15619 * @irq: Interrupt number.
15620 * @dev_id: The device context pointer.
15621 *
15622 * This function is the device-level interrupt handler to device with SLI-4
15623 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15624 * interrupt mode is enabled and there is an event in the HBA which requires
15625 * driver attention. This function invokes the slow-path interrupt attention
15626 * handling function and fast-path interrupt attention handling function in
15627 * turn to process the relevant HBA attention events. This function is called
15628 * without any lock held. It gets the hbalock to access and update SLI data
15629 * structures.
15630 *
15631 * This function returns IRQ_HANDLED when interrupt is handled, else it
15632 * returns IRQ_NONE.
15633 **/
15634 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)15635 lpfc_sli4_intr_handler(int irq, void *dev_id)
15636 {
15637 struct lpfc_hba *phba;
15638 irqreturn_t hba_irq_rc;
15639 bool hba_handled = false;
15640 int qidx;
15641
15642 /* Get the driver's phba structure from the dev_id */
15643 phba = (struct lpfc_hba *)dev_id;
15644
15645 if (unlikely(!phba))
15646 return IRQ_NONE;
15647
15648 /*
15649 * Invoke fast-path host attention interrupt handling as appropriate.
15650 */
15651 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15652 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15653 &phba->sli4_hba.hba_eq_hdl[qidx]);
15654 if (hba_irq_rc == IRQ_HANDLED)
15655 hba_handled |= true;
15656 }
15657
15658 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15659 } /* lpfc_sli4_intr_handler */
15660
lpfc_sli4_poll_hbtimer(struct timer_list * t)15661 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15662 {
15663 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15664 struct lpfc_queue *eq;
15665
15666 rcu_read_lock();
15667
15668 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15669 lpfc_sli4_poll_eq(eq);
15670 if (!list_empty(&phba->poll_list))
15671 mod_timer(&phba->cpuhp_poll_timer,
15672 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15673
15674 rcu_read_unlock();
15675 }
15676
lpfc_sli4_add_to_poll_list(struct lpfc_queue * eq)15677 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15678 {
15679 struct lpfc_hba *phba = eq->phba;
15680
15681 /* kickstart slowpath processing if needed */
15682 if (list_empty(&phba->poll_list))
15683 mod_timer(&phba->cpuhp_poll_timer,
15684 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15685
15686 list_add_rcu(&eq->_poll_list, &phba->poll_list);
15687 synchronize_rcu();
15688 }
15689
lpfc_sli4_remove_from_poll_list(struct lpfc_queue * eq)15690 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15691 {
15692 struct lpfc_hba *phba = eq->phba;
15693
15694 /* Disable slowpath processing for this eq. Kick start the eq
15695 * by RE-ARMING the eq's ASAP
15696 */
15697 list_del_rcu(&eq->_poll_list);
15698 synchronize_rcu();
15699
15700 if (list_empty(&phba->poll_list))
15701 del_timer_sync(&phba->cpuhp_poll_timer);
15702 }
15703
lpfc_sli4_cleanup_poll_list(struct lpfc_hba * phba)15704 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15705 {
15706 struct lpfc_queue *eq, *next;
15707
15708 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15709 list_del(&eq->_poll_list);
15710
15711 INIT_LIST_HEAD(&phba->poll_list);
15712 synchronize_rcu();
15713 }
15714
15715 static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue * eq,uint8_t mode)15716 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15717 {
15718 if (mode == eq->mode)
15719 return;
15720 /*
15721 * currently this function is only called during a hotplug
15722 * event and the cpu on which this function is executing
15723 * is going offline. By now the hotplug has instructed
15724 * the scheduler to remove this cpu from cpu active mask.
15725 * So we don't need to work about being put aside by the
15726 * scheduler for a high priority process. Yes, the inte-
15727 * rrupts could come but they are known to retire ASAP.
15728 */
15729
15730 /* Disable polling in the fastpath */
15731 WRITE_ONCE(eq->mode, mode);
15732 /* flush out the store buffer */
15733 smp_wmb();
15734
15735 /*
15736 * Add this eq to the polling list and start polling. For
15737 * a grace period both interrupt handler and poller will
15738 * try to process the eq _but_ that's fine. We have a
15739 * synchronization mechanism in place (queue_claimed) to
15740 * deal with it. This is just a draining phase for int-
15741 * errupt handler (not eq's) as we have guranteed through
15742 * barrier that all the CPUs have seen the new CQ_POLLED
15743 * state. which will effectively disable the REARMING of
15744 * the EQ. The whole idea is eq's die off eventually as
15745 * we are not rearming EQ's anymore.
15746 */
15747 mode ? lpfc_sli4_add_to_poll_list(eq) :
15748 lpfc_sli4_remove_from_poll_list(eq);
15749 }
15750
lpfc_sli4_start_polling(struct lpfc_queue * eq)15751 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15752 {
15753 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15754 }
15755
lpfc_sli4_stop_polling(struct lpfc_queue * eq)15756 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15757 {
15758 struct lpfc_hba *phba = eq->phba;
15759
15760 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15761
15762 /* Kick start for the pending io's in h/w.
15763 * Once we switch back to interrupt processing on a eq
15764 * the io path completion will only arm eq's when it
15765 * receives a completion. But since eq's are in disa-
15766 * rmed state it doesn't receive a completion. This
15767 * creates a deadlock scenaro.
15768 */
15769 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15770 }
15771
15772 /**
15773 * lpfc_sli4_queue_free - free a queue structure and associated memory
15774 * @queue: The queue structure to free.
15775 *
15776 * This function frees a queue structure and the DMAable memory used for
15777 * the host resident queue. This function must be called after destroying the
15778 * queue on the HBA.
15779 **/
15780 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)15781 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15782 {
15783 struct lpfc_dmabuf *dmabuf;
15784
15785 if (!queue)
15786 return;
15787
15788 if (!list_empty(&queue->wq_list))
15789 list_del(&queue->wq_list);
15790
15791 while (!list_empty(&queue->page_list)) {
15792 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15793 list);
15794 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15795 dmabuf->virt, dmabuf->phys);
15796 kfree(dmabuf);
15797 }
15798 if (queue->rqbp) {
15799 lpfc_free_rq_buffer(queue->phba, queue);
15800 kfree(queue->rqbp);
15801 }
15802
15803 if (!list_empty(&queue->cpu_list))
15804 list_del(&queue->cpu_list);
15805
15806 kfree(queue);
15807 return;
15808 }
15809
15810 /**
15811 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15812 * @phba: The HBA that this queue is being created on.
15813 * @page_size: The size of a queue page
15814 * @entry_size: The size of each queue entry for this queue.
15815 * @entry_count: The number of entries that this queue will handle.
15816 * @cpu: The cpu that will primarily utilize this queue.
15817 *
15818 * This function allocates a queue structure and the DMAable memory used for
15819 * the host resident queue. This function must be called before creating the
15820 * queue on the HBA.
15821 **/
15822 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)15823 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15824 uint32_t entry_size, uint32_t entry_count, int cpu)
15825 {
15826 struct lpfc_queue *queue;
15827 struct lpfc_dmabuf *dmabuf;
15828 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15829 uint16_t x, pgcnt;
15830
15831 if (!phba->sli4_hba.pc_sli4_params.supported)
15832 hw_page_size = page_size;
15833
15834 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15835
15836 /* If needed, Adjust page count to match the max the adapter supports */
15837 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15838 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15839
15840 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15841 GFP_KERNEL, cpu_to_node(cpu));
15842 if (!queue)
15843 return NULL;
15844
15845 INIT_LIST_HEAD(&queue->list);
15846 INIT_LIST_HEAD(&queue->_poll_list);
15847 INIT_LIST_HEAD(&queue->wq_list);
15848 INIT_LIST_HEAD(&queue->wqfull_list);
15849 INIT_LIST_HEAD(&queue->page_list);
15850 INIT_LIST_HEAD(&queue->child_list);
15851 INIT_LIST_HEAD(&queue->cpu_list);
15852
15853 /* Set queue parameters now. If the system cannot provide memory
15854 * resources, the free routine needs to know what was allocated.
15855 */
15856 queue->page_count = pgcnt;
15857 queue->q_pgs = (void **)&queue[1];
15858 queue->entry_cnt_per_pg = hw_page_size / entry_size;
15859 queue->entry_size = entry_size;
15860 queue->entry_count = entry_count;
15861 queue->page_size = hw_page_size;
15862 queue->phba = phba;
15863
15864 for (x = 0; x < queue->page_count; x++) {
15865 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15866 dev_to_node(&phba->pcidev->dev));
15867 if (!dmabuf)
15868 goto out_fail;
15869 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15870 hw_page_size, &dmabuf->phys,
15871 GFP_KERNEL);
15872 if (!dmabuf->virt) {
15873 kfree(dmabuf);
15874 goto out_fail;
15875 }
15876 dmabuf->buffer_tag = x;
15877 list_add_tail(&dmabuf->list, &queue->page_list);
15878 /* use lpfc_sli4_qe to index a paritcular entry in this page */
15879 queue->q_pgs[x] = dmabuf->virt;
15880 }
15881 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15882 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15883 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15884 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15885
15886 /* notify_interval will be set during q creation */
15887
15888 return queue;
15889 out_fail:
15890 lpfc_sli4_queue_free(queue);
15891 return NULL;
15892 }
15893
15894 /**
15895 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15896 * @phba: HBA structure that indicates port to create a queue on.
15897 * @pci_barset: PCI BAR set flag.
15898 *
15899 * This function shall perform iomap of the specified PCI BAR address to host
15900 * memory address if not already done so and return it. The returned host
15901 * memory address can be NULL.
15902 */
15903 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)15904 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15905 {
15906 if (!phba->pcidev)
15907 return NULL;
15908
15909 switch (pci_barset) {
15910 case WQ_PCI_BAR_0_AND_1:
15911 return phba->pci_bar0_memmap_p;
15912 case WQ_PCI_BAR_2_AND_3:
15913 return phba->pci_bar2_memmap_p;
15914 case WQ_PCI_BAR_4_AND_5:
15915 return phba->pci_bar4_memmap_p;
15916 default:
15917 break;
15918 }
15919 return NULL;
15920 }
15921
15922 /**
15923 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15924 * @phba: HBA structure that EQs are on.
15925 * @startq: The starting EQ index to modify
15926 * @numq: The number of EQs (consecutive indexes) to modify
15927 * @usdelay: amount of delay
15928 *
15929 * This function revises the EQ delay on 1 or more EQs. The EQ delay
15930 * is set either by writing to a register (if supported by the SLI Port)
15931 * or by mailbox command. The mailbox command allows several EQs to be
15932 * updated at once.
15933 *
15934 * The @phba struct is used to send a mailbox command to HBA. The @startq
15935 * is used to get the starting EQ index to change. The @numq value is
15936 * used to specify how many consecutive EQ indexes, starting at EQ index,
15937 * are to be changed. This function is asynchronous and will wait for any
15938 * mailbox commands to finish before returning.
15939 *
15940 * On success this function will return a zero. If unable to allocate
15941 * enough memory this function will return -ENOMEM. If a mailbox command
15942 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15943 * have had their delay multipler changed.
15944 **/
15945 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)15946 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15947 uint32_t numq, uint32_t usdelay)
15948 {
15949 struct lpfc_mbx_modify_eq_delay *eq_delay;
15950 LPFC_MBOXQ_t *mbox;
15951 struct lpfc_queue *eq;
15952 int cnt = 0, rc, length;
15953 uint32_t shdr_status, shdr_add_status;
15954 uint32_t dmult;
15955 int qidx;
15956 union lpfc_sli4_cfg_shdr *shdr;
15957
15958 if (startq >= phba->cfg_irq_chann)
15959 return;
15960
15961 if (usdelay > 0xFFFF) {
15962 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15963 "6429 usdelay %d too large. Scaled down to "
15964 "0xFFFF.\n", usdelay);
15965 usdelay = 0xFFFF;
15966 }
15967
15968 /* set values by EQ_DELAY register if supported */
15969 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15970 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15971 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15972 if (!eq)
15973 continue;
15974
15975 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15976
15977 if (++cnt >= numq)
15978 break;
15979 }
15980 return;
15981 }
15982
15983 /* Otherwise, set values by mailbox cmd */
15984
15985 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15986 if (!mbox) {
15987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15988 "6428 Failed allocating mailbox cmd buffer."
15989 " EQ delay was not set.\n");
15990 return;
15991 }
15992 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15993 sizeof(struct lpfc_sli4_cfg_mhdr));
15994 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15995 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15996 length, LPFC_SLI4_MBX_EMBED);
15997 eq_delay = &mbox->u.mqe.un.eq_delay;
15998
15999 /* Calculate delay multiper from maximum interrupt per second */
16000 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
16001 if (dmult)
16002 dmult--;
16003 if (dmult > LPFC_DMULT_MAX)
16004 dmult = LPFC_DMULT_MAX;
16005
16006 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16007 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16008 if (!eq)
16009 continue;
16010 eq->q_mode = usdelay;
16011 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
16012 eq_delay->u.request.eq[cnt].phase = 0;
16013 eq_delay->u.request.eq[cnt].delay_multi = dmult;
16014
16015 if (++cnt >= numq)
16016 break;
16017 }
16018 eq_delay->u.request.num_eq = cnt;
16019
16020 mbox->vport = phba->pport;
16021 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16022 mbox->ctx_ndlp = NULL;
16023 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16024 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
16025 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16026 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16027 if (shdr_status || shdr_add_status || rc) {
16028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16029 "2512 MODIFY_EQ_DELAY mailbox failed with "
16030 "status x%x add_status x%x, mbx status x%x\n",
16031 shdr_status, shdr_add_status, rc);
16032 }
16033 mempool_free(mbox, phba->mbox_mem_pool);
16034 return;
16035 }
16036
16037 /**
16038 * lpfc_eq_create - Create an Event Queue on the HBA
16039 * @phba: HBA structure that indicates port to create a queue on.
16040 * @eq: The queue structure to use to create the event queue.
16041 * @imax: The maximum interrupt per second limit.
16042 *
16043 * This function creates an event queue, as detailed in @eq, on a port,
16044 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16045 *
16046 * The @phba struct is used to send mailbox command to HBA. The @eq struct
16047 * is used to get the entry count and entry size that are necessary to
16048 * determine the number of pages to allocate and use for this queue. This
16049 * function will send the EQ_CREATE mailbox command to the HBA to setup the
16050 * event queue. This function is asynchronous and will wait for the mailbox
16051 * command to finish before continuing.
16052 *
16053 * On success this function will return a zero. If unable to allocate enough
16054 * memory this function will return -ENOMEM. If the queue create mailbox command
16055 * fails this function will return -ENXIO.
16056 **/
16057 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)16058 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16059 {
16060 struct lpfc_mbx_eq_create *eq_create;
16061 LPFC_MBOXQ_t *mbox;
16062 int rc, length, status = 0;
16063 struct lpfc_dmabuf *dmabuf;
16064 uint32_t shdr_status, shdr_add_status;
16065 union lpfc_sli4_cfg_shdr *shdr;
16066 uint16_t dmult;
16067 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16068
16069 /* sanity check on queue memory */
16070 if (!eq)
16071 return -ENODEV;
16072 if (!phba->sli4_hba.pc_sli4_params.supported)
16073 hw_page_size = SLI4_PAGE_SIZE;
16074
16075 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16076 if (!mbox)
16077 return -ENOMEM;
16078 length = (sizeof(struct lpfc_mbx_eq_create) -
16079 sizeof(struct lpfc_sli4_cfg_mhdr));
16080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16081 LPFC_MBOX_OPCODE_EQ_CREATE,
16082 length, LPFC_SLI4_MBX_EMBED);
16083 eq_create = &mbox->u.mqe.un.eq_create;
16084 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16085 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16086 eq->page_count);
16087 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16088 LPFC_EQE_SIZE);
16089 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16090
16091 /* Use version 2 of CREATE_EQ if eqav is set */
16092 if (phba->sli4_hba.pc_sli4_params.eqav) {
16093 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16094 LPFC_Q_CREATE_VERSION_2);
16095 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16096 phba->sli4_hba.pc_sli4_params.eqav);
16097 }
16098
16099 /* don't setup delay multiplier using EQ_CREATE */
16100 dmult = 0;
16101 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16102 dmult);
16103 switch (eq->entry_count) {
16104 default:
16105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16106 "0360 Unsupported EQ count. (%d)\n",
16107 eq->entry_count);
16108 if (eq->entry_count < 256) {
16109 status = -EINVAL;
16110 goto out;
16111 }
16112 fallthrough; /* otherwise default to smallest count */
16113 case 256:
16114 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16115 LPFC_EQ_CNT_256);
16116 break;
16117 case 512:
16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16119 LPFC_EQ_CNT_512);
16120 break;
16121 case 1024:
16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16123 LPFC_EQ_CNT_1024);
16124 break;
16125 case 2048:
16126 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16127 LPFC_EQ_CNT_2048);
16128 break;
16129 case 4096:
16130 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16131 LPFC_EQ_CNT_4096);
16132 break;
16133 }
16134 list_for_each_entry(dmabuf, &eq->page_list, list) {
16135 memset(dmabuf->virt, 0, hw_page_size);
16136 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16137 putPaddrLow(dmabuf->phys);
16138 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16139 putPaddrHigh(dmabuf->phys);
16140 }
16141 mbox->vport = phba->pport;
16142 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16143 mbox->ctx_buf = NULL;
16144 mbox->ctx_ndlp = NULL;
16145 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16146 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16148 if (shdr_status || shdr_add_status || rc) {
16149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16150 "2500 EQ_CREATE mailbox failed with "
16151 "status x%x add_status x%x, mbx status x%x\n",
16152 shdr_status, shdr_add_status, rc);
16153 status = -ENXIO;
16154 }
16155 eq->type = LPFC_EQ;
16156 eq->subtype = LPFC_NONE;
16157 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16158 if (eq->queue_id == 0xFFFF)
16159 status = -ENXIO;
16160 eq->host_index = 0;
16161 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16162 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16163 out:
16164 mempool_free(mbox, phba->mbox_mem_pool);
16165 return status;
16166 }
16167
16168 /**
16169 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler
16170 * @irq: Interrupt number.
16171 * @dev_id: The device context pointer.
16172 *
16173 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within
16174 * threaded irq context.
16175 *
16176 * Returns
16177 * IRQ_HANDLED - interrupt is handled
16178 * IRQ_NONE - otherwise
16179 **/
lpfc_sli4_hba_intr_handler_th(int irq,void * dev_id)16180 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id)
16181 {
16182 struct lpfc_hba *phba;
16183 struct lpfc_hba_eq_hdl *hba_eq_hdl;
16184 struct lpfc_queue *fpeq;
16185 int ecount = 0;
16186 int hba_eqidx;
16187 struct lpfc_eq_intr_info *eqi;
16188
16189 /* Get the driver's phba structure from the dev_id */
16190 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
16191 phba = hba_eq_hdl->phba;
16192 hba_eqidx = hba_eq_hdl->idx;
16193
16194 if (unlikely(!phba))
16195 return IRQ_NONE;
16196 if (unlikely(!phba->sli4_hba.hdwq))
16197 return IRQ_NONE;
16198
16199 /* Get to the EQ struct associated with this vector */
16200 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
16201 if (unlikely(!fpeq))
16202 return IRQ_NONE;
16203
16204 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id());
16205 eqi->icnt++;
16206
16207 fpeq->last_cpu = raw_smp_processor_id();
16208
16209 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
16210 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
16211 phba->cfg_auto_imax &&
16212 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
16213 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
16214 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
16215
16216 /* process and rearm the EQ */
16217 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
16218 LPFC_THREADED_IRQ);
16219
16220 if (unlikely(ecount == 0)) {
16221 fpeq->EQ_no_entry++;
16222 if (phba->intr_type == MSIX)
16223 /* MSI-X treated interrupt served as no EQ share INT */
16224 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16225 "3358 MSI-X interrupt with no EQE\n");
16226 else
16227 /* Non MSI-X treated on interrupt as EQ share INT */
16228 return IRQ_NONE;
16229 }
16230 return IRQ_HANDLED;
16231 }
16232
16233 /**
16234 * lpfc_cq_create - Create a Completion Queue on the HBA
16235 * @phba: HBA structure that indicates port to create a queue on.
16236 * @cq: The queue structure to use to create the completion queue.
16237 * @eq: The event queue to bind this completion queue to.
16238 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16239 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16240 *
16241 * This function creates a completion queue, as detailed in @wq, on a port,
16242 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16243 *
16244 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16245 * is used to get the entry count and entry size that are necessary to
16246 * determine the number of pages to allocate and use for this queue. The @eq
16247 * is used to indicate which event queue to bind this completion queue to. This
16248 * function will send the CQ_CREATE mailbox command to the HBA to setup the
16249 * completion queue. This function is asynchronous and will wait for the mailbox
16250 * command to finish before continuing.
16251 *
16252 * On success this function will return a zero. If unable to allocate enough
16253 * memory this function will return -ENOMEM. If the queue create mailbox command
16254 * fails this function will return -ENXIO.
16255 **/
16256 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)16257 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16258 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16259 {
16260 struct lpfc_mbx_cq_create *cq_create;
16261 struct lpfc_dmabuf *dmabuf;
16262 LPFC_MBOXQ_t *mbox;
16263 int rc, length, status = 0;
16264 uint32_t shdr_status, shdr_add_status;
16265 union lpfc_sli4_cfg_shdr *shdr;
16266
16267 /* sanity check on queue memory */
16268 if (!cq || !eq)
16269 return -ENODEV;
16270
16271 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16272 if (!mbox)
16273 return -ENOMEM;
16274 length = (sizeof(struct lpfc_mbx_cq_create) -
16275 sizeof(struct lpfc_sli4_cfg_mhdr));
16276 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16277 LPFC_MBOX_OPCODE_CQ_CREATE,
16278 length, LPFC_SLI4_MBX_EMBED);
16279 cq_create = &mbox->u.mqe.un.cq_create;
16280 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16281 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16282 cq->page_count);
16283 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16284 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16285 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16286 phba->sli4_hba.pc_sli4_params.cqv);
16287 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16288 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16289 (cq->page_size / SLI4_PAGE_SIZE));
16290 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16291 eq->queue_id);
16292 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16293 phba->sli4_hba.pc_sli4_params.cqav);
16294 } else {
16295 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16296 eq->queue_id);
16297 }
16298 switch (cq->entry_count) {
16299 case 2048:
16300 case 4096:
16301 if (phba->sli4_hba.pc_sli4_params.cqv ==
16302 LPFC_Q_CREATE_VERSION_2) {
16303 cq_create->u.request.context.lpfc_cq_context_count =
16304 cq->entry_count;
16305 bf_set(lpfc_cq_context_count,
16306 &cq_create->u.request.context,
16307 LPFC_CQ_CNT_WORD7);
16308 break;
16309 }
16310 fallthrough;
16311 default:
16312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16313 "0361 Unsupported CQ count: "
16314 "entry cnt %d sz %d pg cnt %d\n",
16315 cq->entry_count, cq->entry_size,
16316 cq->page_count);
16317 if (cq->entry_count < 256) {
16318 status = -EINVAL;
16319 goto out;
16320 }
16321 fallthrough; /* otherwise default to smallest count */
16322 case 256:
16323 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16324 LPFC_CQ_CNT_256);
16325 break;
16326 case 512:
16327 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16328 LPFC_CQ_CNT_512);
16329 break;
16330 case 1024:
16331 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16332 LPFC_CQ_CNT_1024);
16333 break;
16334 }
16335 list_for_each_entry(dmabuf, &cq->page_list, list) {
16336 memset(dmabuf->virt, 0, cq->page_size);
16337 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16338 putPaddrLow(dmabuf->phys);
16339 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16340 putPaddrHigh(dmabuf->phys);
16341 }
16342 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16343
16344 /* The IOCTL status is embedded in the mailbox subheader. */
16345 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16346 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16347 if (shdr_status || shdr_add_status || rc) {
16348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16349 "2501 CQ_CREATE mailbox failed with "
16350 "status x%x add_status x%x, mbx status x%x\n",
16351 shdr_status, shdr_add_status, rc);
16352 status = -ENXIO;
16353 goto out;
16354 }
16355 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16356 if (cq->queue_id == 0xFFFF) {
16357 status = -ENXIO;
16358 goto out;
16359 }
16360 /* link the cq onto the parent eq child list */
16361 list_add_tail(&cq->list, &eq->child_list);
16362 /* Set up completion queue's type and subtype */
16363 cq->type = type;
16364 cq->subtype = subtype;
16365 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16366 cq->assoc_qid = eq->queue_id;
16367 cq->assoc_qp = eq;
16368 cq->host_index = 0;
16369 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16370 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16371
16372 if (cq->queue_id > phba->sli4_hba.cq_max)
16373 phba->sli4_hba.cq_max = cq->queue_id;
16374 out:
16375 mempool_free(mbox, phba->mbox_mem_pool);
16376 return status;
16377 }
16378
16379 /**
16380 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16381 * @phba: HBA structure that indicates port to create a queue on.
16382 * @cqp: The queue structure array to use to create the completion queues.
16383 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
16384 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16385 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16386 *
16387 * This function creates a set of completion queue, s to support MRQ
16388 * as detailed in @cqp, on a port,
16389 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16390 *
16391 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16392 * is used to get the entry count and entry size that are necessary to
16393 * determine the number of pages to allocate and use for this queue. The @eq
16394 * is used to indicate which event queue to bind this completion queue to. This
16395 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16396 * completion queue. This function is asynchronous and will wait for the mailbox
16397 * command to finish before continuing.
16398 *
16399 * On success this function will return a zero. If unable to allocate enough
16400 * memory this function will return -ENOMEM. If the queue create mailbox command
16401 * fails this function will return -ENXIO.
16402 **/
16403 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)16404 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16405 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16406 uint32_t subtype)
16407 {
16408 struct lpfc_queue *cq;
16409 struct lpfc_queue *eq;
16410 struct lpfc_mbx_cq_create_set *cq_set;
16411 struct lpfc_dmabuf *dmabuf;
16412 LPFC_MBOXQ_t *mbox;
16413 int rc, length, alloclen, status = 0;
16414 int cnt, idx, numcq, page_idx = 0;
16415 uint32_t shdr_status, shdr_add_status;
16416 union lpfc_sli4_cfg_shdr *shdr;
16417 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16418
16419 /* sanity check on queue memory */
16420 numcq = phba->cfg_nvmet_mrq;
16421 if (!cqp || !hdwq || !numcq)
16422 return -ENODEV;
16423
16424 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16425 if (!mbox)
16426 return -ENOMEM;
16427
16428 length = sizeof(struct lpfc_mbx_cq_create_set);
16429 length += ((numcq * cqp[0]->page_count) *
16430 sizeof(struct dma_address));
16431 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16432 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16433 LPFC_SLI4_MBX_NEMBED);
16434 if (alloclen < length) {
16435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16436 "3098 Allocated DMA memory size (%d) is "
16437 "less than the requested DMA memory size "
16438 "(%d)\n", alloclen, length);
16439 status = -ENOMEM;
16440 goto out;
16441 }
16442 cq_set = mbox->sge_array->addr[0];
16443 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16444 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16445
16446 for (idx = 0; idx < numcq; idx++) {
16447 cq = cqp[idx];
16448 eq = hdwq[idx].hba_eq;
16449 if (!cq || !eq) {
16450 status = -ENOMEM;
16451 goto out;
16452 }
16453 if (!phba->sli4_hba.pc_sli4_params.supported)
16454 hw_page_size = cq->page_size;
16455
16456 switch (idx) {
16457 case 0:
16458 bf_set(lpfc_mbx_cq_create_set_page_size,
16459 &cq_set->u.request,
16460 (hw_page_size / SLI4_PAGE_SIZE));
16461 bf_set(lpfc_mbx_cq_create_set_num_pages,
16462 &cq_set->u.request, cq->page_count);
16463 bf_set(lpfc_mbx_cq_create_set_evt,
16464 &cq_set->u.request, 1);
16465 bf_set(lpfc_mbx_cq_create_set_valid,
16466 &cq_set->u.request, 1);
16467 bf_set(lpfc_mbx_cq_create_set_cqe_size,
16468 &cq_set->u.request, 0);
16469 bf_set(lpfc_mbx_cq_create_set_num_cq,
16470 &cq_set->u.request, numcq);
16471 bf_set(lpfc_mbx_cq_create_set_autovalid,
16472 &cq_set->u.request,
16473 phba->sli4_hba.pc_sli4_params.cqav);
16474 switch (cq->entry_count) {
16475 case 2048:
16476 case 4096:
16477 if (phba->sli4_hba.pc_sli4_params.cqv ==
16478 LPFC_Q_CREATE_VERSION_2) {
16479 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16480 &cq_set->u.request,
16481 cq->entry_count);
16482 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16483 &cq_set->u.request,
16484 LPFC_CQ_CNT_WORD7);
16485 break;
16486 }
16487 fallthrough;
16488 default:
16489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16490 "3118 Bad CQ count. (%d)\n",
16491 cq->entry_count);
16492 if (cq->entry_count < 256) {
16493 status = -EINVAL;
16494 goto out;
16495 }
16496 fallthrough; /* otherwise default to smallest */
16497 case 256:
16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16499 &cq_set->u.request, LPFC_CQ_CNT_256);
16500 break;
16501 case 512:
16502 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16503 &cq_set->u.request, LPFC_CQ_CNT_512);
16504 break;
16505 case 1024:
16506 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16507 &cq_set->u.request, LPFC_CQ_CNT_1024);
16508 break;
16509 }
16510 bf_set(lpfc_mbx_cq_create_set_eq_id0,
16511 &cq_set->u.request, eq->queue_id);
16512 break;
16513 case 1:
16514 bf_set(lpfc_mbx_cq_create_set_eq_id1,
16515 &cq_set->u.request, eq->queue_id);
16516 break;
16517 case 2:
16518 bf_set(lpfc_mbx_cq_create_set_eq_id2,
16519 &cq_set->u.request, eq->queue_id);
16520 break;
16521 case 3:
16522 bf_set(lpfc_mbx_cq_create_set_eq_id3,
16523 &cq_set->u.request, eq->queue_id);
16524 break;
16525 case 4:
16526 bf_set(lpfc_mbx_cq_create_set_eq_id4,
16527 &cq_set->u.request, eq->queue_id);
16528 break;
16529 case 5:
16530 bf_set(lpfc_mbx_cq_create_set_eq_id5,
16531 &cq_set->u.request, eq->queue_id);
16532 break;
16533 case 6:
16534 bf_set(lpfc_mbx_cq_create_set_eq_id6,
16535 &cq_set->u.request, eq->queue_id);
16536 break;
16537 case 7:
16538 bf_set(lpfc_mbx_cq_create_set_eq_id7,
16539 &cq_set->u.request, eq->queue_id);
16540 break;
16541 case 8:
16542 bf_set(lpfc_mbx_cq_create_set_eq_id8,
16543 &cq_set->u.request, eq->queue_id);
16544 break;
16545 case 9:
16546 bf_set(lpfc_mbx_cq_create_set_eq_id9,
16547 &cq_set->u.request, eq->queue_id);
16548 break;
16549 case 10:
16550 bf_set(lpfc_mbx_cq_create_set_eq_id10,
16551 &cq_set->u.request, eq->queue_id);
16552 break;
16553 case 11:
16554 bf_set(lpfc_mbx_cq_create_set_eq_id11,
16555 &cq_set->u.request, eq->queue_id);
16556 break;
16557 case 12:
16558 bf_set(lpfc_mbx_cq_create_set_eq_id12,
16559 &cq_set->u.request, eq->queue_id);
16560 break;
16561 case 13:
16562 bf_set(lpfc_mbx_cq_create_set_eq_id13,
16563 &cq_set->u.request, eq->queue_id);
16564 break;
16565 case 14:
16566 bf_set(lpfc_mbx_cq_create_set_eq_id14,
16567 &cq_set->u.request, eq->queue_id);
16568 break;
16569 case 15:
16570 bf_set(lpfc_mbx_cq_create_set_eq_id15,
16571 &cq_set->u.request, eq->queue_id);
16572 break;
16573 }
16574
16575 /* link the cq onto the parent eq child list */
16576 list_add_tail(&cq->list, &eq->child_list);
16577 /* Set up completion queue's type and subtype */
16578 cq->type = type;
16579 cq->subtype = subtype;
16580 cq->assoc_qid = eq->queue_id;
16581 cq->assoc_qp = eq;
16582 cq->host_index = 0;
16583 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16584 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16585 cq->entry_count);
16586 cq->chann = idx;
16587
16588 rc = 0;
16589 list_for_each_entry(dmabuf, &cq->page_list, list) {
16590 memset(dmabuf->virt, 0, hw_page_size);
16591 cnt = page_idx + dmabuf->buffer_tag;
16592 cq_set->u.request.page[cnt].addr_lo =
16593 putPaddrLow(dmabuf->phys);
16594 cq_set->u.request.page[cnt].addr_hi =
16595 putPaddrHigh(dmabuf->phys);
16596 rc++;
16597 }
16598 page_idx += rc;
16599 }
16600
16601 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16602
16603 /* The IOCTL status is embedded in the mailbox subheader. */
16604 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16606 if (shdr_status || shdr_add_status || rc) {
16607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16608 "3119 CQ_CREATE_SET mailbox failed with "
16609 "status x%x add_status x%x, mbx status x%x\n",
16610 shdr_status, shdr_add_status, rc);
16611 status = -ENXIO;
16612 goto out;
16613 }
16614 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16615 if (rc == 0xFFFF) {
16616 status = -ENXIO;
16617 goto out;
16618 }
16619
16620 for (idx = 0; idx < numcq; idx++) {
16621 cq = cqp[idx];
16622 cq->queue_id = rc + idx;
16623 if (cq->queue_id > phba->sli4_hba.cq_max)
16624 phba->sli4_hba.cq_max = cq->queue_id;
16625 }
16626
16627 out:
16628 lpfc_sli4_mbox_cmd_free(phba, mbox);
16629 return status;
16630 }
16631
16632 /**
16633 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16634 * @phba: HBA structure that indicates port to create a queue on.
16635 * @mq: The queue structure to use to create the mailbox queue.
16636 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16637 * @cq: The completion queue to associate with this cq.
16638 *
16639 * This function provides failback (fb) functionality when the
16640 * mq_create_ext fails on older FW generations. It's purpose is identical
16641 * to mq_create_ext otherwise.
16642 *
16643 * This routine cannot fail as all attributes were previously accessed and
16644 * initialized in mq_create_ext.
16645 **/
16646 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)16647 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16648 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16649 {
16650 struct lpfc_mbx_mq_create *mq_create;
16651 struct lpfc_dmabuf *dmabuf;
16652 int length;
16653
16654 length = (sizeof(struct lpfc_mbx_mq_create) -
16655 sizeof(struct lpfc_sli4_cfg_mhdr));
16656 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16657 LPFC_MBOX_OPCODE_MQ_CREATE,
16658 length, LPFC_SLI4_MBX_EMBED);
16659 mq_create = &mbox->u.mqe.un.mq_create;
16660 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16661 mq->page_count);
16662 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16663 cq->queue_id);
16664 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16665 switch (mq->entry_count) {
16666 case 16:
16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16668 LPFC_MQ_RING_SIZE_16);
16669 break;
16670 case 32:
16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16672 LPFC_MQ_RING_SIZE_32);
16673 break;
16674 case 64:
16675 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16676 LPFC_MQ_RING_SIZE_64);
16677 break;
16678 case 128:
16679 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16680 LPFC_MQ_RING_SIZE_128);
16681 break;
16682 }
16683 list_for_each_entry(dmabuf, &mq->page_list, list) {
16684 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16685 putPaddrLow(dmabuf->phys);
16686 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16687 putPaddrHigh(dmabuf->phys);
16688 }
16689 }
16690
16691 /**
16692 * lpfc_mq_create - Create a mailbox Queue on the HBA
16693 * @phba: HBA structure that indicates port to create a queue on.
16694 * @mq: The queue structure to use to create the mailbox queue.
16695 * @cq: The completion queue to associate with this cq.
16696 * @subtype: The queue's subtype.
16697 *
16698 * This function creates a mailbox queue, as detailed in @mq, on a port,
16699 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16700 *
16701 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16702 * is used to get the entry count and entry size that are necessary to
16703 * determine the number of pages to allocate and use for this queue. This
16704 * function will send the MQ_CREATE mailbox command to the HBA to setup the
16705 * mailbox queue. This function is asynchronous and will wait for the mailbox
16706 * command to finish before continuing.
16707 *
16708 * On success this function will return a zero. If unable to allocate enough
16709 * memory this function will return -ENOMEM. If the queue create mailbox command
16710 * fails this function will return -ENXIO.
16711 **/
16712 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)16713 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16714 struct lpfc_queue *cq, uint32_t subtype)
16715 {
16716 struct lpfc_mbx_mq_create *mq_create;
16717 struct lpfc_mbx_mq_create_ext *mq_create_ext;
16718 struct lpfc_dmabuf *dmabuf;
16719 LPFC_MBOXQ_t *mbox;
16720 int rc, length, status = 0;
16721 uint32_t shdr_status, shdr_add_status;
16722 union lpfc_sli4_cfg_shdr *shdr;
16723 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16724
16725 /* sanity check on queue memory */
16726 if (!mq || !cq)
16727 return -ENODEV;
16728 if (!phba->sli4_hba.pc_sli4_params.supported)
16729 hw_page_size = SLI4_PAGE_SIZE;
16730
16731 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16732 if (!mbox)
16733 return -ENOMEM;
16734 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16735 sizeof(struct lpfc_sli4_cfg_mhdr));
16736 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16737 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16738 length, LPFC_SLI4_MBX_EMBED);
16739
16740 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16741 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16742 bf_set(lpfc_mbx_mq_create_ext_num_pages,
16743 &mq_create_ext->u.request, mq->page_count);
16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16745 &mq_create_ext->u.request, 1);
16746 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16747 &mq_create_ext->u.request, 1);
16748 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16749 &mq_create_ext->u.request, 1);
16750 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16751 &mq_create_ext->u.request, 1);
16752 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16753 &mq_create_ext->u.request, 1);
16754 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16755 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16756 phba->sli4_hba.pc_sli4_params.mqv);
16757 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16758 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16759 cq->queue_id);
16760 else
16761 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16762 cq->queue_id);
16763 switch (mq->entry_count) {
16764 default:
16765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16766 "0362 Unsupported MQ count. (%d)\n",
16767 mq->entry_count);
16768 if (mq->entry_count < 16) {
16769 status = -EINVAL;
16770 goto out;
16771 }
16772 fallthrough; /* otherwise default to smallest count */
16773 case 16:
16774 bf_set(lpfc_mq_context_ring_size,
16775 &mq_create_ext->u.request.context,
16776 LPFC_MQ_RING_SIZE_16);
16777 break;
16778 case 32:
16779 bf_set(lpfc_mq_context_ring_size,
16780 &mq_create_ext->u.request.context,
16781 LPFC_MQ_RING_SIZE_32);
16782 break;
16783 case 64:
16784 bf_set(lpfc_mq_context_ring_size,
16785 &mq_create_ext->u.request.context,
16786 LPFC_MQ_RING_SIZE_64);
16787 break;
16788 case 128:
16789 bf_set(lpfc_mq_context_ring_size,
16790 &mq_create_ext->u.request.context,
16791 LPFC_MQ_RING_SIZE_128);
16792 break;
16793 }
16794 list_for_each_entry(dmabuf, &mq->page_list, list) {
16795 memset(dmabuf->virt, 0, hw_page_size);
16796 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16797 putPaddrLow(dmabuf->phys);
16798 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16799 putPaddrHigh(dmabuf->phys);
16800 }
16801 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16802 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16803 &mq_create_ext->u.response);
16804 if (rc != MBX_SUCCESS) {
16805 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16806 "2795 MQ_CREATE_EXT failed with "
16807 "status x%x. Failback to MQ_CREATE.\n",
16808 rc);
16809 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16810 mq_create = &mbox->u.mqe.un.mq_create;
16811 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16812 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16813 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16814 &mq_create->u.response);
16815 }
16816
16817 /* The IOCTL status is embedded in the mailbox subheader. */
16818 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16819 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16820 if (shdr_status || shdr_add_status || rc) {
16821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16822 "2502 MQ_CREATE mailbox failed with "
16823 "status x%x add_status x%x, mbx status x%x\n",
16824 shdr_status, shdr_add_status, rc);
16825 status = -ENXIO;
16826 goto out;
16827 }
16828 if (mq->queue_id == 0xFFFF) {
16829 status = -ENXIO;
16830 goto out;
16831 }
16832 mq->type = LPFC_MQ;
16833 mq->assoc_qid = cq->queue_id;
16834 mq->subtype = subtype;
16835 mq->host_index = 0;
16836 mq->hba_index = 0;
16837
16838 /* link the mq onto the parent cq child list */
16839 list_add_tail(&mq->list, &cq->child_list);
16840 out:
16841 mempool_free(mbox, phba->mbox_mem_pool);
16842 return status;
16843 }
16844
16845 /**
16846 * lpfc_wq_create - Create a Work Queue on the HBA
16847 * @phba: HBA structure that indicates port to create a queue on.
16848 * @wq: The queue structure to use to create the work queue.
16849 * @cq: The completion queue to bind this work queue to.
16850 * @subtype: The subtype of the work queue indicating its functionality.
16851 *
16852 * This function creates a work queue, as detailed in @wq, on a port, described
16853 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16854 *
16855 * The @phba struct is used to send mailbox command to HBA. The @wq struct
16856 * is used to get the entry count and entry size that are necessary to
16857 * determine the number of pages to allocate and use for this queue. The @cq
16858 * is used to indicate which completion queue to bind this work queue to. This
16859 * function will send the WQ_CREATE mailbox command to the HBA to setup the
16860 * work queue. This function is asynchronous and will wait for the mailbox
16861 * command to finish before continuing.
16862 *
16863 * On success this function will return a zero. If unable to allocate enough
16864 * memory this function will return -ENOMEM. If the queue create mailbox command
16865 * fails this function will return -ENXIO.
16866 **/
16867 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)16868 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16869 struct lpfc_queue *cq, uint32_t subtype)
16870 {
16871 struct lpfc_mbx_wq_create *wq_create;
16872 struct lpfc_dmabuf *dmabuf;
16873 LPFC_MBOXQ_t *mbox;
16874 int rc, length, status = 0;
16875 uint32_t shdr_status, shdr_add_status;
16876 union lpfc_sli4_cfg_shdr *shdr;
16877 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16878 struct dma_address *page;
16879 void __iomem *bar_memmap_p;
16880 uint32_t db_offset;
16881 uint16_t pci_barset;
16882 uint8_t dpp_barset;
16883 uint32_t dpp_offset;
16884 uint8_t wq_create_version;
16885 #ifdef CONFIG_X86
16886 unsigned long pg_addr;
16887 #endif
16888
16889 /* sanity check on queue memory */
16890 if (!wq || !cq)
16891 return -ENODEV;
16892 if (!phba->sli4_hba.pc_sli4_params.supported)
16893 hw_page_size = wq->page_size;
16894
16895 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16896 if (!mbox)
16897 return -ENOMEM;
16898 length = (sizeof(struct lpfc_mbx_wq_create) -
16899 sizeof(struct lpfc_sli4_cfg_mhdr));
16900 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16901 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16902 length, LPFC_SLI4_MBX_EMBED);
16903 wq_create = &mbox->u.mqe.un.wq_create;
16904 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16905 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16906 wq->page_count);
16907 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16908 cq->queue_id);
16909
16910 /* wqv is the earliest version supported, NOT the latest */
16911 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16912 phba->sli4_hba.pc_sli4_params.wqv);
16913
16914 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16915 (wq->page_size > SLI4_PAGE_SIZE))
16916 wq_create_version = LPFC_Q_CREATE_VERSION_1;
16917 else
16918 wq_create_version = LPFC_Q_CREATE_VERSION_0;
16919
16920 switch (wq_create_version) {
16921 case LPFC_Q_CREATE_VERSION_1:
16922 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16923 wq->entry_count);
16924 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16925 LPFC_Q_CREATE_VERSION_1);
16926
16927 switch (wq->entry_size) {
16928 default:
16929 case 64:
16930 bf_set(lpfc_mbx_wq_create_wqe_size,
16931 &wq_create->u.request_1,
16932 LPFC_WQ_WQE_SIZE_64);
16933 break;
16934 case 128:
16935 bf_set(lpfc_mbx_wq_create_wqe_size,
16936 &wq_create->u.request_1,
16937 LPFC_WQ_WQE_SIZE_128);
16938 break;
16939 }
16940 /* Request DPP by default */
16941 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16942 bf_set(lpfc_mbx_wq_create_page_size,
16943 &wq_create->u.request_1,
16944 (wq->page_size / SLI4_PAGE_SIZE));
16945 page = wq_create->u.request_1.page;
16946 break;
16947 default:
16948 page = wq_create->u.request.page;
16949 break;
16950 }
16951
16952 list_for_each_entry(dmabuf, &wq->page_list, list) {
16953 memset(dmabuf->virt, 0, hw_page_size);
16954 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16955 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16956 }
16957
16958 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16959 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16960
16961 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16962 /* The IOCTL status is embedded in the mailbox subheader. */
16963 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16964 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16965 if (shdr_status || shdr_add_status || rc) {
16966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16967 "2503 WQ_CREATE mailbox failed with "
16968 "status x%x add_status x%x, mbx status x%x\n",
16969 shdr_status, shdr_add_status, rc);
16970 status = -ENXIO;
16971 goto out;
16972 }
16973
16974 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16975 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16976 &wq_create->u.response);
16977 else
16978 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16979 &wq_create->u.response_1);
16980
16981 if (wq->queue_id == 0xFFFF) {
16982 status = -ENXIO;
16983 goto out;
16984 }
16985
16986 wq->db_format = LPFC_DB_LIST_FORMAT;
16987 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16988 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16989 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16990 &wq_create->u.response);
16991 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16992 (wq->db_format != LPFC_DB_RING_FORMAT)) {
16993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16994 "3265 WQ[%d] doorbell format "
16995 "not supported: x%x\n",
16996 wq->queue_id, wq->db_format);
16997 status = -EINVAL;
16998 goto out;
16999 }
17000 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
17001 &wq_create->u.response);
17002 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17003 pci_barset);
17004 if (!bar_memmap_p) {
17005 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17006 "3263 WQ[%d] failed to memmap "
17007 "pci barset:x%x\n",
17008 wq->queue_id, pci_barset);
17009 status = -ENOMEM;
17010 goto out;
17011 }
17012 db_offset = wq_create->u.response.doorbell_offset;
17013 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
17014 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
17015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17016 "3252 WQ[%d] doorbell offset "
17017 "not supported: x%x\n",
17018 wq->queue_id, db_offset);
17019 status = -EINVAL;
17020 goto out;
17021 }
17022 wq->db_regaddr = bar_memmap_p + db_offset;
17023 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17024 "3264 WQ[%d]: barset:x%x, offset:x%x, "
17025 "format:x%x\n", wq->queue_id,
17026 pci_barset, db_offset, wq->db_format);
17027 } else
17028 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17029 } else {
17030 /* Check if DPP was honored by the firmware */
17031 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
17032 &wq_create->u.response_1);
17033 if (wq->dpp_enable) {
17034 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
17035 &wq_create->u.response_1);
17036 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17037 pci_barset);
17038 if (!bar_memmap_p) {
17039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17040 "3267 WQ[%d] failed to memmap "
17041 "pci barset:x%x\n",
17042 wq->queue_id, pci_barset);
17043 status = -ENOMEM;
17044 goto out;
17045 }
17046 db_offset = wq_create->u.response_1.doorbell_offset;
17047 wq->db_regaddr = bar_memmap_p + db_offset;
17048 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
17049 &wq_create->u.response_1);
17050 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
17051 &wq_create->u.response_1);
17052 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17053 dpp_barset);
17054 if (!bar_memmap_p) {
17055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17056 "3268 WQ[%d] failed to memmap "
17057 "pci barset:x%x\n",
17058 wq->queue_id, dpp_barset);
17059 status = -ENOMEM;
17060 goto out;
17061 }
17062 dpp_offset = wq_create->u.response_1.dpp_offset;
17063 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
17064 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17065 "3271 WQ[%d]: barset:x%x, offset:x%x, "
17066 "dpp_id:x%x dpp_barset:x%x "
17067 "dpp_offset:x%x\n",
17068 wq->queue_id, pci_barset, db_offset,
17069 wq->dpp_id, dpp_barset, dpp_offset);
17070
17071 #ifdef CONFIG_X86
17072 /* Enable combined writes for DPP aperture */
17073 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
17074 rc = set_memory_wc(pg_addr, 1);
17075 if (rc) {
17076 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17077 "3272 Cannot setup Combined "
17078 "Write on WQ[%d] - disable DPP\n",
17079 wq->queue_id);
17080 phba->cfg_enable_dpp = 0;
17081 }
17082 #else
17083 phba->cfg_enable_dpp = 0;
17084 #endif
17085 } else
17086 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17087 }
17088 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17089 if (wq->pring == NULL) {
17090 status = -ENOMEM;
17091 goto out;
17092 }
17093 wq->type = LPFC_WQ;
17094 wq->assoc_qid = cq->queue_id;
17095 wq->subtype = subtype;
17096 wq->host_index = 0;
17097 wq->hba_index = 0;
17098 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17099
17100 /* link the wq onto the parent cq child list */
17101 list_add_tail(&wq->list, &cq->child_list);
17102 out:
17103 mempool_free(mbox, phba->mbox_mem_pool);
17104 return status;
17105 }
17106
17107 /**
17108 * lpfc_rq_create - Create a Receive Queue on the HBA
17109 * @phba: HBA structure that indicates port to create a queue on.
17110 * @hrq: The queue structure to use to create the header receive queue.
17111 * @drq: The queue structure to use to create the data receive queue.
17112 * @cq: The completion queue to bind this work queue to.
17113 * @subtype: The subtype of the work queue indicating its functionality.
17114 *
17115 * This function creates a receive buffer queue pair , as detailed in @hrq and
17116 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17117 * to the HBA.
17118 *
17119 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17120 * struct is used to get the entry count that is necessary to determine the
17121 * number of pages to use for this queue. The @cq is used to indicate which
17122 * completion queue to bind received buffers that are posted to these queues to.
17123 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17124 * receive queue pair. This function is asynchronous and will wait for the
17125 * mailbox command to finish before continuing.
17126 *
17127 * On success this function will return a zero. If unable to allocate enough
17128 * memory this function will return -ENOMEM. If the queue create mailbox command
17129 * fails this function will return -ENXIO.
17130 **/
17131 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)17132 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17133 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17134 {
17135 struct lpfc_mbx_rq_create *rq_create;
17136 struct lpfc_dmabuf *dmabuf;
17137 LPFC_MBOXQ_t *mbox;
17138 int rc, length, status = 0;
17139 uint32_t shdr_status, shdr_add_status;
17140 union lpfc_sli4_cfg_shdr *shdr;
17141 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17142 void __iomem *bar_memmap_p;
17143 uint32_t db_offset;
17144 uint16_t pci_barset;
17145
17146 /* sanity check on queue memory */
17147 if (!hrq || !drq || !cq)
17148 return -ENODEV;
17149 if (!phba->sli4_hba.pc_sli4_params.supported)
17150 hw_page_size = SLI4_PAGE_SIZE;
17151
17152 if (hrq->entry_count != drq->entry_count)
17153 return -EINVAL;
17154 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17155 if (!mbox)
17156 return -ENOMEM;
17157 length = (sizeof(struct lpfc_mbx_rq_create) -
17158 sizeof(struct lpfc_sli4_cfg_mhdr));
17159 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17160 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17161 length, LPFC_SLI4_MBX_EMBED);
17162 rq_create = &mbox->u.mqe.un.rq_create;
17163 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17164 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17165 phba->sli4_hba.pc_sli4_params.rqv);
17166 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17167 bf_set(lpfc_rq_context_rqe_count_1,
17168 &rq_create->u.request.context,
17169 hrq->entry_count);
17170 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17171 bf_set(lpfc_rq_context_rqe_size,
17172 &rq_create->u.request.context,
17173 LPFC_RQE_SIZE_8);
17174 bf_set(lpfc_rq_context_page_size,
17175 &rq_create->u.request.context,
17176 LPFC_RQ_PAGE_SIZE_4096);
17177 } else {
17178 switch (hrq->entry_count) {
17179 default:
17180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17181 "2535 Unsupported RQ count. (%d)\n",
17182 hrq->entry_count);
17183 if (hrq->entry_count < 512) {
17184 status = -EINVAL;
17185 goto out;
17186 }
17187 fallthrough; /* otherwise default to smallest count */
17188 case 512:
17189 bf_set(lpfc_rq_context_rqe_count,
17190 &rq_create->u.request.context,
17191 LPFC_RQ_RING_SIZE_512);
17192 break;
17193 case 1024:
17194 bf_set(lpfc_rq_context_rqe_count,
17195 &rq_create->u.request.context,
17196 LPFC_RQ_RING_SIZE_1024);
17197 break;
17198 case 2048:
17199 bf_set(lpfc_rq_context_rqe_count,
17200 &rq_create->u.request.context,
17201 LPFC_RQ_RING_SIZE_2048);
17202 break;
17203 case 4096:
17204 bf_set(lpfc_rq_context_rqe_count,
17205 &rq_create->u.request.context,
17206 LPFC_RQ_RING_SIZE_4096);
17207 break;
17208 }
17209 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17210 LPFC_HDR_BUF_SIZE);
17211 }
17212 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17213 cq->queue_id);
17214 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17215 hrq->page_count);
17216 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17217 memset(dmabuf->virt, 0, hw_page_size);
17218 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17219 putPaddrLow(dmabuf->phys);
17220 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17221 putPaddrHigh(dmabuf->phys);
17222 }
17223 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17224 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17225
17226 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17227 /* The IOCTL status is embedded in the mailbox subheader. */
17228 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17229 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17230 if (shdr_status || shdr_add_status || rc) {
17231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17232 "2504 RQ_CREATE mailbox failed with "
17233 "status x%x add_status x%x, mbx status x%x\n",
17234 shdr_status, shdr_add_status, rc);
17235 status = -ENXIO;
17236 goto out;
17237 }
17238 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17239 if (hrq->queue_id == 0xFFFF) {
17240 status = -ENXIO;
17241 goto out;
17242 }
17243
17244 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17245 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17246 &rq_create->u.response);
17247 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17248 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17250 "3262 RQ [%d] doorbell format not "
17251 "supported: x%x\n", hrq->queue_id,
17252 hrq->db_format);
17253 status = -EINVAL;
17254 goto out;
17255 }
17256
17257 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17258 &rq_create->u.response);
17259 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17260 if (!bar_memmap_p) {
17261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17262 "3269 RQ[%d] failed to memmap pci "
17263 "barset:x%x\n", hrq->queue_id,
17264 pci_barset);
17265 status = -ENOMEM;
17266 goto out;
17267 }
17268
17269 db_offset = rq_create->u.response.doorbell_offset;
17270 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17271 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17273 "3270 RQ[%d] doorbell offset not "
17274 "supported: x%x\n", hrq->queue_id,
17275 db_offset);
17276 status = -EINVAL;
17277 goto out;
17278 }
17279 hrq->db_regaddr = bar_memmap_p + db_offset;
17280 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17281 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17282 "format:x%x\n", hrq->queue_id, pci_barset,
17283 db_offset, hrq->db_format);
17284 } else {
17285 hrq->db_format = LPFC_DB_RING_FORMAT;
17286 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17287 }
17288 hrq->type = LPFC_HRQ;
17289 hrq->assoc_qid = cq->queue_id;
17290 hrq->subtype = subtype;
17291 hrq->host_index = 0;
17292 hrq->hba_index = 0;
17293 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17294
17295 /* now create the data queue */
17296 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17297 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17298 length, LPFC_SLI4_MBX_EMBED);
17299 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17300 phba->sli4_hba.pc_sli4_params.rqv);
17301 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17302 bf_set(lpfc_rq_context_rqe_count_1,
17303 &rq_create->u.request.context, hrq->entry_count);
17304 if (subtype == LPFC_NVMET)
17305 rq_create->u.request.context.buffer_size =
17306 LPFC_NVMET_DATA_BUF_SIZE;
17307 else
17308 rq_create->u.request.context.buffer_size =
17309 LPFC_DATA_BUF_SIZE;
17310 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17311 LPFC_RQE_SIZE_8);
17312 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17313 (PAGE_SIZE/SLI4_PAGE_SIZE));
17314 } else {
17315 switch (drq->entry_count) {
17316 default:
17317 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17318 "2536 Unsupported RQ count. (%d)\n",
17319 drq->entry_count);
17320 if (drq->entry_count < 512) {
17321 status = -EINVAL;
17322 goto out;
17323 }
17324 fallthrough; /* otherwise default to smallest count */
17325 case 512:
17326 bf_set(lpfc_rq_context_rqe_count,
17327 &rq_create->u.request.context,
17328 LPFC_RQ_RING_SIZE_512);
17329 break;
17330 case 1024:
17331 bf_set(lpfc_rq_context_rqe_count,
17332 &rq_create->u.request.context,
17333 LPFC_RQ_RING_SIZE_1024);
17334 break;
17335 case 2048:
17336 bf_set(lpfc_rq_context_rqe_count,
17337 &rq_create->u.request.context,
17338 LPFC_RQ_RING_SIZE_2048);
17339 break;
17340 case 4096:
17341 bf_set(lpfc_rq_context_rqe_count,
17342 &rq_create->u.request.context,
17343 LPFC_RQ_RING_SIZE_4096);
17344 break;
17345 }
17346 if (subtype == LPFC_NVMET)
17347 bf_set(lpfc_rq_context_buf_size,
17348 &rq_create->u.request.context,
17349 LPFC_NVMET_DATA_BUF_SIZE);
17350 else
17351 bf_set(lpfc_rq_context_buf_size,
17352 &rq_create->u.request.context,
17353 LPFC_DATA_BUF_SIZE);
17354 }
17355 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17356 cq->queue_id);
17357 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17358 drq->page_count);
17359 list_for_each_entry(dmabuf, &drq->page_list, list) {
17360 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17361 putPaddrLow(dmabuf->phys);
17362 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17363 putPaddrHigh(dmabuf->phys);
17364 }
17365 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17366 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17367 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17368 /* The IOCTL status is embedded in the mailbox subheader. */
17369 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17370 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17371 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17372 if (shdr_status || shdr_add_status || rc) {
17373 status = -ENXIO;
17374 goto out;
17375 }
17376 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17377 if (drq->queue_id == 0xFFFF) {
17378 status = -ENXIO;
17379 goto out;
17380 }
17381 drq->type = LPFC_DRQ;
17382 drq->assoc_qid = cq->queue_id;
17383 drq->subtype = subtype;
17384 drq->host_index = 0;
17385 drq->hba_index = 0;
17386 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17387
17388 /* link the header and data RQs onto the parent cq child list */
17389 list_add_tail(&hrq->list, &cq->child_list);
17390 list_add_tail(&drq->list, &cq->child_list);
17391
17392 out:
17393 mempool_free(mbox, phba->mbox_mem_pool);
17394 return status;
17395 }
17396
17397 /**
17398 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17399 * @phba: HBA structure that indicates port to create a queue on.
17400 * @hrqp: The queue structure array to use to create the header receive queues.
17401 * @drqp: The queue structure array to use to create the data receive queues.
17402 * @cqp: The completion queue array to bind these receive queues to.
17403 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17404 *
17405 * This function creates a receive buffer queue pair , as detailed in @hrq and
17406 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17407 * to the HBA.
17408 *
17409 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17410 * struct is used to get the entry count that is necessary to determine the
17411 * number of pages to use for this queue. The @cq is used to indicate which
17412 * completion queue to bind received buffers that are posted to these queues to.
17413 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17414 * receive queue pair. This function is asynchronous and will wait for the
17415 * mailbox command to finish before continuing.
17416 *
17417 * On success this function will return a zero. If unable to allocate enough
17418 * memory this function will return -ENOMEM. If the queue create mailbox command
17419 * fails this function will return -ENXIO.
17420 **/
17421 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)17422 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17423 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17424 uint32_t subtype)
17425 {
17426 struct lpfc_queue *hrq, *drq, *cq;
17427 struct lpfc_mbx_rq_create_v2 *rq_create;
17428 struct lpfc_dmabuf *dmabuf;
17429 LPFC_MBOXQ_t *mbox;
17430 int rc, length, alloclen, status = 0;
17431 int cnt, idx, numrq, page_idx = 0;
17432 uint32_t shdr_status, shdr_add_status;
17433 union lpfc_sli4_cfg_shdr *shdr;
17434 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17435
17436 numrq = phba->cfg_nvmet_mrq;
17437 /* sanity check on array memory */
17438 if (!hrqp || !drqp || !cqp || !numrq)
17439 return -ENODEV;
17440 if (!phba->sli4_hba.pc_sli4_params.supported)
17441 hw_page_size = SLI4_PAGE_SIZE;
17442
17443 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17444 if (!mbox)
17445 return -ENOMEM;
17446
17447 length = sizeof(struct lpfc_mbx_rq_create_v2);
17448 length += ((2 * numrq * hrqp[0]->page_count) *
17449 sizeof(struct dma_address));
17450
17451 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17452 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17453 LPFC_SLI4_MBX_NEMBED);
17454 if (alloclen < length) {
17455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17456 "3099 Allocated DMA memory size (%d) is "
17457 "less than the requested DMA memory size "
17458 "(%d)\n", alloclen, length);
17459 status = -ENOMEM;
17460 goto out;
17461 }
17462
17463
17464
17465 rq_create = mbox->sge_array->addr[0];
17466 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17467
17468 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17469 cnt = 0;
17470
17471 for (idx = 0; idx < numrq; idx++) {
17472 hrq = hrqp[idx];
17473 drq = drqp[idx];
17474 cq = cqp[idx];
17475
17476 /* sanity check on queue memory */
17477 if (!hrq || !drq || !cq) {
17478 status = -ENODEV;
17479 goto out;
17480 }
17481
17482 if (hrq->entry_count != drq->entry_count) {
17483 status = -EINVAL;
17484 goto out;
17485 }
17486
17487 if (idx == 0) {
17488 bf_set(lpfc_mbx_rq_create_num_pages,
17489 &rq_create->u.request,
17490 hrq->page_count);
17491 bf_set(lpfc_mbx_rq_create_rq_cnt,
17492 &rq_create->u.request, (numrq * 2));
17493 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17494 1);
17495 bf_set(lpfc_rq_context_base_cq,
17496 &rq_create->u.request.context,
17497 cq->queue_id);
17498 bf_set(lpfc_rq_context_data_size,
17499 &rq_create->u.request.context,
17500 LPFC_NVMET_DATA_BUF_SIZE);
17501 bf_set(lpfc_rq_context_hdr_size,
17502 &rq_create->u.request.context,
17503 LPFC_HDR_BUF_SIZE);
17504 bf_set(lpfc_rq_context_rqe_count_1,
17505 &rq_create->u.request.context,
17506 hrq->entry_count);
17507 bf_set(lpfc_rq_context_rqe_size,
17508 &rq_create->u.request.context,
17509 LPFC_RQE_SIZE_8);
17510 bf_set(lpfc_rq_context_page_size,
17511 &rq_create->u.request.context,
17512 (PAGE_SIZE/SLI4_PAGE_SIZE));
17513 }
17514 rc = 0;
17515 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17516 memset(dmabuf->virt, 0, hw_page_size);
17517 cnt = page_idx + dmabuf->buffer_tag;
17518 rq_create->u.request.page[cnt].addr_lo =
17519 putPaddrLow(dmabuf->phys);
17520 rq_create->u.request.page[cnt].addr_hi =
17521 putPaddrHigh(dmabuf->phys);
17522 rc++;
17523 }
17524 page_idx += rc;
17525
17526 rc = 0;
17527 list_for_each_entry(dmabuf, &drq->page_list, list) {
17528 memset(dmabuf->virt, 0, hw_page_size);
17529 cnt = page_idx + dmabuf->buffer_tag;
17530 rq_create->u.request.page[cnt].addr_lo =
17531 putPaddrLow(dmabuf->phys);
17532 rq_create->u.request.page[cnt].addr_hi =
17533 putPaddrHigh(dmabuf->phys);
17534 rc++;
17535 }
17536 page_idx += rc;
17537
17538 hrq->db_format = LPFC_DB_RING_FORMAT;
17539 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17540 hrq->type = LPFC_HRQ;
17541 hrq->assoc_qid = cq->queue_id;
17542 hrq->subtype = subtype;
17543 hrq->host_index = 0;
17544 hrq->hba_index = 0;
17545 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17546
17547 drq->db_format = LPFC_DB_RING_FORMAT;
17548 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17549 drq->type = LPFC_DRQ;
17550 drq->assoc_qid = cq->queue_id;
17551 drq->subtype = subtype;
17552 drq->host_index = 0;
17553 drq->hba_index = 0;
17554 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17555
17556 list_add_tail(&hrq->list, &cq->child_list);
17557 list_add_tail(&drq->list, &cq->child_list);
17558 }
17559
17560 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17561 /* The IOCTL status is embedded in the mailbox subheader. */
17562 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17563 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17564 if (shdr_status || shdr_add_status || rc) {
17565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17566 "3120 RQ_CREATE mailbox failed with "
17567 "status x%x add_status x%x, mbx status x%x\n",
17568 shdr_status, shdr_add_status, rc);
17569 status = -ENXIO;
17570 goto out;
17571 }
17572 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17573 if (rc == 0xFFFF) {
17574 status = -ENXIO;
17575 goto out;
17576 }
17577
17578 /* Initialize all RQs with associated queue id */
17579 for (idx = 0; idx < numrq; idx++) {
17580 hrq = hrqp[idx];
17581 hrq->queue_id = rc + (2 * idx);
17582 drq = drqp[idx];
17583 drq->queue_id = rc + (2 * idx) + 1;
17584 }
17585
17586 out:
17587 lpfc_sli4_mbox_cmd_free(phba, mbox);
17588 return status;
17589 }
17590
17591 /**
17592 * lpfc_eq_destroy - Destroy an event Queue on the HBA
17593 * @phba: HBA structure that indicates port to destroy a queue on.
17594 * @eq: The queue structure associated with the queue to destroy.
17595 *
17596 * This function destroys a queue, as detailed in @eq by sending an mailbox
17597 * command, specific to the type of queue, to the HBA.
17598 *
17599 * The @eq struct is used to get the queue ID of the queue to destroy.
17600 *
17601 * On success this function will return a zero. If the queue destroy mailbox
17602 * command fails this function will return -ENXIO.
17603 **/
17604 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)17605 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17606 {
17607 LPFC_MBOXQ_t *mbox;
17608 int rc, length, status = 0;
17609 uint32_t shdr_status, shdr_add_status;
17610 union lpfc_sli4_cfg_shdr *shdr;
17611
17612 /* sanity check on queue memory */
17613 if (!eq)
17614 return -ENODEV;
17615
17616 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17617 goto list_remove;
17618
17619 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17620 if (!mbox)
17621 return -ENOMEM;
17622 length = (sizeof(struct lpfc_mbx_eq_destroy) -
17623 sizeof(struct lpfc_sli4_cfg_mhdr));
17624 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17625 LPFC_MBOX_OPCODE_EQ_DESTROY,
17626 length, LPFC_SLI4_MBX_EMBED);
17627 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17628 eq->queue_id);
17629 mbox->vport = eq->phba->pport;
17630 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17631
17632 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17633 /* The IOCTL status is embedded in the mailbox subheader. */
17634 shdr = (union lpfc_sli4_cfg_shdr *)
17635 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17636 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17637 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17638 if (shdr_status || shdr_add_status || rc) {
17639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17640 "2505 EQ_DESTROY mailbox failed with "
17641 "status x%x add_status x%x, mbx status x%x\n",
17642 shdr_status, shdr_add_status, rc);
17643 status = -ENXIO;
17644 }
17645 mempool_free(mbox, eq->phba->mbox_mem_pool);
17646
17647 list_remove:
17648 /* Remove eq from any list */
17649 list_del_init(&eq->list);
17650
17651 return status;
17652 }
17653
17654 /**
17655 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17656 * @phba: HBA structure that indicates port to destroy a queue on.
17657 * @cq: The queue structure associated with the queue to destroy.
17658 *
17659 * This function destroys a queue, as detailed in @cq by sending an mailbox
17660 * command, specific to the type of queue, to the HBA.
17661 *
17662 * The @cq struct is used to get the queue ID of the queue to destroy.
17663 *
17664 * On success this function will return a zero. If the queue destroy mailbox
17665 * command fails this function will return -ENXIO.
17666 **/
17667 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)17668 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17669 {
17670 LPFC_MBOXQ_t *mbox;
17671 int rc, length, status = 0;
17672 uint32_t shdr_status, shdr_add_status;
17673 union lpfc_sli4_cfg_shdr *shdr;
17674
17675 /* sanity check on queue memory */
17676 if (!cq)
17677 return -ENODEV;
17678
17679 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17680 goto list_remove;
17681
17682 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17683 if (!mbox)
17684 return -ENOMEM;
17685 length = (sizeof(struct lpfc_mbx_cq_destroy) -
17686 sizeof(struct lpfc_sli4_cfg_mhdr));
17687 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17688 LPFC_MBOX_OPCODE_CQ_DESTROY,
17689 length, LPFC_SLI4_MBX_EMBED);
17690 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17691 cq->queue_id);
17692 mbox->vport = cq->phba->pport;
17693 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17694 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17695 /* The IOCTL status is embedded in the mailbox subheader. */
17696 shdr = (union lpfc_sli4_cfg_shdr *)
17697 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
17698 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17699 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17700 if (shdr_status || shdr_add_status || rc) {
17701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17702 "2506 CQ_DESTROY mailbox failed with "
17703 "status x%x add_status x%x, mbx status x%x\n",
17704 shdr_status, shdr_add_status, rc);
17705 status = -ENXIO;
17706 }
17707 mempool_free(mbox, cq->phba->mbox_mem_pool);
17708
17709 list_remove:
17710 /* Remove cq from any list */
17711 list_del_init(&cq->list);
17712 return status;
17713 }
17714
17715 /**
17716 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17717 * @phba: HBA structure that indicates port to destroy a queue on.
17718 * @mq: The queue structure associated with the queue to destroy.
17719 *
17720 * This function destroys a queue, as detailed in @mq by sending an mailbox
17721 * command, specific to the type of queue, to the HBA.
17722 *
17723 * The @mq struct is used to get the queue ID of the queue to destroy.
17724 *
17725 * On success this function will return a zero. If the queue destroy mailbox
17726 * command fails this function will return -ENXIO.
17727 **/
17728 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)17729 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17730 {
17731 LPFC_MBOXQ_t *mbox;
17732 int rc, length, status = 0;
17733 uint32_t shdr_status, shdr_add_status;
17734 union lpfc_sli4_cfg_shdr *shdr;
17735
17736 /* sanity check on queue memory */
17737 if (!mq)
17738 return -ENODEV;
17739
17740 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17741 goto list_remove;
17742
17743 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17744 if (!mbox)
17745 return -ENOMEM;
17746 length = (sizeof(struct lpfc_mbx_mq_destroy) -
17747 sizeof(struct lpfc_sli4_cfg_mhdr));
17748 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17749 LPFC_MBOX_OPCODE_MQ_DESTROY,
17750 length, LPFC_SLI4_MBX_EMBED);
17751 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17752 mq->queue_id);
17753 mbox->vport = mq->phba->pport;
17754 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17755 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17756 /* The IOCTL status is embedded in the mailbox subheader. */
17757 shdr = (union lpfc_sli4_cfg_shdr *)
17758 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17759 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17760 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17761 if (shdr_status || shdr_add_status || rc) {
17762 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17763 "2507 MQ_DESTROY mailbox failed with "
17764 "status x%x add_status x%x, mbx status x%x\n",
17765 shdr_status, shdr_add_status, rc);
17766 status = -ENXIO;
17767 }
17768 mempool_free(mbox, mq->phba->mbox_mem_pool);
17769
17770 list_remove:
17771 /* Remove mq from any list */
17772 list_del_init(&mq->list);
17773 return status;
17774 }
17775
17776 /**
17777 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17778 * @phba: HBA structure that indicates port to destroy a queue on.
17779 * @wq: The queue structure associated with the queue to destroy.
17780 *
17781 * This function destroys a queue, as detailed in @wq by sending an mailbox
17782 * command, specific to the type of queue, to the HBA.
17783 *
17784 * The @wq struct is used to get the queue ID of the queue to destroy.
17785 *
17786 * On success this function will return a zero. If the queue destroy mailbox
17787 * command fails this function will return -ENXIO.
17788 **/
17789 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)17790 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17791 {
17792 LPFC_MBOXQ_t *mbox;
17793 int rc, length, status = 0;
17794 uint32_t shdr_status, shdr_add_status;
17795 union lpfc_sli4_cfg_shdr *shdr;
17796
17797 /* sanity check on queue memory */
17798 if (!wq)
17799 return -ENODEV;
17800
17801 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17802 goto list_remove;
17803
17804 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17805 if (!mbox)
17806 return -ENOMEM;
17807 length = (sizeof(struct lpfc_mbx_wq_destroy) -
17808 sizeof(struct lpfc_sli4_cfg_mhdr));
17809 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17810 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17811 length, LPFC_SLI4_MBX_EMBED);
17812 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17813 wq->queue_id);
17814 mbox->vport = wq->phba->pport;
17815 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17816 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17817 shdr = (union lpfc_sli4_cfg_shdr *)
17818 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17819 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17820 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17821 if (shdr_status || shdr_add_status || rc) {
17822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17823 "2508 WQ_DESTROY mailbox failed with "
17824 "status x%x add_status x%x, mbx status x%x\n",
17825 shdr_status, shdr_add_status, rc);
17826 status = -ENXIO;
17827 }
17828 mempool_free(mbox, wq->phba->mbox_mem_pool);
17829
17830 list_remove:
17831 /* Remove wq from any list */
17832 list_del_init(&wq->list);
17833 kfree(wq->pring);
17834 wq->pring = NULL;
17835 return status;
17836 }
17837
17838 /**
17839 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17840 * @phba: HBA structure that indicates port to destroy a queue on.
17841 * @hrq: The queue structure associated with the queue to destroy.
17842 * @drq: The queue structure associated with the queue to destroy.
17843 *
17844 * This function destroys a queue, as detailed in @rq by sending an mailbox
17845 * command, specific to the type of queue, to the HBA.
17846 *
17847 * The @rq struct is used to get the queue ID of the queue to destroy.
17848 *
17849 * On success this function will return a zero. If the queue destroy mailbox
17850 * command fails this function will return -ENXIO.
17851 **/
17852 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)17853 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17854 struct lpfc_queue *drq)
17855 {
17856 LPFC_MBOXQ_t *mbox;
17857 int rc, length, status = 0;
17858 uint32_t shdr_status, shdr_add_status;
17859 union lpfc_sli4_cfg_shdr *shdr;
17860
17861 /* sanity check on queue memory */
17862 if (!hrq || !drq)
17863 return -ENODEV;
17864
17865 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17866 goto list_remove;
17867
17868 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17869 if (!mbox)
17870 return -ENOMEM;
17871 length = (sizeof(struct lpfc_mbx_rq_destroy) -
17872 sizeof(struct lpfc_sli4_cfg_mhdr));
17873 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17874 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17875 length, LPFC_SLI4_MBX_EMBED);
17876 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17877 hrq->queue_id);
17878 mbox->vport = hrq->phba->pport;
17879 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17880 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17881 /* The IOCTL status is embedded in the mailbox subheader. */
17882 shdr = (union lpfc_sli4_cfg_shdr *)
17883 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17884 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17885 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17886 if (shdr_status || shdr_add_status || rc) {
17887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17888 "2509 RQ_DESTROY mailbox failed with "
17889 "status x%x add_status x%x, mbx status x%x\n",
17890 shdr_status, shdr_add_status, rc);
17891 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17892 return -ENXIO;
17893 }
17894 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17895 drq->queue_id);
17896 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17897 shdr = (union lpfc_sli4_cfg_shdr *)
17898 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17899 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17901 if (shdr_status || shdr_add_status || rc) {
17902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17903 "2510 RQ_DESTROY mailbox failed with "
17904 "status x%x add_status x%x, mbx status x%x\n",
17905 shdr_status, shdr_add_status, rc);
17906 status = -ENXIO;
17907 }
17908 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17909
17910 list_remove:
17911 list_del_init(&hrq->list);
17912 list_del_init(&drq->list);
17913 return status;
17914 }
17915
17916 /**
17917 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17918 * @phba: The virtual port for which this call being executed.
17919 * @pdma_phys_addr0: Physical address of the 1st SGL page.
17920 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17921 * @xritag: the xritag that ties this io to the SGL pages.
17922 *
17923 * This routine will post the sgl pages for the IO that has the xritag
17924 * that is in the iocbq structure. The xritag is assigned during iocbq
17925 * creation and persists for as long as the driver is loaded.
17926 * if the caller has fewer than 256 scatter gather segments to map then
17927 * pdma_phys_addr1 should be 0.
17928 * If the caller needs to map more than 256 scatter gather segment then
17929 * pdma_phys_addr1 should be a valid physical address.
17930 * physical address for SGLs must be 64 byte aligned.
17931 * If you are going to map 2 SGL's then the first one must have 256 entries
17932 * the second sgl can have between 1 and 256 entries.
17933 *
17934 * Return codes:
17935 * 0 - Success
17936 * -ENXIO, -ENOMEM - Failure
17937 **/
17938 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)17939 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17940 dma_addr_t pdma_phys_addr0,
17941 dma_addr_t pdma_phys_addr1,
17942 uint16_t xritag)
17943 {
17944 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17945 LPFC_MBOXQ_t *mbox;
17946 int rc;
17947 uint32_t shdr_status, shdr_add_status;
17948 uint32_t mbox_tmo;
17949 union lpfc_sli4_cfg_shdr *shdr;
17950
17951 if (xritag == NO_XRI) {
17952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17953 "0364 Invalid param:\n");
17954 return -EINVAL;
17955 }
17956
17957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17958 if (!mbox)
17959 return -ENOMEM;
17960
17961 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17962 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17963 sizeof(struct lpfc_mbx_post_sgl_pages) -
17964 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17965
17966 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17967 &mbox->u.mqe.un.post_sgl_pages;
17968 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17969 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17970
17971 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
17972 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17973 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17974 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17975
17976 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
17977 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17978 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17979 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17980 if (!phba->sli4_hba.intr_enable)
17981 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17982 else {
17983 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17984 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17985 }
17986 /* The IOCTL status is embedded in the mailbox subheader. */
17987 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17988 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17989 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17990 if (!phba->sli4_hba.intr_enable)
17991 mempool_free(mbox, phba->mbox_mem_pool);
17992 else if (rc != MBX_TIMEOUT)
17993 mempool_free(mbox, phba->mbox_mem_pool);
17994 if (shdr_status || shdr_add_status || rc) {
17995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17996 "2511 POST_SGL mailbox failed with "
17997 "status x%x add_status x%x, mbx status x%x\n",
17998 shdr_status, shdr_add_status, rc);
17999 }
18000 return 0;
18001 }
18002
18003 /**
18004 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
18005 * @phba: pointer to lpfc hba data structure.
18006 *
18007 * This routine is invoked to post rpi header templates to the
18008 * HBA consistent with the SLI-4 interface spec. This routine
18009 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18010 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18011 *
18012 * Returns
18013 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18014 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18015 **/
18016 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)18017 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
18018 {
18019 unsigned long xri;
18020
18021 /*
18022 * Fetch the next logical xri. Because this index is logical,
18023 * the driver starts at 0 each time.
18024 */
18025 spin_lock_irq(&phba->hbalock);
18026 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
18027 phba->sli4_hba.max_cfg_param.max_xri);
18028 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
18029 spin_unlock_irq(&phba->hbalock);
18030 return NO_XRI;
18031 } else {
18032 set_bit(xri, phba->sli4_hba.xri_bmask);
18033 phba->sli4_hba.max_cfg_param.xri_used++;
18034 }
18035 spin_unlock_irq(&phba->hbalock);
18036 return xri;
18037 }
18038
18039 /**
18040 * __lpfc_sli4_free_xri - Release an xri for reuse.
18041 * @phba: pointer to lpfc hba data structure.
18042 * @xri: xri to release.
18043 *
18044 * This routine is invoked to release an xri to the pool of
18045 * available rpis maintained by the driver.
18046 **/
18047 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18048 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18049 {
18050 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
18051 phba->sli4_hba.max_cfg_param.xri_used--;
18052 }
18053 }
18054
18055 /**
18056 * lpfc_sli4_free_xri - Release an xri for reuse.
18057 * @phba: pointer to lpfc hba data structure.
18058 * @xri: xri to release.
18059 *
18060 * This routine is invoked to release an xri to the pool of
18061 * available rpis maintained by the driver.
18062 **/
18063 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18064 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18065 {
18066 spin_lock_irq(&phba->hbalock);
18067 __lpfc_sli4_free_xri(phba, xri);
18068 spin_unlock_irq(&phba->hbalock);
18069 }
18070
18071 /**
18072 * lpfc_sli4_next_xritag - Get an xritag for the io
18073 * @phba: Pointer to HBA context object.
18074 *
18075 * This function gets an xritag for the iocb. If there is no unused xritag
18076 * it will return 0xffff.
18077 * The function returns the allocated xritag if successful, else returns zero.
18078 * Zero is not a valid xritag.
18079 * The caller is not required to hold any lock.
18080 **/
18081 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)18082 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
18083 {
18084 uint16_t xri_index;
18085
18086 xri_index = lpfc_sli4_alloc_xri(phba);
18087 if (xri_index == NO_XRI)
18088 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18089 "2004 Failed to allocate XRI.last XRITAG is %d"
18090 " Max XRI is %d, Used XRI is %d\n",
18091 xri_index,
18092 phba->sli4_hba.max_cfg_param.max_xri,
18093 phba->sli4_hba.max_cfg_param.xri_used);
18094 return xri_index;
18095 }
18096
18097 /**
18098 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
18099 * @phba: pointer to lpfc hba data structure.
18100 * @post_sgl_list: pointer to els sgl entry list.
18101 * @post_cnt: number of els sgl entries on the list.
18102 *
18103 * This routine is invoked to post a block of driver's sgl pages to the
18104 * HBA using non-embedded mailbox command. No Lock is held. This routine
18105 * is only called when the driver is loading and after all IO has been
18106 * stopped.
18107 **/
18108 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)18109 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18110 struct list_head *post_sgl_list,
18111 int post_cnt)
18112 {
18113 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18114 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18115 struct sgl_page_pairs *sgl_pg_pairs;
18116 void *viraddr;
18117 LPFC_MBOXQ_t *mbox;
18118 uint32_t reqlen, alloclen, pg_pairs;
18119 uint32_t mbox_tmo;
18120 uint16_t xritag_start = 0;
18121 int rc = 0;
18122 uint32_t shdr_status, shdr_add_status;
18123 union lpfc_sli4_cfg_shdr *shdr;
18124
18125 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18126 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18127 if (reqlen > SLI4_PAGE_SIZE) {
18128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18129 "2559 Block sgl registration required DMA "
18130 "size (%d) great than a page\n", reqlen);
18131 return -ENOMEM;
18132 }
18133
18134 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18135 if (!mbox)
18136 return -ENOMEM;
18137
18138 /* Allocate DMA memory and set up the non-embedded mailbox command */
18139 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18140 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18141 LPFC_SLI4_MBX_NEMBED);
18142
18143 if (alloclen < reqlen) {
18144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18145 "0285 Allocated DMA memory size (%d) is "
18146 "less than the requested DMA memory "
18147 "size (%d)\n", alloclen, reqlen);
18148 lpfc_sli4_mbox_cmd_free(phba, mbox);
18149 return -ENOMEM;
18150 }
18151 /* Set up the SGL pages in the non-embedded DMA pages */
18152 viraddr = mbox->sge_array->addr[0];
18153 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18154 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18155
18156 pg_pairs = 0;
18157 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18158 /* Set up the sge entry */
18159 sgl_pg_pairs->sgl_pg0_addr_lo =
18160 cpu_to_le32(putPaddrLow(sglq_entry->phys));
18161 sgl_pg_pairs->sgl_pg0_addr_hi =
18162 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18163 sgl_pg_pairs->sgl_pg1_addr_lo =
18164 cpu_to_le32(putPaddrLow(0));
18165 sgl_pg_pairs->sgl_pg1_addr_hi =
18166 cpu_to_le32(putPaddrHigh(0));
18167
18168 /* Keep the first xritag on the list */
18169 if (pg_pairs == 0)
18170 xritag_start = sglq_entry->sli4_xritag;
18171 sgl_pg_pairs++;
18172 pg_pairs++;
18173 }
18174
18175 /* Complete initialization and perform endian conversion. */
18176 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18177 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18178 sgl->word0 = cpu_to_le32(sgl->word0);
18179
18180 if (!phba->sli4_hba.intr_enable)
18181 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18182 else {
18183 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18184 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18185 }
18186 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18187 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18188 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18189 if (!phba->sli4_hba.intr_enable)
18190 lpfc_sli4_mbox_cmd_free(phba, mbox);
18191 else if (rc != MBX_TIMEOUT)
18192 lpfc_sli4_mbox_cmd_free(phba, mbox);
18193 if (shdr_status || shdr_add_status || rc) {
18194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18195 "2513 POST_SGL_BLOCK mailbox command failed "
18196 "status x%x add_status x%x mbx status x%x\n",
18197 shdr_status, shdr_add_status, rc);
18198 rc = -ENXIO;
18199 }
18200 return rc;
18201 }
18202
18203 /**
18204 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18205 * @phba: pointer to lpfc hba data structure.
18206 * @nblist: pointer to nvme buffer list.
18207 * @count: number of scsi buffers on the list.
18208 *
18209 * This routine is invoked to post a block of @count scsi sgl pages from a
18210 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18211 * No Lock is held.
18212 *
18213 **/
18214 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)18215 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18216 int count)
18217 {
18218 struct lpfc_io_buf *lpfc_ncmd;
18219 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18220 struct sgl_page_pairs *sgl_pg_pairs;
18221 void *viraddr;
18222 LPFC_MBOXQ_t *mbox;
18223 uint32_t reqlen, alloclen, pg_pairs;
18224 uint32_t mbox_tmo;
18225 uint16_t xritag_start = 0;
18226 int rc = 0;
18227 uint32_t shdr_status, shdr_add_status;
18228 dma_addr_t pdma_phys_bpl1;
18229 union lpfc_sli4_cfg_shdr *shdr;
18230
18231 /* Calculate the requested length of the dma memory */
18232 reqlen = count * sizeof(struct sgl_page_pairs) +
18233 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18234 if (reqlen > SLI4_PAGE_SIZE) {
18235 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18236 "6118 Block sgl registration required DMA "
18237 "size (%d) great than a page\n", reqlen);
18238 return -ENOMEM;
18239 }
18240 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18241 if (!mbox) {
18242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18243 "6119 Failed to allocate mbox cmd memory\n");
18244 return -ENOMEM;
18245 }
18246
18247 /* Allocate DMA memory and set up the non-embedded mailbox command */
18248 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18249 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18250 reqlen, LPFC_SLI4_MBX_NEMBED);
18251
18252 if (alloclen < reqlen) {
18253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18254 "6120 Allocated DMA memory size (%d) is "
18255 "less than the requested DMA memory "
18256 "size (%d)\n", alloclen, reqlen);
18257 lpfc_sli4_mbox_cmd_free(phba, mbox);
18258 return -ENOMEM;
18259 }
18260
18261 /* Get the first SGE entry from the non-embedded DMA memory */
18262 viraddr = mbox->sge_array->addr[0];
18263
18264 /* Set up the SGL pages in the non-embedded DMA pages */
18265 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18266 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18267
18268 pg_pairs = 0;
18269 list_for_each_entry(lpfc_ncmd, nblist, list) {
18270 /* Set up the sge entry */
18271 sgl_pg_pairs->sgl_pg0_addr_lo =
18272 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18273 sgl_pg_pairs->sgl_pg0_addr_hi =
18274 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18275 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18276 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18277 SGL_PAGE_SIZE;
18278 else
18279 pdma_phys_bpl1 = 0;
18280 sgl_pg_pairs->sgl_pg1_addr_lo =
18281 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18282 sgl_pg_pairs->sgl_pg1_addr_hi =
18283 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18284 /* Keep the first xritag on the list */
18285 if (pg_pairs == 0)
18286 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18287 sgl_pg_pairs++;
18288 pg_pairs++;
18289 }
18290 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18291 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18292 /* Perform endian conversion if necessary */
18293 sgl->word0 = cpu_to_le32(sgl->word0);
18294
18295 if (!phba->sli4_hba.intr_enable) {
18296 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18297 } else {
18298 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18299 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18300 }
18301 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18302 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18303 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18304 if (!phba->sli4_hba.intr_enable)
18305 lpfc_sli4_mbox_cmd_free(phba, mbox);
18306 else if (rc != MBX_TIMEOUT)
18307 lpfc_sli4_mbox_cmd_free(phba, mbox);
18308 if (shdr_status || shdr_add_status || rc) {
18309 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18310 "6125 POST_SGL_BLOCK mailbox command failed "
18311 "status x%x add_status x%x mbx status x%x\n",
18312 shdr_status, shdr_add_status, rc);
18313 rc = -ENXIO;
18314 }
18315 return rc;
18316 }
18317
18318 /**
18319 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18320 * @phba: pointer to lpfc hba data structure.
18321 * @post_nblist: pointer to the nvme buffer list.
18322 * @sb_count: number of nvme buffers.
18323 *
18324 * This routine walks a list of nvme buffers that was passed in. It attempts
18325 * to construct blocks of nvme buffer sgls which contains contiguous xris and
18326 * uses the non-embedded SGL block post mailbox commands to post to the port.
18327 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18328 * embedded SGL post mailbox command for posting. The @post_nblist passed in
18329 * must be local list, thus no lock is needed when manipulate the list.
18330 *
18331 * Returns: 0 = failure, non-zero number of successfully posted buffers.
18332 **/
18333 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)18334 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18335 struct list_head *post_nblist, int sb_count)
18336 {
18337 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18338 int status, sgl_size;
18339 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18340 dma_addr_t pdma_phys_sgl1;
18341 int last_xritag = NO_XRI;
18342 int cur_xritag;
18343 LIST_HEAD(prep_nblist);
18344 LIST_HEAD(blck_nblist);
18345 LIST_HEAD(nvme_nblist);
18346
18347 /* sanity check */
18348 if (sb_count <= 0)
18349 return -EINVAL;
18350
18351 sgl_size = phba->cfg_sg_dma_buf_size;
18352 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18353 list_del_init(&lpfc_ncmd->list);
18354 block_cnt++;
18355 if ((last_xritag != NO_XRI) &&
18356 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18357 /* a hole in xri block, form a sgl posting block */
18358 list_splice_init(&prep_nblist, &blck_nblist);
18359 post_cnt = block_cnt - 1;
18360 /* prepare list for next posting block */
18361 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18362 block_cnt = 1;
18363 } else {
18364 /* prepare list for next posting block */
18365 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18366 /* enough sgls for non-embed sgl mbox command */
18367 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18368 list_splice_init(&prep_nblist, &blck_nblist);
18369 post_cnt = block_cnt;
18370 block_cnt = 0;
18371 }
18372 }
18373 num_posting++;
18374 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18375
18376 /* end of repost sgl list condition for NVME buffers */
18377 if (num_posting == sb_count) {
18378 if (post_cnt == 0) {
18379 /* last sgl posting block */
18380 list_splice_init(&prep_nblist, &blck_nblist);
18381 post_cnt = block_cnt;
18382 } else if (block_cnt == 1) {
18383 /* last single sgl with non-contiguous xri */
18384 if (sgl_size > SGL_PAGE_SIZE)
18385 pdma_phys_sgl1 =
18386 lpfc_ncmd->dma_phys_sgl +
18387 SGL_PAGE_SIZE;
18388 else
18389 pdma_phys_sgl1 = 0;
18390 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18391 status = lpfc_sli4_post_sgl(
18392 phba, lpfc_ncmd->dma_phys_sgl,
18393 pdma_phys_sgl1, cur_xritag);
18394 if (status) {
18395 /* Post error. Buffer unavailable. */
18396 lpfc_ncmd->flags |=
18397 LPFC_SBUF_NOT_POSTED;
18398 } else {
18399 /* Post success. Bffer available. */
18400 lpfc_ncmd->flags &=
18401 ~LPFC_SBUF_NOT_POSTED;
18402 lpfc_ncmd->status = IOSTAT_SUCCESS;
18403 num_posted++;
18404 }
18405 /* success, put on NVME buffer sgl list */
18406 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18407 }
18408 }
18409
18410 /* continue until a nembed page worth of sgls */
18411 if (post_cnt == 0)
18412 continue;
18413
18414 /* post block of NVME buffer list sgls */
18415 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18416 post_cnt);
18417
18418 /* don't reset xirtag due to hole in xri block */
18419 if (block_cnt == 0)
18420 last_xritag = NO_XRI;
18421
18422 /* reset NVME buffer post count for next round of posting */
18423 post_cnt = 0;
18424
18425 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18426 while (!list_empty(&blck_nblist)) {
18427 list_remove_head(&blck_nblist, lpfc_ncmd,
18428 struct lpfc_io_buf, list);
18429 if (status) {
18430 /* Post error. Mark buffer unavailable. */
18431 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18432 } else {
18433 /* Post success, Mark buffer available. */
18434 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18435 lpfc_ncmd->status = IOSTAT_SUCCESS;
18436 num_posted++;
18437 }
18438 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18439 }
18440 }
18441 /* Push NVME buffers with sgl posted to the available list */
18442 lpfc_io_buf_replenish(phba, &nvme_nblist);
18443
18444 return num_posted;
18445 }
18446
18447 /**
18448 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18449 * @phba: pointer to lpfc_hba struct that the frame was received on
18450 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18451 *
18452 * This function checks the fields in the @fc_hdr to see if the FC frame is a
18453 * valid type of frame that the LPFC driver will handle. This function will
18454 * return a zero if the frame is a valid frame or a non zero value when the
18455 * frame does not pass the check.
18456 **/
18457 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)18458 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18459 {
18460 /* make rctl_names static to save stack space */
18461 struct fc_vft_header *fc_vft_hdr;
18462 struct fc_app_header *fc_app_hdr;
18463 uint32_t *header = (uint32_t *) fc_hdr;
18464
18465 #define FC_RCTL_MDS_DIAGS 0xF4
18466
18467 switch (fc_hdr->fh_r_ctl) {
18468 case FC_RCTL_DD_UNCAT: /* uncategorized information */
18469 case FC_RCTL_DD_SOL_DATA: /* solicited data */
18470 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
18471 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
18472 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
18473 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
18474 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
18475 case FC_RCTL_DD_CMD_STATUS: /* command status */
18476 case FC_RCTL_ELS_REQ: /* extended link services request */
18477 case FC_RCTL_ELS_REP: /* extended link services reply */
18478 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
18479 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
18480 case FC_RCTL_BA_ABTS: /* basic link service abort */
18481 case FC_RCTL_BA_RMC: /* remove connection */
18482 case FC_RCTL_BA_ACC: /* basic accept */
18483 case FC_RCTL_BA_RJT: /* basic reject */
18484 case FC_RCTL_BA_PRMT:
18485 case FC_RCTL_ACK_1: /* acknowledge_1 */
18486 case FC_RCTL_ACK_0: /* acknowledge_0 */
18487 case FC_RCTL_P_RJT: /* port reject */
18488 case FC_RCTL_F_RJT: /* fabric reject */
18489 case FC_RCTL_P_BSY: /* port busy */
18490 case FC_RCTL_F_BSY: /* fabric busy to data frame */
18491 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
18492 case FC_RCTL_LCR: /* link credit reset */
18493 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18494 case FC_RCTL_END: /* end */
18495 break;
18496 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
18497 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18498 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18499 return lpfc_fc_frame_check(phba, fc_hdr);
18500 case FC_RCTL_BA_NOP: /* basic link service NOP */
18501 default:
18502 goto drop;
18503 }
18504
18505 switch (fc_hdr->fh_type) {
18506 case FC_TYPE_BLS:
18507 case FC_TYPE_ELS:
18508 case FC_TYPE_FCP:
18509 case FC_TYPE_CT:
18510 case FC_TYPE_NVME:
18511 break;
18512 case FC_TYPE_IP:
18513 case FC_TYPE_ILS:
18514 default:
18515 goto drop;
18516 }
18517
18518 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE &&
18519 phba->cfg_vmid_app_header)) {
18520 /* Application header is 16B device header */
18521 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) {
18522 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1);
18523 if (be32_to_cpu(fc_app_hdr->src_app_id) !=
18524 LOOPBACK_SRC_APPID) {
18525 lpfc_printf_log(phba, KERN_WARNING,
18526 LOG_ELS | LOG_LIBDFC,
18527 "1932 Loopback src app id "
18528 "not matched, app_id:x%x\n",
18529 be32_to_cpu(fc_app_hdr->src_app_id));
18530
18531 goto drop;
18532 }
18533 } else {
18534 lpfc_printf_log(phba, KERN_WARNING,
18535 LOG_ELS | LOG_LIBDFC,
18536 "1933 Loopback df_ctl bit not set, "
18537 "df_ctl:x%x\n",
18538 fc_hdr->fh_df_ctl);
18539
18540 goto drop;
18541 }
18542 }
18543
18544 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18545 "2538 Received frame rctl:x%x, type:x%x, "
18546 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18547 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18548 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18549 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18550 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18551 be32_to_cpu(header[6]));
18552 return 0;
18553 drop:
18554 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18555 "2539 Dropped frame rctl:x%x type:x%x\n",
18556 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18557 return 1;
18558 }
18559
18560 /**
18561 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18562 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18563 *
18564 * This function processes the FC header to retrieve the VFI from the VF
18565 * header, if one exists. This function will return the VFI if one exists
18566 * or 0 if no VSAN Header exists.
18567 **/
18568 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)18569 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18570 {
18571 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18572
18573 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18574 return 0;
18575 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18576 }
18577
18578 /**
18579 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18580 * @phba: Pointer to the HBA structure to search for the vport on
18581 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18582 * @fcfi: The FC Fabric ID that the frame came from
18583 * @did: Destination ID to match against
18584 *
18585 * This function searches the @phba for a vport that matches the content of the
18586 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18587 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18588 * returns the matching vport pointer or NULL if unable to match frame to a
18589 * vport.
18590 **/
18591 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)18592 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18593 uint16_t fcfi, uint32_t did)
18594 {
18595 struct lpfc_vport **vports;
18596 struct lpfc_vport *vport = NULL;
18597 int i;
18598
18599 if (did == Fabric_DID)
18600 return phba->pport;
18601 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) &&
18602 phba->link_state != LPFC_HBA_READY)
18603 return phba->pport;
18604
18605 vports = lpfc_create_vport_work_array(phba);
18606 if (vports != NULL) {
18607 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18608 if (phba->fcf.fcfi == fcfi &&
18609 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18610 vports[i]->fc_myDID == did) {
18611 vport = vports[i];
18612 break;
18613 }
18614 }
18615 }
18616 lpfc_destroy_vport_work_array(phba, vports);
18617 return vport;
18618 }
18619
18620 /**
18621 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18622 * @vport: The vport to work on.
18623 *
18624 * This function updates the receive sequence time stamp for this vport. The
18625 * receive sequence time stamp indicates the time that the last frame of the
18626 * the sequence that has been idle for the longest amount of time was received.
18627 * the driver uses this time stamp to indicate if any received sequences have
18628 * timed out.
18629 **/
18630 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)18631 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18632 {
18633 struct lpfc_dmabuf *h_buf;
18634 struct hbq_dmabuf *dmabuf = NULL;
18635
18636 /* get the oldest sequence on the rcv list */
18637 h_buf = list_get_first(&vport->rcv_buffer_list,
18638 struct lpfc_dmabuf, list);
18639 if (!h_buf)
18640 return;
18641 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18642 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18643 }
18644
18645 /**
18646 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18647 * @vport: The vport that the received sequences were sent to.
18648 *
18649 * This function cleans up all outstanding received sequences. This is called
18650 * by the driver when a link event or user action invalidates all the received
18651 * sequences.
18652 **/
18653 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)18654 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18655 {
18656 struct lpfc_dmabuf *h_buf, *hnext;
18657 struct lpfc_dmabuf *d_buf, *dnext;
18658 struct hbq_dmabuf *dmabuf = NULL;
18659
18660 /* start with the oldest sequence on the rcv list */
18661 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18662 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18663 list_del_init(&dmabuf->hbuf.list);
18664 list_for_each_entry_safe(d_buf, dnext,
18665 &dmabuf->dbuf.list, list) {
18666 list_del_init(&d_buf->list);
18667 lpfc_in_buf_free(vport->phba, d_buf);
18668 }
18669 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18670 }
18671 }
18672
18673 /**
18674 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18675 * @vport: The vport that the received sequences were sent to.
18676 *
18677 * This function determines whether any received sequences have timed out by
18678 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18679 * indicates that there is at least one timed out sequence this routine will
18680 * go through the received sequences one at a time from most inactive to most
18681 * active to determine which ones need to be cleaned up. Once it has determined
18682 * that a sequence needs to be cleaned up it will simply free up the resources
18683 * without sending an abort.
18684 **/
18685 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)18686 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18687 {
18688 struct lpfc_dmabuf *h_buf, *hnext;
18689 struct lpfc_dmabuf *d_buf, *dnext;
18690 struct hbq_dmabuf *dmabuf = NULL;
18691 unsigned long timeout;
18692 int abort_count = 0;
18693
18694 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18695 vport->rcv_buffer_time_stamp);
18696 if (list_empty(&vport->rcv_buffer_list) ||
18697 time_before(jiffies, timeout))
18698 return;
18699 /* start with the oldest sequence on the rcv list */
18700 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18701 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18702 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18703 dmabuf->time_stamp);
18704 if (time_before(jiffies, timeout))
18705 break;
18706 abort_count++;
18707 list_del_init(&dmabuf->hbuf.list);
18708 list_for_each_entry_safe(d_buf, dnext,
18709 &dmabuf->dbuf.list, list) {
18710 list_del_init(&d_buf->list);
18711 lpfc_in_buf_free(vport->phba, d_buf);
18712 }
18713 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18714 }
18715 if (abort_count)
18716 lpfc_update_rcv_time_stamp(vport);
18717 }
18718
18719 /**
18720 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18721 * @vport: pointer to a vitural port
18722 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18723 *
18724 * This function searches through the existing incomplete sequences that have
18725 * been sent to this @vport. If the frame matches one of the incomplete
18726 * sequences then the dbuf in the @dmabuf is added to the list of frames that
18727 * make up that sequence. If no sequence is found that matches this frame then
18728 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18729 * This function returns a pointer to the first dmabuf in the sequence list that
18730 * the frame was linked to.
18731 **/
18732 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18733 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18734 {
18735 struct fc_frame_header *new_hdr;
18736 struct fc_frame_header *temp_hdr;
18737 struct lpfc_dmabuf *d_buf;
18738 struct lpfc_dmabuf *h_buf;
18739 struct hbq_dmabuf *seq_dmabuf = NULL;
18740 struct hbq_dmabuf *temp_dmabuf = NULL;
18741 uint8_t found = 0;
18742
18743 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18744 dmabuf->time_stamp = jiffies;
18745 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18746
18747 /* Use the hdr_buf to find the sequence that this frame belongs to */
18748 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18749 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18750 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18751 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18752 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18753 continue;
18754 /* found a pending sequence that matches this frame */
18755 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18756 break;
18757 }
18758 if (!seq_dmabuf) {
18759 /*
18760 * This indicates first frame received for this sequence.
18761 * Queue the buffer on the vport's rcv_buffer_list.
18762 */
18763 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18764 lpfc_update_rcv_time_stamp(vport);
18765 return dmabuf;
18766 }
18767 temp_hdr = seq_dmabuf->hbuf.virt;
18768 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18769 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18770 list_del_init(&seq_dmabuf->hbuf.list);
18771 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18772 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18773 lpfc_update_rcv_time_stamp(vport);
18774 return dmabuf;
18775 }
18776 /* move this sequence to the tail to indicate a young sequence */
18777 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18778 seq_dmabuf->time_stamp = jiffies;
18779 lpfc_update_rcv_time_stamp(vport);
18780 if (list_empty(&seq_dmabuf->dbuf.list)) {
18781 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18782 return seq_dmabuf;
18783 }
18784 /* find the correct place in the sequence to insert this frame */
18785 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18786 while (!found) {
18787 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18788 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18789 /*
18790 * If the frame's sequence count is greater than the frame on
18791 * the list then insert the frame right after this frame
18792 */
18793 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18794 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18795 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18796 found = 1;
18797 break;
18798 }
18799
18800 if (&d_buf->list == &seq_dmabuf->dbuf.list)
18801 break;
18802 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18803 }
18804
18805 if (found)
18806 return seq_dmabuf;
18807 return NULL;
18808 }
18809
18810 /**
18811 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18812 * @vport: pointer to a vitural port
18813 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18814 *
18815 * This function tries to abort from the partially assembed sequence, described
18816 * by the information from basic abbort @dmabuf. It checks to see whether such
18817 * partially assembled sequence held by the driver. If so, it shall free up all
18818 * the frames from the partially assembled sequence.
18819 *
18820 * Return
18821 * true -- if there is matching partially assembled sequence present and all
18822 * the frames freed with the sequence;
18823 * false -- if there is no matching partially assembled sequence present so
18824 * nothing got aborted in the lower layer driver
18825 **/
18826 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18827 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18828 struct hbq_dmabuf *dmabuf)
18829 {
18830 struct fc_frame_header *new_hdr;
18831 struct fc_frame_header *temp_hdr;
18832 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18833 struct hbq_dmabuf *seq_dmabuf = NULL;
18834
18835 /* Use the hdr_buf to find the sequence that matches this frame */
18836 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18837 INIT_LIST_HEAD(&dmabuf->hbuf.list);
18838 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18839 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18840 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18841 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18842 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18843 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18844 continue;
18845 /* found a pending sequence that matches this frame */
18846 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18847 break;
18848 }
18849
18850 /* Free up all the frames from the partially assembled sequence */
18851 if (seq_dmabuf) {
18852 list_for_each_entry_safe(d_buf, n_buf,
18853 &seq_dmabuf->dbuf.list, list) {
18854 list_del_init(&d_buf->list);
18855 lpfc_in_buf_free(vport->phba, d_buf);
18856 }
18857 return true;
18858 }
18859 return false;
18860 }
18861
18862 /**
18863 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18864 * @vport: pointer to a vitural port
18865 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18866 *
18867 * This function tries to abort from the assembed sequence from upper level
18868 * protocol, described by the information from basic abbort @dmabuf. It
18869 * checks to see whether such pending context exists at upper level protocol.
18870 * If so, it shall clean up the pending context.
18871 *
18872 * Return
18873 * true -- if there is matching pending context of the sequence cleaned
18874 * at ulp;
18875 * false -- if there is no matching pending context of the sequence present
18876 * at ulp.
18877 **/
18878 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18879 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18880 {
18881 struct lpfc_hba *phba = vport->phba;
18882 int handled;
18883
18884 /* Accepting abort at ulp with SLI4 only */
18885 if (phba->sli_rev < LPFC_SLI_REV4)
18886 return false;
18887
18888 /* Register all caring upper level protocols to attend abort */
18889 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18890 if (handled)
18891 return true;
18892
18893 return false;
18894 }
18895
18896 /**
18897 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18898 * @phba: Pointer to HBA context object.
18899 * @cmd_iocbq: pointer to the command iocbq structure.
18900 * @rsp_iocbq: pointer to the response iocbq structure.
18901 *
18902 * This function handles the sequence abort response iocb command complete
18903 * event. It properly releases the memory allocated to the sequence abort
18904 * accept iocb.
18905 **/
18906 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)18907 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18908 struct lpfc_iocbq *cmd_iocbq,
18909 struct lpfc_iocbq *rsp_iocbq)
18910 {
18911 if (cmd_iocbq) {
18912 lpfc_nlp_put(cmd_iocbq->ndlp);
18913 lpfc_sli_release_iocbq(phba, cmd_iocbq);
18914 }
18915
18916 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
18917 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18918 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18919 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
18920 get_job_ulpstatus(phba, rsp_iocbq),
18921 get_job_word4(phba, rsp_iocbq));
18922 }
18923
18924 /**
18925 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18926 * @phba: Pointer to HBA context object.
18927 * @xri: xri id in transaction.
18928 *
18929 * This function validates the xri maps to the known range of XRIs allocated an
18930 * used by the driver.
18931 **/
18932 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)18933 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18934 uint16_t xri)
18935 {
18936 uint16_t i;
18937
18938 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18939 if (xri == phba->sli4_hba.xri_ids[i])
18940 return i;
18941 }
18942 return NO_XRI;
18943 }
18944
18945 /**
18946 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18947 * @vport: pointer to a virtual port.
18948 * @fc_hdr: pointer to a FC frame header.
18949 * @aborted: was the partially assembled receive sequence successfully aborted
18950 *
18951 * This function sends a basic response to a previous unsol sequence abort
18952 * event after aborting the sequence handling.
18953 **/
18954 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)18955 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18956 struct fc_frame_header *fc_hdr, bool aborted)
18957 {
18958 struct lpfc_hba *phba = vport->phba;
18959 struct lpfc_iocbq *ctiocb = NULL;
18960 struct lpfc_nodelist *ndlp;
18961 uint16_t oxid, rxid, xri, lxri;
18962 uint32_t sid, fctl;
18963 union lpfc_wqe128 *icmd;
18964 int rc;
18965
18966 if (!lpfc_is_link_up(phba))
18967 return;
18968
18969 sid = sli4_sid_from_fc_hdr(fc_hdr);
18970 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18971 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18972
18973 ndlp = lpfc_findnode_did(vport, sid);
18974 if (!ndlp) {
18975 ndlp = lpfc_nlp_init(vport, sid);
18976 if (!ndlp) {
18977 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18978 "1268 Failed to allocate ndlp for "
18979 "oxid:x%x SID:x%x\n", oxid, sid);
18980 return;
18981 }
18982 /* Put ndlp onto vport node list */
18983 lpfc_enqueue_node(vport, ndlp);
18984 }
18985
18986 /* Allocate buffer for rsp iocb */
18987 ctiocb = lpfc_sli_get_iocbq(phba);
18988 if (!ctiocb)
18989 return;
18990
18991 icmd = &ctiocb->wqe;
18992
18993 /* Extract the F_CTL field from FC_HDR */
18994 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18995
18996 ctiocb->ndlp = lpfc_nlp_get(ndlp);
18997 if (!ctiocb->ndlp) {
18998 lpfc_sli_release_iocbq(phba, ctiocb);
18999 return;
19000 }
19001
19002 ctiocb->vport = vport;
19003 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
19004 ctiocb->sli4_lxritag = NO_XRI;
19005 ctiocb->sli4_xritag = NO_XRI;
19006 ctiocb->abort_rctl = FC_RCTL_BA_ACC;
19007
19008 if (fctl & FC_FC_EX_CTX)
19009 /* Exchange responder sent the abort so we
19010 * own the oxid.
19011 */
19012 xri = oxid;
19013 else
19014 xri = rxid;
19015 lxri = lpfc_sli4_xri_inrange(phba, xri);
19016 if (lxri != NO_XRI)
19017 lpfc_set_rrq_active(phba, ndlp, lxri,
19018 (xri == oxid) ? rxid : oxid, 0);
19019 /* For BA_ABTS from exchange responder, if the logical xri with
19020 * the oxid maps to the FCP XRI range, the port no longer has
19021 * that exchange context, send a BLS_RJT. Override the IOCB for
19022 * a BA_RJT.
19023 */
19024 if ((fctl & FC_FC_EX_CTX) &&
19025 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
19026 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19027 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19028 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19029 FC_BA_RJT_INV_XID);
19030 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19031 FC_BA_RJT_UNABLE);
19032 }
19033
19034 /* If BA_ABTS failed to abort a partially assembled receive sequence,
19035 * the driver no longer has that exchange, send a BLS_RJT. Override
19036 * the IOCB for a BA_RJT.
19037 */
19038 if (aborted == false) {
19039 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19040 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19041 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19042 FC_BA_RJT_INV_XID);
19043 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19044 FC_BA_RJT_UNABLE);
19045 }
19046
19047 if (fctl & FC_FC_EX_CTX) {
19048 /* ABTS sent by responder to CT exchange, construction
19049 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
19050 * field and RX_ID from ABTS for RX_ID field.
19051 */
19052 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
19053 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
19054 } else {
19055 /* ABTS sent by initiator to CT exchange, construction
19056 * of BA_ACC will need to allocate a new XRI as for the
19057 * XRI_TAG field.
19058 */
19059 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
19060 }
19061
19062 /* OX_ID is invariable to who sent ABTS to CT exchange */
19063 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
19064 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
19065
19066 /* Use CT=VPI */
19067 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
19068 ndlp->nlp_DID);
19069 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
19070 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
19071 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
19072
19073 /* Xmit CT abts response on exchange <xid> */
19074 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
19075 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
19076 ctiocb->abort_rctl, oxid, phba->link_state);
19077
19078 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
19079 if (rc == IOCB_ERROR) {
19080 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19081 "2925 Failed to issue CT ABTS RSP x%x on "
19082 "xri x%x, Data x%x\n",
19083 ctiocb->abort_rctl, oxid,
19084 phba->link_state);
19085 lpfc_nlp_put(ndlp);
19086 ctiocb->ndlp = NULL;
19087 lpfc_sli_release_iocbq(phba, ctiocb);
19088 }
19089
19090 /* if only usage of this nodelist is BLS response, release initial ref
19091 * to free ndlp when transmit completes
19092 */
19093 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE &&
19094 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) &&
19095 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) {
19096 set_bit(NLP_DROPPED, &ndlp->nlp_flag);
19097 lpfc_nlp_put(ndlp);
19098 }
19099 }
19100
19101 /**
19102 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
19103 * @vport: Pointer to the vport on which this sequence was received
19104 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19105 *
19106 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
19107 * receive sequence is only partially assembed by the driver, it shall abort
19108 * the partially assembled frames for the sequence. Otherwise, if the
19109 * unsolicited receive sequence has been completely assembled and passed to
19110 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
19111 * unsolicited sequence has been aborted. After that, it will issue a basic
19112 * accept to accept the abort.
19113 **/
19114 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19115 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
19116 struct hbq_dmabuf *dmabuf)
19117 {
19118 struct lpfc_hba *phba = vport->phba;
19119 struct fc_frame_header fc_hdr;
19120 uint32_t fctl;
19121 bool aborted;
19122
19123 /* Make a copy of fc_hdr before the dmabuf being released */
19124 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
19125 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
19126
19127 if (fctl & FC_FC_EX_CTX) {
19128 /* ABTS by responder to exchange, no cleanup needed */
19129 aborted = true;
19130 } else {
19131 /* ABTS by initiator to exchange, need to do cleanup */
19132 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
19133 if (aborted == false)
19134 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
19135 }
19136 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19137
19138 if (phba->nvmet_support) {
19139 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
19140 return;
19141 }
19142
19143 /* Respond with BA_ACC or BA_RJT accordingly */
19144 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
19145 }
19146
19147 /**
19148 * lpfc_seq_complete - Indicates if a sequence is complete
19149 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19150 *
19151 * This function checks the sequence, starting with the frame described by
19152 * @dmabuf, to see if all the frames associated with this sequence are present.
19153 * the frames associated with this sequence are linked to the @dmabuf using the
19154 * dbuf list. This function looks for two major things. 1) That the first frame
19155 * has a sequence count of zero. 2) There is a frame with last frame of sequence
19156 * set. 3) That there are no holes in the sequence count. The function will
19157 * return 1 when the sequence is complete, otherwise it will return 0.
19158 **/
19159 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)19160 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19161 {
19162 struct fc_frame_header *hdr;
19163 struct lpfc_dmabuf *d_buf;
19164 struct hbq_dmabuf *seq_dmabuf;
19165 uint32_t fctl;
19166 int seq_count = 0;
19167
19168 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19169 /* make sure first fame of sequence has a sequence count of zero */
19170 if (hdr->fh_seq_cnt != seq_count)
19171 return 0;
19172 fctl = (hdr->fh_f_ctl[0] << 16 |
19173 hdr->fh_f_ctl[1] << 8 |
19174 hdr->fh_f_ctl[2]);
19175 /* If last frame of sequence we can return success. */
19176 if (fctl & FC_FC_END_SEQ)
19177 return 1;
19178 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19179 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19180 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19181 /* If there is a hole in the sequence count then fail. */
19182 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19183 return 0;
19184 fctl = (hdr->fh_f_ctl[0] << 16 |
19185 hdr->fh_f_ctl[1] << 8 |
19186 hdr->fh_f_ctl[2]);
19187 /* If last frame of sequence we can return success. */
19188 if (fctl & FC_FC_END_SEQ)
19189 return 1;
19190 }
19191 return 0;
19192 }
19193
19194 /**
19195 * lpfc_prep_seq - Prep sequence for ULP processing
19196 * @vport: Pointer to the vport on which this sequence was received
19197 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19198 *
19199 * This function takes a sequence, described by a list of frames, and creates
19200 * a list of iocbq structures to describe the sequence. This iocbq list will be
19201 * used to issue to the generic unsolicited sequence handler. This routine
19202 * returns a pointer to the first iocbq in the list. If the function is unable
19203 * to allocate an iocbq then it throw out the received frames that were not
19204 * able to be described and return a pointer to the first iocbq. If unable to
19205 * allocate any iocbqs (including the first) this function will return NULL.
19206 **/
19207 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19208 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19209 {
19210 struct hbq_dmabuf *hbq_buf;
19211 struct lpfc_dmabuf *d_buf, *n_buf;
19212 struct lpfc_iocbq *first_iocbq, *iocbq;
19213 struct fc_frame_header *fc_hdr;
19214 uint32_t sid;
19215 uint32_t len, tot_len;
19216
19217 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19218 /* remove from receive buffer list */
19219 list_del_init(&seq_dmabuf->hbuf.list);
19220 lpfc_update_rcv_time_stamp(vport);
19221 /* get the Remote Port's SID */
19222 sid = sli4_sid_from_fc_hdr(fc_hdr);
19223 tot_len = 0;
19224 /* Get an iocbq struct to fill in. */
19225 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19226 if (first_iocbq) {
19227 /* Initialize the first IOCB. */
19228 first_iocbq->wcqe_cmpl.total_data_placed = 0;
19229 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19230 IOSTAT_SUCCESS);
19231 first_iocbq->vport = vport;
19232
19233 /* Check FC Header to see what TYPE of frame we are rcv'ing */
19234 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19235 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19236 sli4_did_from_fc_hdr(fc_hdr));
19237 }
19238
19239 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19240 NO_XRI);
19241 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19242 be16_to_cpu(fc_hdr->fh_ox_id));
19243
19244 /* put the first buffer into the first iocb */
19245 tot_len = bf_get(lpfc_rcqe_length,
19246 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19247
19248 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19249 first_iocbq->bpl_dmabuf = NULL;
19250 /* Keep track of the BDE count */
19251 first_iocbq->wcqe_cmpl.word3 = 1;
19252
19253 if (tot_len > LPFC_DATA_BUF_SIZE)
19254 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19255 LPFC_DATA_BUF_SIZE;
19256 else
19257 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19258
19259 first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19260 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19261 sid);
19262 }
19263 iocbq = first_iocbq;
19264 /*
19265 * Each IOCBq can have two Buffers assigned, so go through the list
19266 * of buffers for this sequence and save two buffers in each IOCBq
19267 */
19268 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19269 if (!iocbq) {
19270 lpfc_in_buf_free(vport->phba, d_buf);
19271 continue;
19272 }
19273 if (!iocbq->bpl_dmabuf) {
19274 iocbq->bpl_dmabuf = d_buf;
19275 iocbq->wcqe_cmpl.word3++;
19276 /* We need to get the size out of the right CQE */
19277 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19278 len = bf_get(lpfc_rcqe_length,
19279 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19280 iocbq->unsol_rcv_len = len;
19281 iocbq->wcqe_cmpl.total_data_placed += len;
19282 tot_len += len;
19283 } else {
19284 iocbq = lpfc_sli_get_iocbq(vport->phba);
19285 if (!iocbq) {
19286 if (first_iocbq) {
19287 bf_set(lpfc_wcqe_c_status,
19288 &first_iocbq->wcqe_cmpl,
19289 IOSTAT_SUCCESS);
19290 first_iocbq->wcqe_cmpl.parameter =
19291 IOERR_NO_RESOURCES;
19292 }
19293 lpfc_in_buf_free(vport->phba, d_buf);
19294 continue;
19295 }
19296 /* We need to get the size out of the right CQE */
19297 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19298 len = bf_get(lpfc_rcqe_length,
19299 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19300 iocbq->cmd_dmabuf = d_buf;
19301 iocbq->bpl_dmabuf = NULL;
19302 iocbq->wcqe_cmpl.word3 = 1;
19303
19304 if (len > LPFC_DATA_BUF_SIZE)
19305 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19306 LPFC_DATA_BUF_SIZE;
19307 else
19308 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19309 len;
19310
19311 tot_len += len;
19312 iocbq->wcqe_cmpl.total_data_placed = tot_len;
19313 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19314 sid);
19315 list_add_tail(&iocbq->list, &first_iocbq->list);
19316 }
19317 }
19318 /* Free the sequence's header buffer */
19319 if (!first_iocbq)
19320 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19321
19322 return first_iocbq;
19323 }
19324
19325 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19326 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19327 struct hbq_dmabuf *seq_dmabuf)
19328 {
19329 struct fc_frame_header *fc_hdr;
19330 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19331 struct lpfc_hba *phba = vport->phba;
19332
19333 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19334 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19335 if (!iocbq) {
19336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19337 "2707 Ring %d handler: Failed to allocate "
19338 "iocb Rctl x%x Type x%x received\n",
19339 LPFC_ELS_RING,
19340 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19341 return;
19342 }
19343 if (!lpfc_complete_unsol_iocb(phba,
19344 phba->sli4_hba.els_wq->pring,
19345 iocbq, fc_hdr->fh_r_ctl,
19346 fc_hdr->fh_type)) {
19347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19348 "2540 Ring %d handler: unexpected Rctl "
19349 "x%x Type x%x received\n",
19350 LPFC_ELS_RING,
19351 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19352 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19353 }
19354
19355 /* Free iocb created in lpfc_prep_seq */
19356 list_for_each_entry_safe(curr_iocb, next_iocb,
19357 &iocbq->list, list) {
19358 list_del_init(&curr_iocb->list);
19359 lpfc_sli_release_iocbq(phba, curr_iocb);
19360 }
19361 lpfc_sli_release_iocbq(phba, iocbq);
19362 }
19363
19364 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)19365 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19366 struct lpfc_iocbq *rspiocb)
19367 {
19368 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19369
19370 if (pcmd && pcmd->virt)
19371 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19372 kfree(pcmd);
19373 lpfc_sli_release_iocbq(phba, cmdiocb);
19374 lpfc_drain_txq(phba);
19375 }
19376
19377 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19378 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19379 struct hbq_dmabuf *dmabuf)
19380 {
19381 struct fc_frame_header *fc_hdr;
19382 struct lpfc_hba *phba = vport->phba;
19383 struct lpfc_iocbq *iocbq = NULL;
19384 union lpfc_wqe128 *pwqe;
19385 struct lpfc_dmabuf *pcmd = NULL;
19386 uint32_t frame_len;
19387 int rc;
19388 unsigned long iflags;
19389
19390 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19391 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19392
19393 /* Send the received frame back */
19394 iocbq = lpfc_sli_get_iocbq(phba);
19395 if (!iocbq) {
19396 /* Queue cq event and wakeup worker thread to process it */
19397 spin_lock_irqsave(&phba->hbalock, iflags);
19398 list_add_tail(&dmabuf->cq_event.list,
19399 &phba->sli4_hba.sp_queue_event);
19400 spin_unlock_irqrestore(&phba->hbalock, iflags);
19401 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
19402 lpfc_worker_wake_up(phba);
19403 return;
19404 }
19405
19406 /* Allocate buffer for command payload */
19407 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19408 if (pcmd)
19409 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19410 &pcmd->phys);
19411 if (!pcmd || !pcmd->virt)
19412 goto exit;
19413
19414 INIT_LIST_HEAD(&pcmd->list);
19415
19416 /* copyin the payload */
19417 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19418
19419 iocbq->cmd_dmabuf = pcmd;
19420 iocbq->vport = vport;
19421 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19422 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19423 iocbq->num_bdes = 0;
19424
19425 pwqe = &iocbq->wqe;
19426 /* fill in BDE's for command */
19427 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19428 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19429 pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19430 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19431
19432 pwqe->send_frame.frame_len = frame_len;
19433 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19434 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19435 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19436 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19437 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19438 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19439
19440 pwqe->generic.wqe_com.word7 = 0;
19441 pwqe->generic.wqe_com.word10 = 0;
19442
19443 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19444 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19445 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19446 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19447 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19448 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19449 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19450 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19451 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19452 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19453 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19454 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19455 pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19456
19457 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19458
19459 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19460 if (rc == IOCB_ERROR)
19461 goto exit;
19462
19463 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19464 return;
19465
19466 exit:
19467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19468 "2023 Unable to process MDS loopback frame\n");
19469 if (pcmd && pcmd->virt)
19470 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19471 kfree(pcmd);
19472 if (iocbq)
19473 lpfc_sli_release_iocbq(phba, iocbq);
19474 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19475 }
19476
19477 /**
19478 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19479 * @phba: Pointer to HBA context object.
19480 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19481 *
19482 * This function is called with no lock held. This function processes all
19483 * the received buffers and gives it to upper layers when a received buffer
19484 * indicates that it is the final frame in the sequence. The interrupt
19485 * service routine processes received buffers at interrupt contexts.
19486 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19487 * appropriate receive function when the final frame in a sequence is received.
19488 **/
19489 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)19490 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19491 struct hbq_dmabuf *dmabuf)
19492 {
19493 struct hbq_dmabuf *seq_dmabuf;
19494 struct fc_frame_header *fc_hdr;
19495 struct lpfc_vport *vport;
19496 uint32_t fcfi;
19497 uint32_t did;
19498
19499 /* Process each received buffer */
19500 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19501
19502 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19503 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19504 vport = phba->pport;
19505 /* Handle MDS Loopback frames */
19506 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
19507 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19508 else
19509 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19510 return;
19511 }
19512
19513 /* check to see if this a valid type of frame */
19514 if (lpfc_fc_frame_check(phba, fc_hdr)) {
19515 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19516 return;
19517 }
19518
19519 if ((bf_get(lpfc_cqe_code,
19520 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19521 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19522 &dmabuf->cq_event.cqe.rcqe_cmpl);
19523 else
19524 fcfi = bf_get(lpfc_rcqe_fcf_id,
19525 &dmabuf->cq_event.cqe.rcqe_cmpl);
19526
19527 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19528 vport = phba->pport;
19529 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19530 "2023 MDS Loopback %d bytes\n",
19531 bf_get(lpfc_rcqe_length,
19532 &dmabuf->cq_event.cqe.rcqe_cmpl));
19533 /* Handle MDS Loopback frames */
19534 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19535 return;
19536 }
19537
19538 /* d_id this frame is directed to */
19539 did = sli4_did_from_fc_hdr(fc_hdr);
19540
19541 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19542 if (!vport) {
19543 /* throw out the frame */
19544 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19545 return;
19546 }
19547
19548 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19549 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19550 (did != Fabric_DID)) {
19551 /*
19552 * Throw out the frame if we are not pt2pt.
19553 * The pt2pt protocol allows for discovery frames
19554 * to be received without a registered VPI.
19555 */
19556 if (!test_bit(FC_PT2PT, &vport->fc_flag) ||
19557 phba->link_state == LPFC_HBA_READY) {
19558 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19559 return;
19560 }
19561 }
19562
19563 /* Handle the basic abort sequence (BA_ABTS) event */
19564 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19565 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19566 return;
19567 }
19568
19569 /* Link this frame */
19570 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19571 if (!seq_dmabuf) {
19572 /* unable to add frame to vport - throw it out */
19573 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19574 return;
19575 }
19576 /* If not last frame in sequence continue processing frames. */
19577 if (!lpfc_seq_complete(seq_dmabuf))
19578 return;
19579
19580 /* Send the complete sequence to the upper layer protocol */
19581 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19582 }
19583
19584 /**
19585 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19586 * @phba: pointer to lpfc hba data structure.
19587 *
19588 * This routine is invoked to post rpi header templates to the
19589 * HBA consistent with the SLI-4 interface spec. This routine
19590 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19591 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19592 *
19593 * This routine does not require any locks. It's usage is expected
19594 * to be driver load or reset recovery when the driver is
19595 * sequential.
19596 *
19597 * Return codes
19598 * 0 - successful
19599 * -EIO - The mailbox failed to complete successfully.
19600 * When this error occurs, the driver is not guaranteed
19601 * to have any rpi regions posted to the device and
19602 * must either attempt to repost the regions or take a
19603 * fatal error.
19604 **/
19605 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)19606 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19607 {
19608 struct lpfc_rpi_hdr *rpi_page;
19609 uint32_t rc = 0;
19610 uint16_t lrpi = 0;
19611
19612 /* SLI4 ports that support extents do not require RPI headers. */
19613 if (!phba->sli4_hba.rpi_hdrs_in_use)
19614 goto exit;
19615 if (phba->sli4_hba.extents_in_use)
19616 return -EIO;
19617
19618 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19619 /*
19620 * Assign the rpi headers a physical rpi only if the driver
19621 * has not initialized those resources. A port reset only
19622 * needs the headers posted.
19623 */
19624 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19625 LPFC_RPI_RSRC_RDY)
19626 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19627
19628 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19629 if (rc != MBX_SUCCESS) {
19630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19631 "2008 Error %d posting all rpi "
19632 "headers\n", rc);
19633 rc = -EIO;
19634 break;
19635 }
19636 }
19637
19638 exit:
19639 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19640 LPFC_RPI_RSRC_RDY);
19641 return rc;
19642 }
19643
19644 /**
19645 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19646 * @phba: pointer to lpfc hba data structure.
19647 * @rpi_page: pointer to the rpi memory region.
19648 *
19649 * This routine is invoked to post a single rpi header to the
19650 * HBA consistent with the SLI-4 interface spec. This memory region
19651 * maps up to 64 rpi context regions.
19652 *
19653 * Return codes
19654 * 0 - successful
19655 * -ENOMEM - No available memory
19656 * -EIO - The mailbox failed to complete successfully.
19657 **/
19658 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)19659 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19660 {
19661 LPFC_MBOXQ_t *mboxq;
19662 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19663 uint32_t rc = 0;
19664 uint32_t shdr_status, shdr_add_status;
19665 union lpfc_sli4_cfg_shdr *shdr;
19666
19667 /* SLI4 ports that support extents do not require RPI headers. */
19668 if (!phba->sli4_hba.rpi_hdrs_in_use)
19669 return rc;
19670 if (phba->sli4_hba.extents_in_use)
19671 return -EIO;
19672
19673 /* The port is notified of the header region via a mailbox command. */
19674 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19675 if (!mboxq) {
19676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19677 "2001 Unable to allocate memory for issuing "
19678 "SLI_CONFIG_SPECIAL mailbox command\n");
19679 return -ENOMEM;
19680 }
19681
19682 /* Post all rpi memory regions to the port. */
19683 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19684 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19685 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19686 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19687 sizeof(struct lpfc_sli4_cfg_mhdr),
19688 LPFC_SLI4_MBX_EMBED);
19689
19690
19691 /* Post the physical rpi to the port for this rpi header. */
19692 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19693 rpi_page->start_rpi);
19694 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19695 hdr_tmpl, rpi_page->page_count);
19696
19697 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19698 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19699 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19700 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19701 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19702 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19703 mempool_free(mboxq, phba->mbox_mem_pool);
19704 if (shdr_status || shdr_add_status || rc) {
19705 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19706 "2514 POST_RPI_HDR mailbox failed with "
19707 "status x%x add_status x%x, mbx status x%x\n",
19708 shdr_status, shdr_add_status, rc);
19709 rc = -ENXIO;
19710 } else {
19711 /*
19712 * The next_rpi stores the next logical module-64 rpi value used
19713 * to post physical rpis in subsequent rpi postings.
19714 */
19715 spin_lock_irq(&phba->hbalock);
19716 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19717 spin_unlock_irq(&phba->hbalock);
19718 }
19719 return rc;
19720 }
19721
19722 /**
19723 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19724 * @phba: pointer to lpfc hba data structure.
19725 *
19726 * This routine is invoked to post rpi header templates to the
19727 * HBA consistent with the SLI-4 interface spec. This routine
19728 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19729 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19730 *
19731 * Returns
19732 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19733 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
19734 **/
19735 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)19736 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19737 {
19738 unsigned long rpi;
19739 uint16_t max_rpi, rpi_limit;
19740 uint16_t rpi_remaining, lrpi = 0;
19741 struct lpfc_rpi_hdr *rpi_hdr;
19742 unsigned long iflag;
19743
19744 /*
19745 * Fetch the next logical rpi. Because this index is logical,
19746 * the driver starts at 0 each time.
19747 */
19748 spin_lock_irqsave(&phba->hbalock, iflag);
19749 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19750 rpi_limit = phba->sli4_hba.next_rpi;
19751
19752 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19753 if (rpi >= rpi_limit)
19754 rpi = LPFC_RPI_ALLOC_ERROR;
19755 else {
19756 set_bit(rpi, phba->sli4_hba.rpi_bmask);
19757 phba->sli4_hba.max_cfg_param.rpi_used++;
19758 phba->sli4_hba.rpi_count++;
19759 }
19760 lpfc_printf_log(phba, KERN_INFO,
19761 LOG_NODE | LOG_DISCOVERY,
19762 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19763 (int) rpi, max_rpi, rpi_limit);
19764
19765 /*
19766 * Don't try to allocate more rpi header regions if the device limit
19767 * has been exhausted.
19768 */
19769 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19770 (phba->sli4_hba.rpi_count >= max_rpi)) {
19771 spin_unlock_irqrestore(&phba->hbalock, iflag);
19772 return rpi;
19773 }
19774
19775 /*
19776 * RPI header postings are not required for SLI4 ports capable of
19777 * extents.
19778 */
19779 if (!phba->sli4_hba.rpi_hdrs_in_use) {
19780 spin_unlock_irqrestore(&phba->hbalock, iflag);
19781 return rpi;
19782 }
19783
19784 /*
19785 * If the driver is running low on rpi resources, allocate another
19786 * page now. Note that the next_rpi value is used because
19787 * it represents how many are actually in use whereas max_rpi notes
19788 * how many are supported max by the device.
19789 */
19790 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19791 spin_unlock_irqrestore(&phba->hbalock, iflag);
19792 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19793 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19794 if (!rpi_hdr) {
19795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19796 "2002 Error Could not grow rpi "
19797 "count\n");
19798 } else {
19799 lrpi = rpi_hdr->start_rpi;
19800 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19801 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19802 }
19803 }
19804
19805 return rpi;
19806 }
19807
19808 /**
19809 * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19810 * @phba: pointer to lpfc hba data structure.
19811 * @rpi: rpi to free
19812 *
19813 * This routine is invoked to release an rpi to the pool of
19814 * available rpis maintained by the driver.
19815 **/
19816 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19817 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19818 {
19819 /*
19820 * if the rpi value indicates a prior unreg has already
19821 * been done, skip the unreg.
19822 */
19823 if (rpi == LPFC_RPI_ALLOC_ERROR)
19824 return;
19825
19826 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19827 phba->sli4_hba.rpi_count--;
19828 phba->sli4_hba.max_cfg_param.rpi_used--;
19829 } else {
19830 lpfc_printf_log(phba, KERN_INFO,
19831 LOG_NODE | LOG_DISCOVERY,
19832 "2016 rpi %x not inuse\n",
19833 rpi);
19834 }
19835 }
19836
19837 /**
19838 * lpfc_sli4_free_rpi - Release an rpi for reuse.
19839 * @phba: pointer to lpfc hba data structure.
19840 * @rpi: rpi to free
19841 *
19842 * This routine is invoked to release an rpi to the pool of
19843 * available rpis maintained by the driver.
19844 **/
19845 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19846 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19847 {
19848 spin_lock_irq(&phba->hbalock);
19849 __lpfc_sli4_free_rpi(phba, rpi);
19850 spin_unlock_irq(&phba->hbalock);
19851 }
19852
19853 /**
19854 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19855 * @phba: pointer to lpfc hba data structure.
19856 *
19857 * This routine is invoked to remove the memory region that
19858 * provided rpi via a bitmask.
19859 **/
19860 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)19861 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19862 {
19863 kfree(phba->sli4_hba.rpi_bmask);
19864 kfree(phba->sli4_hba.rpi_ids);
19865 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19866 }
19867
19868 /**
19869 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19870 * @ndlp: pointer to lpfc nodelist data structure.
19871 * @cmpl: completion call-back.
19872 * @iocbq: data to load as mbox ctx_u information
19873 *
19874 * This routine is invoked to remove the memory region that
19875 * provided rpi via a bitmask.
19876 **/
19877 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),struct lpfc_iocbq * iocbq)19878 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19879 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *),
19880 struct lpfc_iocbq *iocbq)
19881 {
19882 LPFC_MBOXQ_t *mboxq;
19883 struct lpfc_hba *phba = ndlp->phba;
19884 int rc;
19885
19886 /* The port is notified of the header region via a mailbox command. */
19887 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19888 if (!mboxq)
19889 return -ENOMEM;
19890
19891 /* If cmpl assigned, then this nlp_get pairs with
19892 * lpfc_mbx_cmpl_resume_rpi.
19893 *
19894 * Else cmpl is NULL, then this nlp_get pairs with
19895 * lpfc_sli_def_mbox_cmpl.
19896 */
19897 if (!lpfc_nlp_get(ndlp)) {
19898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19899 "2122 %s: Failed to get nlp ref\n",
19900 __func__);
19901 mempool_free(mboxq, phba->mbox_mem_pool);
19902 return -EIO;
19903 }
19904
19905 /* Post all rpi memory regions to the port. */
19906 lpfc_resume_rpi(mboxq, ndlp);
19907 if (cmpl) {
19908 mboxq->mbox_cmpl = cmpl;
19909 mboxq->ctx_u.save_iocb = iocbq;
19910 } else
19911 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19912 mboxq->ctx_ndlp = ndlp;
19913 mboxq->vport = ndlp->vport;
19914 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19915 if (rc == MBX_NOT_FINISHED) {
19916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19917 "2010 Resume RPI Mailbox failed "
19918 "status %d, mbxStatus x%x\n", rc,
19919 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19920 lpfc_nlp_put(ndlp);
19921 mempool_free(mboxq, phba->mbox_mem_pool);
19922 return -EIO;
19923 }
19924 return 0;
19925 }
19926
19927 /**
19928 * lpfc_sli4_init_vpi - Initialize a vpi with the port
19929 * @vport: Pointer to the vport for which the vpi is being initialized
19930 *
19931 * This routine is invoked to activate a vpi with the port.
19932 *
19933 * Returns:
19934 * 0 success
19935 * -Evalue otherwise
19936 **/
19937 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)19938 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19939 {
19940 LPFC_MBOXQ_t *mboxq;
19941 int rc = 0;
19942 int retval = MBX_SUCCESS;
19943 uint32_t mbox_tmo;
19944 struct lpfc_hba *phba = vport->phba;
19945 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19946 if (!mboxq)
19947 return -ENOMEM;
19948 lpfc_init_vpi(phba, mboxq, vport->vpi);
19949 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19950 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19951 if (rc != MBX_SUCCESS) {
19952 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19953 "2022 INIT VPI Mailbox failed "
19954 "status %d, mbxStatus x%x\n", rc,
19955 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19956 retval = -EIO;
19957 }
19958 if (rc != MBX_TIMEOUT)
19959 mempool_free(mboxq, vport->phba->mbox_mem_pool);
19960
19961 return retval;
19962 }
19963
19964 /**
19965 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19966 * @phba: pointer to lpfc hba data structure.
19967 * @mboxq: Pointer to mailbox object.
19968 *
19969 * This routine is invoked to manually add a single FCF record. The caller
19970 * must pass a completely initialized FCF_Record. This routine takes
19971 * care of the nonembedded mailbox operations.
19972 **/
19973 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)19974 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19975 {
19976 void *virt_addr;
19977 union lpfc_sli4_cfg_shdr *shdr;
19978 uint32_t shdr_status, shdr_add_status;
19979
19980 virt_addr = mboxq->sge_array->addr[0];
19981 /* The IOCTL status is embedded in the mailbox subheader. */
19982 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19983 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19984 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19985
19986 if ((shdr_status || shdr_add_status) &&
19987 (shdr_status != STATUS_FCF_IN_USE))
19988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19989 "2558 ADD_FCF_RECORD mailbox failed with "
19990 "status x%x add_status x%x\n",
19991 shdr_status, shdr_add_status);
19992
19993 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19994 }
19995
19996 /**
19997 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19998 * @phba: pointer to lpfc hba data structure.
19999 * @fcf_record: pointer to the initialized fcf record to add.
20000 *
20001 * This routine is invoked to manually add a single FCF record. The caller
20002 * must pass a completely initialized FCF_Record. This routine takes
20003 * care of the nonembedded mailbox operations.
20004 **/
20005 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)20006 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
20007 {
20008 int rc = 0;
20009 LPFC_MBOXQ_t *mboxq;
20010 uint8_t *bytep;
20011 void *virt_addr;
20012 struct lpfc_mbx_sge sge;
20013 uint32_t alloc_len, req_len;
20014 uint32_t fcfindex;
20015
20016 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20017 if (!mboxq) {
20018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20019 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
20020 return -ENOMEM;
20021 }
20022
20023 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
20024 sizeof(uint32_t);
20025
20026 /* Allocate DMA memory and set up the non-embedded mailbox command */
20027 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
20028 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
20029 req_len, LPFC_SLI4_MBX_NEMBED);
20030 if (alloc_len < req_len) {
20031 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20032 "2523 Allocated DMA memory size (x%x) is "
20033 "less than the requested DMA memory "
20034 "size (x%x)\n", alloc_len, req_len);
20035 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20036 return -ENOMEM;
20037 }
20038
20039 /*
20040 * Get the first SGE entry from the non-embedded DMA memory. This
20041 * routine only uses a single SGE.
20042 */
20043 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
20044 virt_addr = mboxq->sge_array->addr[0];
20045 /*
20046 * Configure the FCF record for FCFI 0. This is the driver's
20047 * hardcoded default and gets used in nonFIP mode.
20048 */
20049 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
20050 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
20051 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
20052
20053 /*
20054 * Copy the fcf_index and the FCF Record Data. The data starts after
20055 * the FCoE header plus word10. The data copy needs to be endian
20056 * correct.
20057 */
20058 bytep += sizeof(uint32_t);
20059 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
20060 mboxq->vport = phba->pport;
20061 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
20062 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20063 if (rc == MBX_NOT_FINISHED) {
20064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20065 "2515 ADD_FCF_RECORD mailbox failed with "
20066 "status 0x%x\n", rc);
20067 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20068 rc = -EIO;
20069 } else
20070 rc = 0;
20071
20072 return rc;
20073 }
20074
20075 /**
20076 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
20077 * @phba: pointer to lpfc hba data structure.
20078 * @fcf_record: pointer to the fcf record to write the default data.
20079 * @fcf_index: FCF table entry index.
20080 *
20081 * This routine is invoked to build the driver's default FCF record. The
20082 * values used are hardcoded. This routine handles memory initialization.
20083 *
20084 **/
20085 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)20086 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
20087 struct fcf_record *fcf_record,
20088 uint16_t fcf_index)
20089 {
20090 memset(fcf_record, 0, sizeof(struct fcf_record));
20091 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
20092 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
20093 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
20094 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
20095 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
20096 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
20097 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
20098 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
20099 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
20100 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
20101 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
20102 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
20103 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
20104 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
20105 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
20106 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
20107 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
20108 /* Set the VLAN bit map */
20109 if (phba->valid_vlan) {
20110 fcf_record->vlan_bitmap[phba->vlan_id / 8]
20111 = 1 << (phba->vlan_id % 8);
20112 }
20113 }
20114
20115 /**
20116 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
20117 * @phba: pointer to lpfc hba data structure.
20118 * @fcf_index: FCF table entry offset.
20119 *
20120 * This routine is invoked to scan the entire FCF table by reading FCF
20121 * record and processing it one at a time starting from the @fcf_index
20122 * for initial FCF discovery or fast FCF failover rediscovery.
20123 *
20124 * Return 0 if the mailbox command is submitted successfully, none 0
20125 * otherwise.
20126 **/
20127 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20128 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20129 {
20130 int rc = 0, error;
20131 LPFC_MBOXQ_t *mboxq;
20132
20133 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
20134 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
20135 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20136 if (!mboxq) {
20137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20138 "2000 Failed to allocate mbox for "
20139 "READ_FCF cmd\n");
20140 error = -ENOMEM;
20141 goto fail_fcf_scan;
20142 }
20143 /* Construct the read FCF record mailbox command */
20144 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20145 if (rc) {
20146 error = -EINVAL;
20147 goto fail_fcf_scan;
20148 }
20149 /* Issue the mailbox command asynchronously */
20150 mboxq->vport = phba->pport;
20151 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20152
20153 set_bit(FCF_TS_INPROG, &phba->hba_flag);
20154
20155 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20156 if (rc == MBX_NOT_FINISHED)
20157 error = -EIO;
20158 else {
20159 /* Reset eligible FCF count for new scan */
20160 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20161 phba->fcf.eligible_fcf_cnt = 0;
20162 error = 0;
20163 }
20164 fail_fcf_scan:
20165 if (error) {
20166 if (mboxq)
20167 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20168 /* FCF scan failed, clear FCF_TS_INPROG flag */
20169 clear_bit(FCF_TS_INPROG, &phba->hba_flag);
20170 }
20171 return error;
20172 }
20173
20174 /**
20175 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20176 * @phba: pointer to lpfc hba data structure.
20177 * @fcf_index: FCF table entry offset.
20178 *
20179 * This routine is invoked to read an FCF record indicated by @fcf_index
20180 * and to use it for FLOGI roundrobin FCF failover.
20181 *
20182 * Return 0 if the mailbox command is submitted successfully, none 0
20183 * otherwise.
20184 **/
20185 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20186 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20187 {
20188 int rc = 0, error;
20189 LPFC_MBOXQ_t *mboxq;
20190
20191 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20192 if (!mboxq) {
20193 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20194 "2763 Failed to allocate mbox for "
20195 "READ_FCF cmd\n");
20196 error = -ENOMEM;
20197 goto fail_fcf_read;
20198 }
20199 /* Construct the read FCF record mailbox command */
20200 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20201 if (rc) {
20202 error = -EINVAL;
20203 goto fail_fcf_read;
20204 }
20205 /* Issue the mailbox command asynchronously */
20206 mboxq->vport = phba->pport;
20207 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20208 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20209 if (rc == MBX_NOT_FINISHED)
20210 error = -EIO;
20211 else
20212 error = 0;
20213
20214 fail_fcf_read:
20215 if (error && mboxq)
20216 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20217 return error;
20218 }
20219
20220 /**
20221 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20222 * @phba: pointer to lpfc hba data structure.
20223 * @fcf_index: FCF table entry offset.
20224 *
20225 * This routine is invoked to read an FCF record indicated by @fcf_index to
20226 * determine whether it's eligible for FLOGI roundrobin failover list.
20227 *
20228 * Return 0 if the mailbox command is submitted successfully, none 0
20229 * otherwise.
20230 **/
20231 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20232 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20233 {
20234 int rc = 0, error;
20235 LPFC_MBOXQ_t *mboxq;
20236
20237 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20238 if (!mboxq) {
20239 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20240 "2758 Failed to allocate mbox for "
20241 "READ_FCF cmd\n");
20242 error = -ENOMEM;
20243 goto fail_fcf_read;
20244 }
20245 /* Construct the read FCF record mailbox command */
20246 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20247 if (rc) {
20248 error = -EINVAL;
20249 goto fail_fcf_read;
20250 }
20251 /* Issue the mailbox command asynchronously */
20252 mboxq->vport = phba->pport;
20253 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20254 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20255 if (rc == MBX_NOT_FINISHED)
20256 error = -EIO;
20257 else
20258 error = 0;
20259
20260 fail_fcf_read:
20261 if (error && mboxq)
20262 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20263 return error;
20264 }
20265
20266 /**
20267 * lpfc_check_next_fcf_pri_level
20268 * @phba: pointer to the lpfc_hba struct for this port.
20269 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20270 * routine when the rr_bmask is empty. The FCF indecies are put into the
20271 * rr_bmask based on their priority level. Starting from the highest priority
20272 * to the lowest. The most likely FCF candidate will be in the highest
20273 * priority group. When this routine is called it searches the fcf_pri list for
20274 * next lowest priority group and repopulates the rr_bmask with only those
20275 * fcf_indexes.
20276 * returns:
20277 * 1=success 0=failure
20278 **/
20279 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)20280 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20281 {
20282 uint16_t next_fcf_pri;
20283 uint16_t last_index;
20284 struct lpfc_fcf_pri *fcf_pri;
20285 int rc;
20286 int ret = 0;
20287
20288 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20289 LPFC_SLI4_FCF_TBL_INDX_MAX);
20290 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20291 "3060 Last IDX %d\n", last_index);
20292
20293 /* Verify the priority list has 2 or more entries */
20294 spin_lock_irq(&phba->hbalock);
20295 if (list_empty(&phba->fcf.fcf_pri_list) ||
20296 list_is_singular(&phba->fcf.fcf_pri_list)) {
20297 spin_unlock_irq(&phba->hbalock);
20298 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20299 "3061 Last IDX %d\n", last_index);
20300 return 0; /* Empty rr list */
20301 }
20302 spin_unlock_irq(&phba->hbalock);
20303
20304 next_fcf_pri = 0;
20305 /*
20306 * Clear the rr_bmask and set all of the bits that are at this
20307 * priority.
20308 */
20309 memset(phba->fcf.fcf_rr_bmask, 0,
20310 sizeof(*phba->fcf.fcf_rr_bmask));
20311 spin_lock_irq(&phba->hbalock);
20312 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20313 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20314 continue;
20315 /*
20316 * the 1st priority that has not FLOGI failed
20317 * will be the highest.
20318 */
20319 if (!next_fcf_pri)
20320 next_fcf_pri = fcf_pri->fcf_rec.priority;
20321 spin_unlock_irq(&phba->hbalock);
20322 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20323 rc = lpfc_sli4_fcf_rr_index_set(phba,
20324 fcf_pri->fcf_rec.fcf_index);
20325 if (rc)
20326 return 0;
20327 }
20328 spin_lock_irq(&phba->hbalock);
20329 }
20330 /*
20331 * if next_fcf_pri was not set above and the list is not empty then
20332 * we have failed flogis on all of them. So reset flogi failed
20333 * and start at the beginning.
20334 */
20335 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20336 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20337 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20338 /*
20339 * the 1st priority that has not FLOGI failed
20340 * will be the highest.
20341 */
20342 if (!next_fcf_pri)
20343 next_fcf_pri = fcf_pri->fcf_rec.priority;
20344 spin_unlock_irq(&phba->hbalock);
20345 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20346 rc = lpfc_sli4_fcf_rr_index_set(phba,
20347 fcf_pri->fcf_rec.fcf_index);
20348 if (rc)
20349 return 0;
20350 }
20351 spin_lock_irq(&phba->hbalock);
20352 }
20353 } else
20354 ret = 1;
20355 spin_unlock_irq(&phba->hbalock);
20356
20357 return ret;
20358 }
20359 /**
20360 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20361 * @phba: pointer to lpfc hba data structure.
20362 *
20363 * This routine is to get the next eligible FCF record index in a round
20364 * robin fashion. If the next eligible FCF record index equals to the
20365 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20366 * shall be returned, otherwise, the next eligible FCF record's index
20367 * shall be returned.
20368 **/
20369 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)20370 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20371 {
20372 uint16_t next_fcf_index;
20373
20374 initial_priority:
20375 /* Search start from next bit of currently registered FCF index */
20376 next_fcf_index = phba->fcf.current_rec.fcf_indx;
20377
20378 next_priority:
20379 /* Determine the next fcf index to check */
20380 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20381 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20382 LPFC_SLI4_FCF_TBL_INDX_MAX,
20383 next_fcf_index);
20384
20385 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
20386 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20387 /*
20388 * If we have wrapped then we need to clear the bits that
20389 * have been tested so that we can detect when we should
20390 * change the priority level.
20391 */
20392 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20393 LPFC_SLI4_FCF_TBL_INDX_MAX);
20394 }
20395
20396
20397 /* Check roundrobin failover list empty condition */
20398 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20399 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20400 /*
20401 * If next fcf index is not found check if there are lower
20402 * Priority level fcf's in the fcf_priority list.
20403 * Set up the rr_bmask with all of the avaiable fcf bits
20404 * at that level and continue the selection process.
20405 */
20406 if (lpfc_check_next_fcf_pri_level(phba))
20407 goto initial_priority;
20408 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20409 "2844 No roundrobin failover FCF available\n");
20410
20411 return LPFC_FCOE_FCF_NEXT_NONE;
20412 }
20413
20414 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20415 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20416 LPFC_FCF_FLOGI_FAILED) {
20417 if (list_is_singular(&phba->fcf.fcf_pri_list))
20418 return LPFC_FCOE_FCF_NEXT_NONE;
20419
20420 goto next_priority;
20421 }
20422
20423 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20424 "2845 Get next roundrobin failover FCF (x%x)\n",
20425 next_fcf_index);
20426
20427 return next_fcf_index;
20428 }
20429
20430 /**
20431 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20432 * @phba: pointer to lpfc hba data structure.
20433 * @fcf_index: index into the FCF table to 'set'
20434 *
20435 * This routine sets the FCF record index in to the eligible bmask for
20436 * roundrobin failover search. It checks to make sure that the index
20437 * does not go beyond the range of the driver allocated bmask dimension
20438 * before setting the bit.
20439 *
20440 * Returns 0 if the index bit successfully set, otherwise, it returns
20441 * -EINVAL.
20442 **/
20443 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)20444 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20445 {
20446 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20447 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20448 "2610 FCF (x%x) reached driver's book "
20449 "keeping dimension:x%x\n",
20450 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20451 return -EINVAL;
20452 }
20453 /* Set the eligible FCF record index bmask */
20454 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20455
20456 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20457 "2790 Set FCF (x%x) to roundrobin FCF failover "
20458 "bmask\n", fcf_index);
20459
20460 return 0;
20461 }
20462
20463 /**
20464 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20465 * @phba: pointer to lpfc hba data structure.
20466 * @fcf_index: index into the FCF table to 'clear'
20467 *
20468 * This routine clears the FCF record index from the eligible bmask for
20469 * roundrobin failover search. It checks to make sure that the index
20470 * does not go beyond the range of the driver allocated bmask dimension
20471 * before clearing the bit.
20472 **/
20473 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)20474 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20475 {
20476 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20477 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20478 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20479 "2762 FCF (x%x) reached driver's book "
20480 "keeping dimension:x%x\n",
20481 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20482 return;
20483 }
20484 /* Clear the eligible FCF record index bmask */
20485 spin_lock_irq(&phba->hbalock);
20486 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20487 list) {
20488 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20489 list_del_init(&fcf_pri->list);
20490 break;
20491 }
20492 }
20493 spin_unlock_irq(&phba->hbalock);
20494 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20495
20496 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20497 "2791 Clear FCF (x%x) from roundrobin failover "
20498 "bmask\n", fcf_index);
20499 }
20500
20501 /**
20502 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20503 * @phba: pointer to lpfc hba data structure.
20504 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20505 *
20506 * This routine is the completion routine for the rediscover FCF table mailbox
20507 * command. If the mailbox command returned failure, it will try to stop the
20508 * FCF rediscover wait timer.
20509 **/
20510 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)20511 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20512 {
20513 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20514 uint32_t shdr_status, shdr_add_status;
20515
20516 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20517
20518 shdr_status = bf_get(lpfc_mbox_hdr_status,
20519 &redisc_fcf->header.cfg_shdr.response);
20520 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20521 &redisc_fcf->header.cfg_shdr.response);
20522 if (shdr_status || shdr_add_status) {
20523 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20524 "2746 Requesting for FCF rediscovery failed "
20525 "status x%x add_status x%x\n",
20526 shdr_status, shdr_add_status);
20527 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20528 spin_lock_irq(&phba->hbalock);
20529 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20530 spin_unlock_irq(&phba->hbalock);
20531 /*
20532 * CVL event triggered FCF rediscover request failed,
20533 * last resort to re-try current registered FCF entry.
20534 */
20535 lpfc_retry_pport_discovery(phba);
20536 } else {
20537 spin_lock_irq(&phba->hbalock);
20538 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20539 spin_unlock_irq(&phba->hbalock);
20540 /*
20541 * DEAD FCF event triggered FCF rediscover request
20542 * failed, last resort to fail over as a link down
20543 * to FCF registration.
20544 */
20545 lpfc_sli4_fcf_dead_failthrough(phba);
20546 }
20547 } else {
20548 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20549 "2775 Start FCF rediscover quiescent timer\n");
20550 /*
20551 * Start FCF rediscovery wait timer for pending FCF
20552 * before rescan FCF record table.
20553 */
20554 lpfc_fcf_redisc_wait_start_timer(phba);
20555 }
20556
20557 mempool_free(mbox, phba->mbox_mem_pool);
20558 }
20559
20560 /**
20561 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20562 * @phba: pointer to lpfc hba data structure.
20563 *
20564 * This routine is invoked to request for rediscovery of the entire FCF table
20565 * by the port.
20566 **/
20567 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)20568 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20569 {
20570 LPFC_MBOXQ_t *mbox;
20571 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20572 int rc, length;
20573
20574 /* Cancel retry delay timers to all vports before FCF rediscover */
20575 lpfc_cancel_all_vport_retry_delay_timer(phba);
20576
20577 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20578 if (!mbox) {
20579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20580 "2745 Failed to allocate mbox for "
20581 "requesting FCF rediscover.\n");
20582 return -ENOMEM;
20583 }
20584
20585 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20586 sizeof(struct lpfc_sli4_cfg_mhdr));
20587 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20588 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20589 length, LPFC_SLI4_MBX_EMBED);
20590
20591 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20592 /* Set count to 0 for invalidating the entire FCF database */
20593 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20594
20595 /* Issue the mailbox command asynchronously */
20596 mbox->vport = phba->pport;
20597 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20598 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20599
20600 if (rc == MBX_NOT_FINISHED) {
20601 mempool_free(mbox, phba->mbox_mem_pool);
20602 return -EIO;
20603 }
20604 return 0;
20605 }
20606
20607 /**
20608 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20609 * @phba: pointer to lpfc hba data structure.
20610 *
20611 * This function is the failover routine as a last resort to the FCF DEAD
20612 * event when driver failed to perform fast FCF failover.
20613 **/
20614 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)20615 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20616 {
20617 uint32_t link_state;
20618
20619 /*
20620 * Last resort as FCF DEAD event failover will treat this as
20621 * a link down, but save the link state because we don't want
20622 * it to be changed to Link Down unless it is already down.
20623 */
20624 link_state = phba->link_state;
20625 lpfc_linkdown(phba);
20626 phba->link_state = link_state;
20627
20628 /* Unregister FCF if no devices connected to it */
20629 lpfc_unregister_unused_fcf(phba);
20630 }
20631
20632 /**
20633 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20634 * @phba: pointer to lpfc hba data structure.
20635 * @rgn23_data: pointer to configure region 23 data.
20636 *
20637 * This function gets SLI3 port configure region 23 data through memory dump
20638 * mailbox command. When it successfully retrieves data, the size of the data
20639 * will be returned, otherwise, 0 will be returned.
20640 **/
20641 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20642 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20643 {
20644 LPFC_MBOXQ_t *pmb = NULL;
20645 MAILBOX_t *mb;
20646 uint32_t offset = 0;
20647 int rc;
20648
20649 if (!rgn23_data)
20650 return 0;
20651
20652 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20653 if (!pmb) {
20654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20655 "2600 failed to allocate mailbox memory\n");
20656 return 0;
20657 }
20658 mb = &pmb->u.mb;
20659
20660 do {
20661 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20662 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20663
20664 if (rc != MBX_SUCCESS) {
20665 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20666 "2601 failed to read config "
20667 "region 23, rc 0x%x Status 0x%x\n",
20668 rc, mb->mbxStatus);
20669 mb->un.varDmp.word_cnt = 0;
20670 }
20671 /*
20672 * dump mem may return a zero when finished or we got a
20673 * mailbox error, either way we are done.
20674 */
20675 if (mb->un.varDmp.word_cnt == 0)
20676 break;
20677
20678 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20679 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20680
20681 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20682 rgn23_data + offset,
20683 mb->un.varDmp.word_cnt);
20684 offset += mb->un.varDmp.word_cnt;
20685 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20686
20687 mempool_free(pmb, phba->mbox_mem_pool);
20688 return offset;
20689 }
20690
20691 /**
20692 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20693 * @phba: pointer to lpfc hba data structure.
20694 * @rgn23_data: pointer to configure region 23 data.
20695 *
20696 * This function gets SLI4 port configure region 23 data through memory dump
20697 * mailbox command. When it successfully retrieves data, the size of the data
20698 * will be returned, otherwise, 0 will be returned.
20699 **/
20700 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20701 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20702 {
20703 LPFC_MBOXQ_t *mboxq = NULL;
20704 struct lpfc_dmabuf *mp = NULL;
20705 struct lpfc_mqe *mqe;
20706 uint32_t data_length = 0;
20707 int rc;
20708
20709 if (!rgn23_data)
20710 return 0;
20711
20712 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20713 if (!mboxq) {
20714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20715 "3105 failed to allocate mailbox memory\n");
20716 return 0;
20717 }
20718
20719 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20720 goto out;
20721 mqe = &mboxq->u.mqe;
20722 mp = mboxq->ctx_buf;
20723 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20724 if (rc)
20725 goto out;
20726 data_length = mqe->un.mb_words[5];
20727 if (data_length == 0)
20728 goto out;
20729 if (data_length > DMP_RGN23_SIZE) {
20730 data_length = 0;
20731 goto out;
20732 }
20733 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20734 out:
20735 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20736 return data_length;
20737 }
20738
20739 /**
20740 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20741 * @phba: pointer to lpfc hba data structure.
20742 *
20743 * This function read region 23 and parse TLV for port status to
20744 * decide if the user disaled the port. If the TLV indicates the
20745 * port is disabled, the hba_flag is set accordingly.
20746 **/
20747 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)20748 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20749 {
20750 uint8_t *rgn23_data = NULL;
20751 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20752 uint32_t offset = 0;
20753
20754 /* Get adapter Region 23 data */
20755 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20756 if (!rgn23_data)
20757 goto out;
20758
20759 if (phba->sli_rev < LPFC_SLI_REV4)
20760 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20761 else {
20762 if_type = bf_get(lpfc_sli_intf_if_type,
20763 &phba->sli4_hba.sli_intf);
20764 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20765 goto out;
20766 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20767 }
20768
20769 if (!data_size)
20770 goto out;
20771
20772 /* Check the region signature first */
20773 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20775 "2619 Config region 23 has bad signature\n");
20776 goto out;
20777 }
20778 offset += 4;
20779
20780 /* Check the data structure version */
20781 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20783 "2620 Config region 23 has bad version\n");
20784 goto out;
20785 }
20786 offset += 4;
20787
20788 /* Parse TLV entries in the region */
20789 while (offset < data_size) {
20790 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20791 break;
20792 /*
20793 * If the TLV is not driver specific TLV or driver id is
20794 * not linux driver id, skip the record.
20795 */
20796 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20797 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20798 (rgn23_data[offset + 3] != 0)) {
20799 offset += rgn23_data[offset + 1] * 4 + 4;
20800 continue;
20801 }
20802
20803 /* Driver found a driver specific TLV in the config region */
20804 sub_tlv_len = rgn23_data[offset + 1] * 4;
20805 offset += 4;
20806 tlv_offset = 0;
20807
20808 /*
20809 * Search for configured port state sub-TLV.
20810 */
20811 while ((offset < data_size) &&
20812 (tlv_offset < sub_tlv_len)) {
20813 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20814 offset += 4;
20815 tlv_offset += 4;
20816 break;
20817 }
20818 if (rgn23_data[offset] != PORT_STE_TYPE) {
20819 offset += rgn23_data[offset + 1] * 4 + 4;
20820 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20821 continue;
20822 }
20823
20824 /* This HBA contains PORT_STE configured */
20825 if (!rgn23_data[offset + 2])
20826 set_bit(LINK_DISABLED, &phba->hba_flag);
20827
20828 goto out;
20829 }
20830 }
20831
20832 out:
20833 kfree(rgn23_data);
20834 return;
20835 }
20836
20837 /**
20838 * lpfc_log_fw_write_cmpl - logs firmware write completion status
20839 * @phba: pointer to lpfc hba data structure
20840 * @shdr_status: wr_object rsp's status field
20841 * @shdr_add_status: wr_object rsp's add_status field
20842 * @shdr_add_status_2: wr_object rsp's add_status_2 field
20843 * @shdr_change_status: wr_object rsp's change_status field
20844 * @shdr_csf: wr_object rsp's csf bit
20845 *
20846 * This routine is intended to be called after a firmware write completes.
20847 * It will log next action items to be performed by the user to instantiate
20848 * the newly downloaded firmware or reason for incompatibility.
20849 **/
20850 static void
lpfc_log_fw_write_cmpl(struct lpfc_hba * phba,u32 shdr_status,u32 shdr_add_status,u32 shdr_add_status_2,u32 shdr_change_status,u32 shdr_csf)20851 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20852 u32 shdr_add_status, u32 shdr_add_status_2,
20853 u32 shdr_change_status, u32 shdr_csf)
20854 {
20855 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20856 "4198 %s: flash_id x%02x, asic_rev x%02x, "
20857 "status x%02x, add_status x%02x, add_status_2 x%02x, "
20858 "change_status x%02x, csf %01x\n", __func__,
20859 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20860 shdr_status, shdr_add_status, shdr_add_status_2,
20861 shdr_change_status, shdr_csf);
20862
20863 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20864 switch (shdr_add_status_2) {
20865 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20866 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20867 "4199 Firmware write failed: "
20868 "image incompatible with flash x%02x\n",
20869 phba->sli4_hba.flash_id);
20870 break;
20871 case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20872 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20873 "4200 Firmware write failed: "
20874 "image incompatible with ASIC "
20875 "architecture x%02x\n",
20876 phba->sli4_hba.asic_rev);
20877 break;
20878 default:
20879 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20880 "4210 Firmware write failed: "
20881 "add_status_2 x%02x\n",
20882 shdr_add_status_2);
20883 break;
20884 }
20885 } else if (!shdr_status && !shdr_add_status) {
20886 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20887 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20888 if (shdr_csf)
20889 shdr_change_status =
20890 LPFC_CHANGE_STATUS_PCI_RESET;
20891 }
20892
20893 switch (shdr_change_status) {
20894 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20895 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20896 "3198 Firmware write complete: System "
20897 "reboot required to instantiate\n");
20898 break;
20899 case (LPFC_CHANGE_STATUS_FW_RESET):
20900 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20901 "3199 Firmware write complete: "
20902 "Firmware reset required to "
20903 "instantiate\n");
20904 break;
20905 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20906 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20907 "3200 Firmware write complete: Port "
20908 "Migration or PCI Reset required to "
20909 "instantiate\n");
20910 break;
20911 case (LPFC_CHANGE_STATUS_PCI_RESET):
20912 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20913 "3201 Firmware write complete: PCI "
20914 "Reset required to instantiate\n");
20915 break;
20916 default:
20917 break;
20918 }
20919 }
20920 }
20921
20922 /**
20923 * lpfc_wr_object - write an object to the firmware
20924 * @phba: HBA structure that indicates port to create a queue on.
20925 * @dmabuf_list: list of dmabufs to write to the port.
20926 * @size: the total byte value of the objects to write to the port.
20927 * @offset: the current offset to be used to start the transfer.
20928 *
20929 * This routine will create a wr_object mailbox command to send to the port.
20930 * the mailbox command will be constructed using the dma buffers described in
20931 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20932 * BDEs that the imbedded mailbox can support. The @offset variable will be
20933 * used to indicate the starting offset of the transfer and will also return
20934 * the offset after the write object mailbox has completed. @size is used to
20935 * determine the end of the object and whether the eof bit should be set.
20936 *
20937 * Return 0 is successful and offset will contain the new offset to use
20938 * for the next write.
20939 * Return negative value for error cases.
20940 **/
20941 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)20942 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20943 uint32_t size, uint32_t *offset)
20944 {
20945 struct lpfc_mbx_wr_object *wr_object;
20946 LPFC_MBOXQ_t *mbox;
20947 int rc = 0, i = 0;
20948 int mbox_status = 0;
20949 uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20950 uint32_t shdr_change_status = 0, shdr_csf = 0;
20951 uint32_t mbox_tmo;
20952 struct lpfc_dmabuf *dmabuf;
20953 uint32_t written = 0;
20954 bool check_change_status = false;
20955
20956 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20957 if (!mbox)
20958 return -ENOMEM;
20959
20960 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20961 LPFC_MBOX_OPCODE_WRITE_OBJECT,
20962 sizeof(struct lpfc_mbx_wr_object) -
20963 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20964
20965 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20966 wr_object->u.request.write_offset = *offset;
20967 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20968 wr_object->u.request.object_name[0] =
20969 cpu_to_le32(wr_object->u.request.object_name[0]);
20970 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20971 list_for_each_entry(dmabuf, dmabuf_list, list) {
20972 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20973 break;
20974 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20975 wr_object->u.request.bde[i].addrHigh =
20976 putPaddrHigh(dmabuf->phys);
20977 if (written + SLI4_PAGE_SIZE >= size) {
20978 wr_object->u.request.bde[i].tus.f.bdeSize =
20979 (size - written);
20980 written += (size - written);
20981 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20982 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20983 check_change_status = true;
20984 } else {
20985 wr_object->u.request.bde[i].tus.f.bdeSize =
20986 SLI4_PAGE_SIZE;
20987 written += SLI4_PAGE_SIZE;
20988 }
20989 i++;
20990 }
20991 wr_object->u.request.bde_count = i;
20992 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20993 if (!phba->sli4_hba.intr_enable)
20994 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20995 else {
20996 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20997 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20998 }
20999
21000 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */
21001 rc = mbox_status;
21002
21003 /* The IOCTL status is embedded in the mailbox subheader. */
21004 shdr_status = bf_get(lpfc_mbox_hdr_status,
21005 &wr_object->header.cfg_shdr.response);
21006 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
21007 &wr_object->header.cfg_shdr.response);
21008 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
21009 &wr_object->header.cfg_shdr.response);
21010 if (check_change_status) {
21011 shdr_change_status = bf_get(lpfc_wr_object_change_status,
21012 &wr_object->u.response);
21013 shdr_csf = bf_get(lpfc_wr_object_csf,
21014 &wr_object->u.response);
21015 }
21016
21017 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
21018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21019 "3025 Write Object mailbox failed with "
21020 "status x%x add_status x%x, add_status_2 x%x, "
21021 "mbx status x%x\n",
21022 shdr_status, shdr_add_status, shdr_add_status_2,
21023 rc);
21024 rc = -ENXIO;
21025 *offset = shdr_add_status;
21026 } else {
21027 *offset += wr_object->u.response.actual_write_length;
21028 }
21029
21030 if (rc || check_change_status)
21031 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
21032 shdr_add_status_2, shdr_change_status,
21033 shdr_csf);
21034
21035 if (!phba->sli4_hba.intr_enable)
21036 mempool_free(mbox, phba->mbox_mem_pool);
21037 else if (mbox_status != MBX_TIMEOUT)
21038 mempool_free(mbox, phba->mbox_mem_pool);
21039
21040 return rc;
21041 }
21042
21043 /**
21044 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
21045 * @vport: pointer to vport data structure.
21046 *
21047 * This function iterate through the mailboxq and clean up all REG_LOGIN
21048 * and REG_VPI mailbox commands associated with the vport. This function
21049 * is called when driver want to restart discovery of the vport due to
21050 * a Clear Virtual Link event.
21051 **/
21052 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)21053 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
21054 {
21055 struct lpfc_hba *phba = vport->phba;
21056 LPFC_MBOXQ_t *mb, *nextmb;
21057 struct lpfc_nodelist *ndlp;
21058 struct lpfc_nodelist *act_mbx_ndlp = NULL;
21059 LIST_HEAD(mbox_cmd_list);
21060 uint8_t restart_loop;
21061
21062 /* Clean up internally queued mailbox commands with the vport */
21063 spin_lock_irq(&phba->hbalock);
21064 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
21065 if (mb->vport != vport)
21066 continue;
21067
21068 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21069 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21070 continue;
21071
21072 list_move_tail(&mb->list, &mbox_cmd_list);
21073 }
21074 /* Clean up active mailbox command with the vport */
21075 mb = phba->sli.mbox_active;
21076 if (mb && (mb->vport == vport)) {
21077 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
21078 (mb->u.mb.mbxCommand == MBX_REG_VPI))
21079 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21080 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21081 act_mbx_ndlp = mb->ctx_ndlp;
21082
21083 /* This reference is local to this routine. The
21084 * reference is removed at routine exit.
21085 */
21086 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
21087
21088 /* Unregister the RPI when mailbox complete */
21089 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21090 }
21091 }
21092 /* Cleanup any mailbox completions which are not yet processed */
21093 do {
21094 restart_loop = 0;
21095 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
21096 /*
21097 * If this mailox is already processed or it is
21098 * for another vport ignore it.
21099 */
21100 if ((mb->vport != vport) ||
21101 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
21102 continue;
21103
21104 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21105 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21106 continue;
21107
21108 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21109 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21110 ndlp = mb->ctx_ndlp;
21111 /* Unregister the RPI when mailbox complete */
21112 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21113 restart_loop = 1;
21114 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21115 break;
21116 }
21117 }
21118 } while (restart_loop);
21119
21120 spin_unlock_irq(&phba->hbalock);
21121
21122 /* Release the cleaned-up mailbox commands */
21123 while (!list_empty(&mbox_cmd_list)) {
21124 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
21125 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21126 ndlp = mb->ctx_ndlp;
21127 mb->ctx_ndlp = NULL;
21128 if (ndlp) {
21129 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag);
21130 lpfc_nlp_put(ndlp);
21131 }
21132 }
21133 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
21134 }
21135
21136 /* Release the ndlp with the cleaned-up active mailbox command */
21137 if (act_mbx_ndlp) {
21138 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag);
21139 lpfc_nlp_put(act_mbx_ndlp);
21140 }
21141 }
21142
21143 /**
21144 * lpfc_drain_txq - Drain the txq
21145 * @phba: Pointer to HBA context object.
21146 *
21147 * This function attempt to submit IOCBs on the txq
21148 * to the adapter. For SLI4 adapters, the txq contains
21149 * ELS IOCBs that have been deferred because the there
21150 * are no SGLs. This congestion can occur with large
21151 * vport counts during node discovery.
21152 **/
21153
21154 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)21155 lpfc_drain_txq(struct lpfc_hba *phba)
21156 {
21157 LIST_HEAD(completions);
21158 struct lpfc_sli_ring *pring;
21159 struct lpfc_iocbq *piocbq = NULL;
21160 unsigned long iflags = 0;
21161 char *fail_msg = NULL;
21162 uint32_t txq_cnt = 0;
21163 struct lpfc_queue *wq;
21164 int ret = 0;
21165
21166 if (phba->link_flag & LS_MDS_LOOPBACK) {
21167 /* MDS WQE are posted only to first WQ*/
21168 wq = phba->sli4_hba.hdwq[0].io_wq;
21169 if (unlikely(!wq))
21170 return 0;
21171 pring = wq->pring;
21172 } else {
21173 wq = phba->sli4_hba.els_wq;
21174 if (unlikely(!wq))
21175 return 0;
21176 pring = lpfc_phba_elsring(phba);
21177 }
21178
21179 if (unlikely(!pring) || list_empty(&pring->txq))
21180 return 0;
21181
21182 spin_lock_irqsave(&pring->ring_lock, iflags);
21183 list_for_each_entry(piocbq, &pring->txq, list) {
21184 txq_cnt++;
21185 }
21186
21187 if (txq_cnt > pring->txq_max)
21188 pring->txq_max = txq_cnt;
21189
21190 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21191
21192 while (!list_empty(&pring->txq)) {
21193 spin_lock_irqsave(&pring->ring_lock, iflags);
21194
21195 piocbq = lpfc_sli_ringtx_get(phba, pring);
21196 if (!piocbq) {
21197 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21198 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21199 "2823 txq empty and txq_cnt is %d\n",
21200 txq_cnt);
21201 break;
21202 }
21203 txq_cnt--;
21204
21205 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21206
21207 if (ret && ret != IOCB_BUSY) {
21208 fail_msg = " - Cannot send IO ";
21209 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21210 }
21211 if (fail_msg) {
21212 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21213 /* Failed means we can't issue and need to cancel */
21214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21215 "2822 IOCB failed %s iotag 0x%x "
21216 "xri 0x%x %d flg x%x\n",
21217 fail_msg, piocbq->iotag,
21218 piocbq->sli4_xritag, ret,
21219 piocbq->cmd_flag);
21220 list_add_tail(&piocbq->list, &completions);
21221 fail_msg = NULL;
21222 }
21223 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21224 if (txq_cnt == 0 || ret == IOCB_BUSY)
21225 break;
21226 }
21227 /* Cancel all the IOCBs that cannot be issued */
21228 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21229 IOERR_SLI_ABORTED);
21230
21231 return txq_cnt;
21232 }
21233
21234 /**
21235 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21236 * @phba: Pointer to HBA context object.
21237 * @pwqeq: Pointer to command WQE.
21238 * @sglq: Pointer to the scatter gather queue object.
21239 *
21240 * This routine converts the bpl or bde that is in the WQE
21241 * to a sgl list for the sli4 hardware. The physical address
21242 * of the bpl/bde is converted back to a virtual address.
21243 * If the WQE contains a BPL then the list of BDE's is
21244 * converted to sli4_sge's. If the WQE contains a single
21245 * BDE then it is converted to a single sli_sge.
21246 * The WQE is still in cpu endianness so the contents of
21247 * the bpl can be used without byte swapping.
21248 *
21249 * Returns valid XRI = Success, NO_XRI = Failure.
21250 */
21251 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)21252 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21253 struct lpfc_sglq *sglq)
21254 {
21255 uint16_t xritag = NO_XRI;
21256 struct ulp_bde64 *bpl = NULL;
21257 struct ulp_bde64 bde;
21258 struct sli4_sge *sgl = NULL;
21259 struct lpfc_dmabuf *dmabuf;
21260 union lpfc_wqe128 *wqe;
21261 int numBdes = 0;
21262 int i = 0;
21263 uint32_t offset = 0; /* accumulated offset in the sg request list */
21264 int inbound = 0; /* number of sg reply entries inbound from firmware */
21265 uint32_t cmd;
21266
21267 if (!pwqeq || !sglq)
21268 return xritag;
21269
21270 sgl = (struct sli4_sge *)sglq->sgl;
21271 wqe = &pwqeq->wqe;
21272 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21273
21274 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21275 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21276 return sglq->sli4_xritag;
21277 numBdes = pwqeq->num_bdes;
21278 if (numBdes) {
21279 /* The addrHigh and addrLow fields within the WQE
21280 * have not been byteswapped yet so there is no
21281 * need to swap them back.
21282 */
21283 if (pwqeq->bpl_dmabuf)
21284 dmabuf = pwqeq->bpl_dmabuf;
21285 else
21286 return xritag;
21287
21288 bpl = (struct ulp_bde64 *)dmabuf->virt;
21289 if (!bpl)
21290 return xritag;
21291
21292 for (i = 0; i < numBdes; i++) {
21293 /* Should already be byte swapped. */
21294 sgl->addr_hi = bpl->addrHigh;
21295 sgl->addr_lo = bpl->addrLow;
21296
21297 sgl->word2 = le32_to_cpu(sgl->word2);
21298 if ((i+1) == numBdes)
21299 bf_set(lpfc_sli4_sge_last, sgl, 1);
21300 else
21301 bf_set(lpfc_sli4_sge_last, sgl, 0);
21302 /* swap the size field back to the cpu so we
21303 * can assign it to the sgl.
21304 */
21305 bde.tus.w = le32_to_cpu(bpl->tus.w);
21306 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21307 /* The offsets in the sgl need to be accumulated
21308 * separately for the request and reply lists.
21309 * The request is always first, the reply follows.
21310 */
21311 switch (cmd) {
21312 case CMD_GEN_REQUEST64_WQE:
21313 /* add up the reply sg entries */
21314 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21315 inbound++;
21316 /* first inbound? reset the offset */
21317 if (inbound == 1)
21318 offset = 0;
21319 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21320 bf_set(lpfc_sli4_sge_type, sgl,
21321 LPFC_SGE_TYPE_DATA);
21322 offset += bde.tus.f.bdeSize;
21323 break;
21324 case CMD_FCP_TRSP64_WQE:
21325 bf_set(lpfc_sli4_sge_offset, sgl, 0);
21326 bf_set(lpfc_sli4_sge_type, sgl,
21327 LPFC_SGE_TYPE_DATA);
21328 break;
21329 case CMD_FCP_TSEND64_WQE:
21330 case CMD_FCP_TRECEIVE64_WQE:
21331 bf_set(lpfc_sli4_sge_type, sgl,
21332 bpl->tus.f.bdeFlags);
21333 if (i < 3)
21334 offset = 0;
21335 else
21336 offset += bde.tus.f.bdeSize;
21337 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21338 break;
21339 }
21340 sgl->word2 = cpu_to_le32(sgl->word2);
21341 bpl++;
21342 sgl++;
21343 }
21344 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21345 /* The addrHigh and addrLow fields of the BDE have not
21346 * been byteswapped yet so they need to be swapped
21347 * before putting them in the sgl.
21348 */
21349 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21350 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21351 sgl->word2 = le32_to_cpu(sgl->word2);
21352 bf_set(lpfc_sli4_sge_last, sgl, 1);
21353 sgl->word2 = cpu_to_le32(sgl->word2);
21354 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21355 }
21356 return sglq->sli4_xritag;
21357 }
21358
21359 /**
21360 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21361 * @phba: Pointer to HBA context object.
21362 * @qp: Pointer to HDW queue.
21363 * @pwqe: Pointer to command WQE.
21364 **/
21365 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)21366 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21367 struct lpfc_iocbq *pwqe)
21368 {
21369 union lpfc_wqe128 *wqe = &pwqe->wqe;
21370 struct lpfc_async_xchg_ctx *ctxp;
21371 struct lpfc_queue *wq;
21372 struct lpfc_sglq *sglq;
21373 struct lpfc_sli_ring *pring;
21374 unsigned long iflags;
21375 uint32_t ret = 0;
21376
21377 /* NVME_LS and NVME_LS ABTS requests. */
21378 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21379 pring = phba->sli4_hba.nvmels_wq->pring;
21380 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21381 qp, wq_access);
21382 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21383 if (!sglq) {
21384 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21385 return WQE_BUSY;
21386 }
21387 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21388 pwqe->sli4_xritag = sglq->sli4_xritag;
21389 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21390 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21391 return WQE_ERROR;
21392 }
21393 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21394 pwqe->sli4_xritag);
21395 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21396 if (ret) {
21397 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21398 return ret;
21399 }
21400
21401 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21402 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21403
21404 lpfc_sli4_poll_eq(qp->hba_eq);
21405 return 0;
21406 }
21407
21408 /* NVME_FCREQ and NVME_ABTS requests */
21409 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21410 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21411 wq = qp->io_wq;
21412 pring = wq->pring;
21413
21414 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21415
21416 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21417 qp, wq_access);
21418 ret = lpfc_sli4_wq_put(wq, wqe);
21419 if (ret) {
21420 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21421 return ret;
21422 }
21423 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21424 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21425
21426 lpfc_sli4_poll_eq(qp->hba_eq);
21427 return 0;
21428 }
21429
21430 /* NVMET requests */
21431 if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21432 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21433 wq = qp->io_wq;
21434 pring = wq->pring;
21435
21436 ctxp = pwqe->context_un.axchg;
21437 sglq = ctxp->ctxbuf->sglq;
21438 if (pwqe->sli4_xritag == NO_XRI) {
21439 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21440 pwqe->sli4_xritag = sglq->sli4_xritag;
21441 }
21442 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21443 pwqe->sli4_xritag);
21444 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21445
21446 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21447 qp, wq_access);
21448 ret = lpfc_sli4_wq_put(wq, wqe);
21449 if (ret) {
21450 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21451 return ret;
21452 }
21453 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21454 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21455
21456 lpfc_sli4_poll_eq(qp->hba_eq);
21457 return 0;
21458 }
21459 return WQE_ERROR;
21460 }
21461
21462 /**
21463 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21464 * @phba: Pointer to HBA context object.
21465 * @cmdiocb: Pointer to driver command iocb object.
21466 * @cmpl: completion function.
21467 *
21468 * Fill the appropriate fields for the abort WQE and call
21469 * internal routine lpfc_sli4_issue_wqe to send the WQE
21470 * This function is called with hbalock held and no ring_lock held.
21471 *
21472 * RETURNS 0 - SUCCESS
21473 **/
21474
21475 int
lpfc_sli4_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,void * cmpl)21476 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21477 void *cmpl)
21478 {
21479 struct lpfc_vport *vport = cmdiocb->vport;
21480 struct lpfc_iocbq *abtsiocb = NULL;
21481 union lpfc_wqe128 *abtswqe;
21482 struct lpfc_io_buf *lpfc_cmd;
21483 int retval = IOCB_ERROR;
21484 u16 xritag = cmdiocb->sli4_xritag;
21485
21486 /*
21487 * The scsi command can not be in txq and it is in flight because the
21488 * pCmd is still pointing at the SCSI command we have to abort. There
21489 * is no need to search the txcmplq. Just send an abort to the FW.
21490 */
21491
21492 abtsiocb = __lpfc_sli_get_iocbq(phba);
21493 if (!abtsiocb)
21494 return WQE_NORESOURCE;
21495
21496 /* Indicate the IO is being aborted by the driver. */
21497 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21498
21499 abtswqe = &abtsiocb->wqe;
21500 memset(abtswqe, 0, sizeof(*abtswqe));
21501
21502 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21503 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21504 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21505 abtswqe->abort_cmd.rsrvd5 = 0;
21506 abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21507 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21508 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21509 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21510 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21511 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21512 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21513
21514 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
21515 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21516 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21517 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21518 abtsiocb->cmd_flag |= LPFC_IO_FCP;
21519 if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21520 abtsiocb->cmd_flag |= LPFC_IO_NVME;
21521 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21522 abtsiocb->cmd_flag |= LPFC_IO_FOF;
21523 abtsiocb->vport = vport;
21524 abtsiocb->cmd_cmpl = cmpl;
21525
21526 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21527 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21528
21529 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21530 "0359 Abort xri x%x, original iotag x%x, "
21531 "abort cmd iotag x%x retval x%x\n",
21532 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21533
21534 if (retval) {
21535 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21536 __lpfc_sli_release_iocbq(phba, abtsiocb);
21537 }
21538
21539 return retval;
21540 }
21541
21542 #ifdef LPFC_MXP_STAT
21543 /**
21544 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21545 * @phba: pointer to lpfc hba data structure.
21546 * @hwqid: belong to which HWQ.
21547 *
21548 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21549 * 15 seconds after a test case is running.
21550 *
21551 * The user should call lpfc_debugfs_multixripools_write before running a test
21552 * case to clear stat_snapshot_taken. Then the user starts a test case. During
21553 * test case is running, stat_snapshot_taken is incremented by 1 every time when
21554 * this routine is called from heartbeat timer. When stat_snapshot_taken is
21555 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21556 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)21557 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21558 {
21559 struct lpfc_sli4_hdw_queue *qp;
21560 struct lpfc_multixri_pool *multixri_pool;
21561 struct lpfc_pvt_pool *pvt_pool;
21562 struct lpfc_pbl_pool *pbl_pool;
21563 u32 txcmplq_cnt;
21564
21565 qp = &phba->sli4_hba.hdwq[hwqid];
21566 multixri_pool = qp->p_multixri_pool;
21567 if (!multixri_pool)
21568 return;
21569
21570 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21571 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21572 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21573 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21574
21575 multixri_pool->stat_pbl_count = pbl_pool->count;
21576 multixri_pool->stat_pvt_count = pvt_pool->count;
21577 multixri_pool->stat_busy_count = txcmplq_cnt;
21578 }
21579
21580 multixri_pool->stat_snapshot_taken++;
21581 }
21582 #endif
21583
21584 /**
21585 * lpfc_adjust_pvt_pool_count - Adjust private pool count
21586 * @phba: pointer to lpfc hba data structure.
21587 * @hwqid: belong to which HWQ.
21588 *
21589 * This routine moves some XRIs from private to public pool when private pool
21590 * is not busy.
21591 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)21592 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21593 {
21594 struct lpfc_multixri_pool *multixri_pool;
21595 u32 io_req_count;
21596 u32 prev_io_req_count;
21597
21598 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21599 if (!multixri_pool)
21600 return;
21601 io_req_count = multixri_pool->io_req_count;
21602 prev_io_req_count = multixri_pool->prev_io_req_count;
21603
21604 if (prev_io_req_count != io_req_count) {
21605 /* Private pool is busy */
21606 multixri_pool->prev_io_req_count = io_req_count;
21607 } else {
21608 /* Private pool is not busy.
21609 * Move XRIs from private to public pool.
21610 */
21611 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21612 }
21613 }
21614
21615 /**
21616 * lpfc_adjust_high_watermark - Adjust high watermark
21617 * @phba: pointer to lpfc hba data structure.
21618 * @hwqid: belong to which HWQ.
21619 *
21620 * This routine sets high watermark as number of outstanding XRIs,
21621 * but make sure the new value is between xri_limit/2 and xri_limit.
21622 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)21623 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21624 {
21625 u32 new_watermark;
21626 u32 watermark_max;
21627 u32 watermark_min;
21628 u32 xri_limit;
21629 u32 txcmplq_cnt;
21630 u32 abts_io_bufs;
21631 struct lpfc_multixri_pool *multixri_pool;
21632 struct lpfc_sli4_hdw_queue *qp;
21633
21634 qp = &phba->sli4_hba.hdwq[hwqid];
21635 multixri_pool = qp->p_multixri_pool;
21636 if (!multixri_pool)
21637 return;
21638 xri_limit = multixri_pool->xri_limit;
21639
21640 watermark_max = xri_limit;
21641 watermark_min = xri_limit / 2;
21642
21643 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21644 abts_io_bufs = qp->abts_scsi_io_bufs;
21645 abts_io_bufs += qp->abts_nvme_io_bufs;
21646
21647 new_watermark = txcmplq_cnt + abts_io_bufs;
21648 new_watermark = min(watermark_max, new_watermark);
21649 new_watermark = max(watermark_min, new_watermark);
21650 multixri_pool->pvt_pool.high_watermark = new_watermark;
21651
21652 #ifdef LPFC_MXP_STAT
21653 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21654 new_watermark);
21655 #endif
21656 }
21657
21658 /**
21659 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21660 * @phba: pointer to lpfc hba data structure.
21661 * @hwqid: belong to which HWQ.
21662 *
21663 * This routine is called from hearbeat timer when pvt_pool is idle.
21664 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21665 * The first step moves (all - low_watermark) amount of XRIs.
21666 * The second step moves the rest of XRIs.
21667 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)21668 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21669 {
21670 struct lpfc_pbl_pool *pbl_pool;
21671 struct lpfc_pvt_pool *pvt_pool;
21672 struct lpfc_sli4_hdw_queue *qp;
21673 struct lpfc_io_buf *lpfc_ncmd;
21674 struct lpfc_io_buf *lpfc_ncmd_next;
21675 unsigned long iflag;
21676 struct list_head tmp_list;
21677 u32 tmp_count;
21678
21679 qp = &phba->sli4_hba.hdwq[hwqid];
21680 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21681 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21682 tmp_count = 0;
21683
21684 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21685 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21686
21687 if (pvt_pool->count > pvt_pool->low_watermark) {
21688 /* Step 1: move (all - low_watermark) from pvt_pool
21689 * to pbl_pool
21690 */
21691
21692 /* Move low watermark of bufs from pvt_pool to tmp_list */
21693 INIT_LIST_HEAD(&tmp_list);
21694 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21695 &pvt_pool->list, list) {
21696 list_move_tail(&lpfc_ncmd->list, &tmp_list);
21697 tmp_count++;
21698 if (tmp_count >= pvt_pool->low_watermark)
21699 break;
21700 }
21701
21702 /* Move all bufs from pvt_pool to pbl_pool */
21703 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21704
21705 /* Move all bufs from tmp_list to pvt_pool */
21706 list_splice(&tmp_list, &pvt_pool->list);
21707
21708 pbl_pool->count += (pvt_pool->count - tmp_count);
21709 pvt_pool->count = tmp_count;
21710 } else {
21711 /* Step 2: move the rest from pvt_pool to pbl_pool */
21712 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21713 pbl_pool->count += pvt_pool->count;
21714 pvt_pool->count = 0;
21715 }
21716
21717 spin_unlock(&pvt_pool->lock);
21718 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21719 }
21720
21721 /**
21722 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21723 * @phba: pointer to lpfc hba data structure
21724 * @qp: pointer to HDW queue
21725 * @pbl_pool: specified public free XRI pool
21726 * @pvt_pool: specified private free XRI pool
21727 * @count: number of XRIs to move
21728 *
21729 * This routine tries to move some free common bufs from the specified pbl_pool
21730 * to the specified pvt_pool. It might move less than count XRIs if there's not
21731 * enough in public pool.
21732 *
21733 * Return:
21734 * true - if XRIs are successfully moved from the specified pbl_pool to the
21735 * specified pvt_pool
21736 * false - if the specified pbl_pool is empty or locked by someone else
21737 **/
21738 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)21739 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21740 struct lpfc_pbl_pool *pbl_pool,
21741 struct lpfc_pvt_pool *pvt_pool, u32 count)
21742 {
21743 struct lpfc_io_buf *lpfc_ncmd;
21744 struct lpfc_io_buf *lpfc_ncmd_next;
21745 unsigned long iflag;
21746 int ret;
21747
21748 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21749 if (ret) {
21750 if (pbl_pool->count) {
21751 /* Move a batch of XRIs from public to private pool */
21752 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21753 list_for_each_entry_safe(lpfc_ncmd,
21754 lpfc_ncmd_next,
21755 &pbl_pool->list,
21756 list) {
21757 list_move_tail(&lpfc_ncmd->list,
21758 &pvt_pool->list);
21759 pvt_pool->count++;
21760 pbl_pool->count--;
21761 count--;
21762 if (count == 0)
21763 break;
21764 }
21765
21766 spin_unlock(&pvt_pool->lock);
21767 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21768 return true;
21769 }
21770 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21771 }
21772
21773 return false;
21774 }
21775
21776 /**
21777 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21778 * @phba: pointer to lpfc hba data structure.
21779 * @hwqid: belong to which HWQ.
21780 * @count: number of XRIs to move
21781 *
21782 * This routine tries to find some free common bufs in one of public pools with
21783 * Round Robin method. The search always starts from local hwqid, then the next
21784 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21785 * a batch of free common bufs are moved to private pool on hwqid.
21786 * It might move less than count XRIs if there's not enough in public pool.
21787 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)21788 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21789 {
21790 struct lpfc_multixri_pool *multixri_pool;
21791 struct lpfc_multixri_pool *next_multixri_pool;
21792 struct lpfc_pvt_pool *pvt_pool;
21793 struct lpfc_pbl_pool *pbl_pool;
21794 struct lpfc_sli4_hdw_queue *qp;
21795 u32 next_hwqid;
21796 u32 hwq_count;
21797 int ret;
21798
21799 qp = &phba->sli4_hba.hdwq[hwqid];
21800 multixri_pool = qp->p_multixri_pool;
21801 pvt_pool = &multixri_pool->pvt_pool;
21802 pbl_pool = &multixri_pool->pbl_pool;
21803
21804 /* Check if local pbl_pool is available */
21805 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21806 if (ret) {
21807 #ifdef LPFC_MXP_STAT
21808 multixri_pool->local_pbl_hit_count++;
21809 #endif
21810 return;
21811 }
21812
21813 hwq_count = phba->cfg_hdw_queue;
21814
21815 /* Get the next hwqid which was found last time */
21816 next_hwqid = multixri_pool->rrb_next_hwqid;
21817
21818 do {
21819 /* Go to next hwq */
21820 next_hwqid = (next_hwqid + 1) % hwq_count;
21821
21822 next_multixri_pool =
21823 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21824 pbl_pool = &next_multixri_pool->pbl_pool;
21825
21826 /* Check if the public free xri pool is available */
21827 ret = _lpfc_move_xri_pbl_to_pvt(
21828 phba, qp, pbl_pool, pvt_pool, count);
21829
21830 /* Exit while-loop if success or all hwqid are checked */
21831 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21832
21833 /* Starting point for the next time */
21834 multixri_pool->rrb_next_hwqid = next_hwqid;
21835
21836 if (!ret) {
21837 /* stats: all public pools are empty*/
21838 multixri_pool->pbl_empty_count++;
21839 }
21840
21841 #ifdef LPFC_MXP_STAT
21842 if (ret) {
21843 if (next_hwqid == hwqid)
21844 multixri_pool->local_pbl_hit_count++;
21845 else
21846 multixri_pool->other_pbl_hit_count++;
21847 }
21848 #endif
21849 }
21850
21851 /**
21852 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21853 * @phba: pointer to lpfc hba data structure.
21854 * @hwqid: belong to which HWQ.
21855 *
21856 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21857 * low watermark.
21858 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)21859 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21860 {
21861 struct lpfc_multixri_pool *multixri_pool;
21862 struct lpfc_pvt_pool *pvt_pool;
21863
21864 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21865 pvt_pool = &multixri_pool->pvt_pool;
21866
21867 if (pvt_pool->count < pvt_pool->low_watermark)
21868 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21869 }
21870
21871 /**
21872 * lpfc_release_io_buf - Return one IO buf back to free pool
21873 * @phba: pointer to lpfc hba data structure.
21874 * @lpfc_ncmd: IO buf to be returned.
21875 * @qp: belong to which HWQ.
21876 *
21877 * This routine returns one IO buf back to free pool. If this is an urgent IO,
21878 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21879 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21880 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
21881 * lpfc_io_buf_list_put.
21882 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)21883 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21884 struct lpfc_sli4_hdw_queue *qp)
21885 {
21886 unsigned long iflag;
21887 struct lpfc_pbl_pool *pbl_pool;
21888 struct lpfc_pvt_pool *pvt_pool;
21889 struct lpfc_epd_pool *epd_pool;
21890 u32 txcmplq_cnt;
21891 u32 xri_owned;
21892 u32 xri_limit;
21893 u32 abts_io_bufs;
21894
21895 /* MUST zero fields if buffer is reused by another protocol */
21896 lpfc_ncmd->nvmeCmd = NULL;
21897 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21898
21899 if (phba->cfg_xpsgl && !phba->nvmet_support &&
21900 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21901 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21902
21903 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21904 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21905
21906 if (phba->cfg_xri_rebalancing) {
21907 if (lpfc_ncmd->expedite) {
21908 /* Return to expedite pool */
21909 epd_pool = &phba->epd_pool;
21910 spin_lock_irqsave(&epd_pool->lock, iflag);
21911 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21912 epd_pool->count++;
21913 spin_unlock_irqrestore(&epd_pool->lock, iflag);
21914 return;
21915 }
21916
21917 /* Avoid invalid access if an IO sneaks in and is being rejected
21918 * just _after_ xri pools are destroyed in lpfc_offline.
21919 * Nothing much can be done at this point.
21920 */
21921 if (!qp->p_multixri_pool)
21922 return;
21923
21924 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21925 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21926
21927 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21928 abts_io_bufs = qp->abts_scsi_io_bufs;
21929 abts_io_bufs += qp->abts_nvme_io_bufs;
21930
21931 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21932 xri_limit = qp->p_multixri_pool->xri_limit;
21933
21934 #ifdef LPFC_MXP_STAT
21935 if (xri_owned <= xri_limit)
21936 qp->p_multixri_pool->below_limit_count++;
21937 else
21938 qp->p_multixri_pool->above_limit_count++;
21939 #endif
21940
21941 /* XRI goes to either public or private free xri pool
21942 * based on watermark and xri_limit
21943 */
21944 if ((pvt_pool->count < pvt_pool->low_watermark) ||
21945 (xri_owned < xri_limit &&
21946 pvt_pool->count < pvt_pool->high_watermark)) {
21947 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21948 qp, free_pvt_pool);
21949 list_add_tail(&lpfc_ncmd->list,
21950 &pvt_pool->list);
21951 pvt_pool->count++;
21952 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21953 } else {
21954 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21955 qp, free_pub_pool);
21956 list_add_tail(&lpfc_ncmd->list,
21957 &pbl_pool->list);
21958 pbl_pool->count++;
21959 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21960 }
21961 } else {
21962 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21963 qp, free_xri);
21964 list_add_tail(&lpfc_ncmd->list,
21965 &qp->lpfc_io_buf_list_put);
21966 qp->put_io_bufs++;
21967 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21968 iflag);
21969 }
21970 }
21971
21972 /**
21973 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21974 * @phba: pointer to lpfc hba data structure.
21975 * @qp: pointer to HDW queue
21976 * @pvt_pool: pointer to private pool data structure.
21977 * @ndlp: pointer to lpfc nodelist data structure.
21978 *
21979 * This routine tries to get one free IO buf from private pool.
21980 *
21981 * Return:
21982 * pointer to one free IO buf - if private pool is not empty
21983 * NULL - if private pool is empty
21984 **/
21985 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)21986 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21987 struct lpfc_sli4_hdw_queue *qp,
21988 struct lpfc_pvt_pool *pvt_pool,
21989 struct lpfc_nodelist *ndlp)
21990 {
21991 struct lpfc_io_buf *lpfc_ncmd;
21992 struct lpfc_io_buf *lpfc_ncmd_next;
21993 unsigned long iflag;
21994
21995 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21996 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21997 &pvt_pool->list, list) {
21998 if (lpfc_test_rrq_active(
21999 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
22000 continue;
22001 list_del(&lpfc_ncmd->list);
22002 pvt_pool->count--;
22003 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22004 return lpfc_ncmd;
22005 }
22006 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22007
22008 return NULL;
22009 }
22010
22011 /**
22012 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
22013 * @phba: pointer to lpfc hba data structure.
22014 *
22015 * This routine tries to get one free IO buf from expedite pool.
22016 *
22017 * Return:
22018 * pointer to one free IO buf - if expedite pool is not empty
22019 * NULL - if expedite pool is empty
22020 **/
22021 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)22022 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
22023 {
22024 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
22025 struct lpfc_io_buf *lpfc_ncmd_next;
22026 unsigned long iflag;
22027 struct lpfc_epd_pool *epd_pool;
22028
22029 epd_pool = &phba->epd_pool;
22030
22031 spin_lock_irqsave(&epd_pool->lock, iflag);
22032 if (epd_pool->count > 0) {
22033 list_for_each_entry_safe(iter, lpfc_ncmd_next,
22034 &epd_pool->list, list) {
22035 list_del(&iter->list);
22036 epd_pool->count--;
22037 lpfc_ncmd = iter;
22038 break;
22039 }
22040 }
22041 spin_unlock_irqrestore(&epd_pool->lock, iflag);
22042
22043 return lpfc_ncmd;
22044 }
22045
22046 /**
22047 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
22048 * @phba: pointer to lpfc hba data structure.
22049 * @ndlp: pointer to lpfc nodelist data structure.
22050 * @hwqid: belong to which HWQ
22051 * @expedite: 1 means this request is urgent.
22052 *
22053 * This routine will do the following actions and then return a pointer to
22054 * one free IO buf.
22055 *
22056 * 1. If private free xri count is empty, move some XRIs from public to
22057 * private pool.
22058 * 2. Get one XRI from private free xri pool.
22059 * 3. If we fail to get one from pvt_pool and this is an expedite request,
22060 * get one free xri from expedite pool.
22061 *
22062 * Note: ndlp is only used on SCSI side for RRQ testing.
22063 * The caller should pass NULL for ndlp on NVME side.
22064 *
22065 * Return:
22066 * pointer to one free IO buf - if private pool is not empty
22067 * NULL - if private pool is empty
22068 **/
22069 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)22070 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
22071 struct lpfc_nodelist *ndlp,
22072 int hwqid, int expedite)
22073 {
22074 struct lpfc_sli4_hdw_queue *qp;
22075 struct lpfc_multixri_pool *multixri_pool;
22076 struct lpfc_pvt_pool *pvt_pool;
22077 struct lpfc_io_buf *lpfc_ncmd;
22078
22079 qp = &phba->sli4_hba.hdwq[hwqid];
22080 lpfc_ncmd = NULL;
22081 if (!qp) {
22082 lpfc_printf_log(phba, KERN_INFO,
22083 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22084 "5556 NULL qp for hwqid x%x\n", hwqid);
22085 return lpfc_ncmd;
22086 }
22087 multixri_pool = qp->p_multixri_pool;
22088 if (!multixri_pool) {
22089 lpfc_printf_log(phba, KERN_INFO,
22090 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22091 "5557 NULL multixri for hwqid x%x\n", hwqid);
22092 return lpfc_ncmd;
22093 }
22094 pvt_pool = &multixri_pool->pvt_pool;
22095 if (!pvt_pool) {
22096 lpfc_printf_log(phba, KERN_INFO,
22097 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22098 "5558 NULL pvt_pool for hwqid x%x\n", hwqid);
22099 return lpfc_ncmd;
22100 }
22101 multixri_pool->io_req_count++;
22102
22103 /* If pvt_pool is empty, move some XRIs from public to private pool */
22104 if (pvt_pool->count == 0)
22105 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
22106
22107 /* Get one XRI from private free xri pool */
22108 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
22109
22110 if (lpfc_ncmd) {
22111 lpfc_ncmd->hdwq = qp;
22112 lpfc_ncmd->hdwq_no = hwqid;
22113 } else if (expedite) {
22114 /* If we fail to get one from pvt_pool and this is an expedite
22115 * request, get one free xri from expedite pool.
22116 */
22117 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
22118 }
22119
22120 return lpfc_ncmd;
22121 }
22122
22123 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)22124 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
22125 {
22126 struct lpfc_sli4_hdw_queue *qp;
22127 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
22128
22129 qp = &phba->sli4_hba.hdwq[idx];
22130 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
22131 &qp->lpfc_io_buf_list_get, list) {
22132 if (lpfc_test_rrq_active(phba, ndlp,
22133 lpfc_cmd->cur_iocbq.sli4_lxritag))
22134 continue;
22135
22136 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
22137 continue;
22138
22139 list_del_init(&lpfc_cmd->list);
22140 qp->get_io_bufs--;
22141 lpfc_cmd->hdwq = qp;
22142 lpfc_cmd->hdwq_no = idx;
22143 return lpfc_cmd;
22144 }
22145 return NULL;
22146 }
22147
22148 /**
22149 * lpfc_get_io_buf - Get one IO buffer from free pool
22150 * @phba: The HBA for which this call is being executed.
22151 * @ndlp: pointer to lpfc nodelist data structure.
22152 * @hwqid: belong to which HWQ
22153 * @expedite: 1 means this request is urgent.
22154 *
22155 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22156 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22157 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22158 *
22159 * Note: ndlp is only used on SCSI side for RRQ testing.
22160 * The caller should pass NULL for ndlp on NVME side.
22161 *
22162 * Return codes:
22163 * NULL - Error
22164 * Pointer to lpfc_io_buf - Success
22165 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)22166 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22167 struct lpfc_nodelist *ndlp,
22168 u32 hwqid, int expedite)
22169 {
22170 struct lpfc_sli4_hdw_queue *qp;
22171 unsigned long iflag;
22172 struct lpfc_io_buf *lpfc_cmd;
22173
22174 qp = &phba->sli4_hba.hdwq[hwqid];
22175 lpfc_cmd = NULL;
22176 if (!qp) {
22177 lpfc_printf_log(phba, KERN_WARNING,
22178 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22179 "5555 NULL qp for hwqid x%x\n", hwqid);
22180 return lpfc_cmd;
22181 }
22182
22183 if (phba->cfg_xri_rebalancing)
22184 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22185 phba, ndlp, hwqid, expedite);
22186 else {
22187 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22188 qp, alloc_xri_get);
22189 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22190 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22191 if (!lpfc_cmd) {
22192 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22193 qp, alloc_xri_put);
22194 list_splice(&qp->lpfc_io_buf_list_put,
22195 &qp->lpfc_io_buf_list_get);
22196 qp->get_io_bufs += qp->put_io_bufs;
22197 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22198 qp->put_io_bufs = 0;
22199 spin_unlock(&qp->io_buf_list_put_lock);
22200 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22201 expedite)
22202 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22203 }
22204 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22205 }
22206
22207 return lpfc_cmd;
22208 }
22209
22210 /**
22211 * lpfc_read_object - Retrieve object data from HBA
22212 * @phba: The HBA for which this call is being executed.
22213 * @rdobject: Pathname of object data we want to read.
22214 * @datap: Pointer to where data will be copied to.
22215 * @datasz: size of data area
22216 *
22217 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22218 * The data will be truncated if datasz is not large enough.
22219 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22220 * Returns the actual bytes read from the object.
22221 *
22222 * This routine is hard coded to use a poll completion. Unlike other
22223 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not
22224 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified
22225 * to use interrupt-based completions, code is needed to fully cleanup
22226 * the memory.
22227 */
22228 int
lpfc_read_object(struct lpfc_hba * phba,char * rdobject,uint32_t * datap,uint32_t datasz)22229 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22230 uint32_t datasz)
22231 {
22232 struct lpfc_mbx_read_object *read_object;
22233 LPFC_MBOXQ_t *mbox;
22234 int rc, length, eof, j, byte_cnt = 0;
22235 uint32_t shdr_status, shdr_add_status;
22236 union lpfc_sli4_cfg_shdr *shdr;
22237 struct lpfc_dmabuf *pcmd;
22238 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22239
22240 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22241 if (!mbox)
22242 return -ENOMEM;
22243 length = (sizeof(struct lpfc_mbx_read_object) -
22244 sizeof(struct lpfc_sli4_cfg_mhdr));
22245 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22246 LPFC_MBOX_OPCODE_READ_OBJECT,
22247 length, LPFC_SLI4_MBX_EMBED);
22248 read_object = &mbox->u.mqe.un.read_object;
22249 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22250
22251 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22252 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22253 read_object->u.request.rd_object_offset = 0;
22254 read_object->u.request.rd_object_cnt = 1;
22255
22256 memset((void *)read_object->u.request.rd_object_name, 0,
22257 LPFC_OBJ_NAME_SZ);
22258 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22259 for (j = 0; j < strlen(rdobject); j++)
22260 read_object->u.request.rd_object_name[j] =
22261 cpu_to_le32(rd_object_name[j]);
22262
22263 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22264 if (pcmd)
22265 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22266 if (!pcmd || !pcmd->virt) {
22267 kfree(pcmd);
22268 mempool_free(mbox, phba->mbox_mem_pool);
22269 return -ENOMEM;
22270 }
22271 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22272 read_object->u.request.rd_object_hbuf[0].pa_lo =
22273 putPaddrLow(pcmd->phys);
22274 read_object->u.request.rd_object_hbuf[0].pa_hi =
22275 putPaddrHigh(pcmd->phys);
22276 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22277
22278 mbox->vport = phba->pport;
22279 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22280 mbox->ctx_ndlp = NULL;
22281
22282 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22283 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22284 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22285
22286 if (shdr_status == STATUS_FAILED &&
22287 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22288 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22289 "4674 No port cfg file in FW.\n");
22290 byte_cnt = -ENOENT;
22291 } else if (shdr_status || shdr_add_status || rc) {
22292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22293 "2625 READ_OBJECT mailbox failed with "
22294 "status x%x add_status x%x, mbx status x%x\n",
22295 shdr_status, shdr_add_status, rc);
22296 byte_cnt = -ENXIO;
22297 } else {
22298 /* Success */
22299 length = read_object->u.response.rd_object_actual_rlen;
22300 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22301 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22302 "2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22303 length, datasz, eof);
22304
22305 /* Detect the port config file exists but is empty */
22306 if (!length && eof) {
22307 byte_cnt = 0;
22308 goto exit;
22309 }
22310
22311 byte_cnt = length;
22312 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22313 }
22314
22315 exit:
22316 /* This is an embedded SLI4 mailbox with an external buffer allocated.
22317 * Free the pcmd and then cleanup with the correct routine.
22318 */
22319 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22320 kfree(pcmd);
22321 lpfc_sli4_mbox_cmd_free(phba, mbox);
22322 return byte_cnt;
22323 }
22324
22325 /**
22326 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22327 * @phba: The HBA for which this call is being executed.
22328 * @lpfc_buf: IO buf structure to append the SGL chunk
22329 *
22330 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22331 * and will allocate an SGL chunk if the pool is empty.
22332 *
22333 * Return codes:
22334 * NULL - Error
22335 * Pointer to sli4_hybrid_sgl - Success
22336 **/
22337 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22338 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22339 {
22340 struct sli4_hybrid_sgl *list_entry = NULL;
22341 struct sli4_hybrid_sgl *tmp = NULL;
22342 struct sli4_hybrid_sgl *allocated_sgl = NULL;
22343 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22344 struct list_head *buf_list = &hdwq->sgl_list;
22345 unsigned long iflags;
22346
22347 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22348
22349 if (likely(!list_empty(buf_list))) {
22350 /* break off 1 chunk from the sgl_list */
22351 list_for_each_entry_safe(list_entry, tmp,
22352 buf_list, list_node) {
22353 list_move_tail(&list_entry->list_node,
22354 &lpfc_buf->dma_sgl_xtra_list);
22355 break;
22356 }
22357 } else {
22358 /* allocate more */
22359 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22360 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22361 cpu_to_node(hdwq->io_wq->chann));
22362 if (!tmp) {
22363 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22364 "8353 error kmalloc memory for HDWQ "
22365 "%d %s\n",
22366 lpfc_buf->hdwq_no, __func__);
22367 return NULL;
22368 }
22369
22370 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22371 GFP_ATOMIC, &tmp->dma_phys_sgl);
22372 if (!tmp->dma_sgl) {
22373 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22374 "8354 error pool_alloc memory for HDWQ "
22375 "%d %s\n",
22376 lpfc_buf->hdwq_no, __func__);
22377 kfree(tmp);
22378 return NULL;
22379 }
22380
22381 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22382 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22383 }
22384
22385 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22386 struct sli4_hybrid_sgl,
22387 list_node);
22388
22389 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22390
22391 return allocated_sgl;
22392 }
22393
22394 /**
22395 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22396 * @phba: The HBA for which this call is being executed.
22397 * @lpfc_buf: IO buf structure with the SGL chunk
22398 *
22399 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22400 *
22401 * Return codes:
22402 * 0 - Success
22403 * -EINVAL - Error
22404 **/
22405 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22406 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22407 {
22408 int rc = 0;
22409 struct sli4_hybrid_sgl *list_entry = NULL;
22410 struct sli4_hybrid_sgl *tmp = NULL;
22411 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22412 struct list_head *buf_list = &hdwq->sgl_list;
22413 unsigned long iflags;
22414
22415 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22416
22417 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22418 list_for_each_entry_safe(list_entry, tmp,
22419 &lpfc_buf->dma_sgl_xtra_list,
22420 list_node) {
22421 list_move_tail(&list_entry->list_node,
22422 buf_list);
22423 }
22424 } else {
22425 rc = -EINVAL;
22426 }
22427
22428 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22429 return rc;
22430 }
22431
22432 /**
22433 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22434 * @phba: phba object
22435 * @hdwq: hdwq to cleanup sgl buff resources on
22436 *
22437 * This routine frees all SGL chunks of hdwq SGL chunk pool.
22438 *
22439 * Return codes:
22440 * None
22441 **/
22442 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22443 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22444 struct lpfc_sli4_hdw_queue *hdwq)
22445 {
22446 struct list_head *buf_list = &hdwq->sgl_list;
22447 struct sli4_hybrid_sgl *list_entry = NULL;
22448 struct sli4_hybrid_sgl *tmp = NULL;
22449 unsigned long iflags;
22450
22451 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22452
22453 /* Free sgl pool */
22454 list_for_each_entry_safe(list_entry, tmp,
22455 buf_list, list_node) {
22456 list_del(&list_entry->list_node);
22457 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22458 list_entry->dma_sgl,
22459 list_entry->dma_phys_sgl);
22460 kfree(list_entry);
22461 }
22462
22463 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22464 }
22465
22466 /**
22467 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22468 * @phba: The HBA for which this call is being executed.
22469 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22470 *
22471 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22472 * and will allocate an CMD/RSP buffer if the pool is empty.
22473 *
22474 * Return codes:
22475 * NULL - Error
22476 * Pointer to fcp_cmd_rsp_buf - Success
22477 **/
22478 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22479 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22480 struct lpfc_io_buf *lpfc_buf)
22481 {
22482 struct fcp_cmd_rsp_buf *list_entry = NULL;
22483 struct fcp_cmd_rsp_buf *tmp = NULL;
22484 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22485 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22486 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22487 unsigned long iflags;
22488
22489 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22490
22491 if (likely(!list_empty(buf_list))) {
22492 /* break off 1 chunk from the list */
22493 list_for_each_entry_safe(list_entry, tmp,
22494 buf_list,
22495 list_node) {
22496 list_move_tail(&list_entry->list_node,
22497 &lpfc_buf->dma_cmd_rsp_list);
22498 break;
22499 }
22500 } else {
22501 /* allocate more */
22502 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22503 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22504 cpu_to_node(hdwq->io_wq->chann));
22505 if (!tmp) {
22506 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22507 "8355 error kmalloc memory for HDWQ "
22508 "%d %s\n",
22509 lpfc_buf->hdwq_no, __func__);
22510 return NULL;
22511 }
22512
22513 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22514 GFP_ATOMIC,
22515 &tmp->fcp_cmd_rsp_dma_handle);
22516
22517 if (!tmp->fcp_cmnd) {
22518 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22519 "8356 error pool_alloc memory for HDWQ "
22520 "%d %s\n",
22521 lpfc_buf->hdwq_no, __func__);
22522 kfree(tmp);
22523 return NULL;
22524 }
22525
22526 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22527 sizeof(struct fcp_cmnd32));
22528
22529 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22530 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22531 }
22532
22533 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22534 struct fcp_cmd_rsp_buf,
22535 list_node);
22536
22537 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22538
22539 return allocated_buf;
22540 }
22541
22542 /**
22543 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22544 * @phba: The HBA for which this call is being executed.
22545 * @lpfc_buf: IO buf structure with the CMD/RSP buf
22546 *
22547 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22548 *
22549 * Return codes:
22550 * 0 - Success
22551 * -EINVAL - Error
22552 **/
22553 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22554 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22555 struct lpfc_io_buf *lpfc_buf)
22556 {
22557 int rc = 0;
22558 struct fcp_cmd_rsp_buf *list_entry = NULL;
22559 struct fcp_cmd_rsp_buf *tmp = NULL;
22560 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22561 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22562 unsigned long iflags;
22563
22564 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22565
22566 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22567 list_for_each_entry_safe(list_entry, tmp,
22568 &lpfc_buf->dma_cmd_rsp_list,
22569 list_node) {
22570 list_move_tail(&list_entry->list_node,
22571 buf_list);
22572 }
22573 } else {
22574 rc = -EINVAL;
22575 }
22576
22577 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22578 return rc;
22579 }
22580
22581 /**
22582 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22583 * @phba: phba object
22584 * @hdwq: hdwq to cleanup cmd rsp buff resources on
22585 *
22586 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22587 *
22588 * Return codes:
22589 * None
22590 **/
22591 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22592 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22593 struct lpfc_sli4_hdw_queue *hdwq)
22594 {
22595 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22596 struct fcp_cmd_rsp_buf *list_entry = NULL;
22597 struct fcp_cmd_rsp_buf *tmp = NULL;
22598 unsigned long iflags;
22599
22600 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22601
22602 /* Free cmd_rsp buf pool */
22603 list_for_each_entry_safe(list_entry, tmp,
22604 buf_list,
22605 list_node) {
22606 list_del(&list_entry->list_node);
22607 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22608 list_entry->fcp_cmnd,
22609 list_entry->fcp_cmd_rsp_dma_handle);
22610 kfree(list_entry);
22611 }
22612
22613 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22614 }
22615
22616 /**
22617 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22618 * @phba: phba object
22619 * @job: job entry of the command to be posted.
22620 *
22621 * Fill the common fields of the wqe for each of the command.
22622 *
22623 * Return codes:
22624 * None
22625 **/
22626 void
lpfc_sli_prep_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * job)22627 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22628 {
22629 u8 cmnd;
22630 u32 *pcmd;
22631 u32 if_type = 0;
22632 u32 abort_tag;
22633 bool fip;
22634 struct lpfc_nodelist *ndlp = NULL;
22635 union lpfc_wqe128 *wqe = &job->wqe;
22636 u8 command_type = ELS_COMMAND_NON_FIP;
22637
22638 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag);
22639 /* The fcp commands will set command type */
22640 if (job->cmd_flag & LPFC_IO_FCP)
22641 command_type = FCP_COMMAND;
22642 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22643 command_type = ELS_COMMAND_FIP;
22644 else
22645 command_type = ELS_COMMAND_NON_FIP;
22646
22647 abort_tag = job->iotag;
22648 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22649
22650 switch (cmnd) {
22651 case CMD_ELS_REQUEST64_WQE:
22652 ndlp = job->ndlp;
22653
22654 if_type = bf_get(lpfc_sli_intf_if_type,
22655 &phba->sli4_hba.sli_intf);
22656 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22657 pcmd = (u32 *)job->cmd_dmabuf->virt;
22658 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22659 *pcmd == ELS_CMD_SCR ||
22660 *pcmd == ELS_CMD_RDF ||
22661 *pcmd == ELS_CMD_EDC ||
22662 *pcmd == ELS_CMD_RSCN_XMT ||
22663 *pcmd == ELS_CMD_FDISC ||
22664 *pcmd == ELS_CMD_LOGO ||
22665 *pcmd == ELS_CMD_QFPA ||
22666 *pcmd == ELS_CMD_UVEM ||
22667 *pcmd == ELS_CMD_PLOGI)) {
22668 bf_set(els_req64_sp, &wqe->els_req, 1);
22669 bf_set(els_req64_sid, &wqe->els_req,
22670 job->vport->fc_myDID);
22671
22672 if ((*pcmd == ELS_CMD_FLOGI) &&
22673 !(phba->fc_topology ==
22674 LPFC_TOPOLOGY_LOOP))
22675 bf_set(els_req64_sid, &wqe->els_req, 0);
22676
22677 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22678 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22679 phba->vpi_ids[job->vport->vpi]);
22680 } else if (pcmd) {
22681 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22682 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22683 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22684 }
22685 }
22686
22687 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22688 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22689
22690 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22691 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22692 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22693 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22694 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22695 break;
22696 case CMD_XMIT_ELS_RSP64_WQE:
22697 ndlp = job->ndlp;
22698
22699 /* word4 */
22700 wqe->xmit_els_rsp.word4 = 0;
22701
22702 if_type = bf_get(lpfc_sli_intf_if_type,
22703 &phba->sli4_hba.sli_intf);
22704 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22705 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) {
22706 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22707 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22708 job->vport->fc_myDID);
22709 if (job->vport->fc_myDID == Fabric_DID) {
22710 bf_set(wqe_els_did,
22711 &wqe->xmit_els_rsp.wqe_dest, 0);
22712 }
22713 }
22714 }
22715
22716 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22717 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22718 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22719 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22720 LPFC_WQE_LENLOC_WORD3);
22721 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22722
22723 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22724 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22725 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22726 job->vport->fc_myDID);
22727 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22728 }
22729
22730 if (phba->sli_rev == LPFC_SLI_REV4) {
22731 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22732 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22733
22734 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22735 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22736 phba->vpi_ids[job->vport->vpi]);
22737 }
22738 command_type = OTHER_COMMAND;
22739 break;
22740 case CMD_GEN_REQUEST64_WQE:
22741 /* Word 10 */
22742 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22743 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22744 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22745 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22746 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22747 command_type = OTHER_COMMAND;
22748 break;
22749 case CMD_XMIT_SEQUENCE64_WQE:
22750 if (phba->link_flag & LS_LOOPBACK_MODE)
22751 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22752
22753 wqe->xmit_sequence.rsvd3 = 0;
22754 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22755 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22756 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22757 LPFC_WQE_IOD_WRITE);
22758 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22759 LPFC_WQE_LENLOC_WORD12);
22760 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22761 command_type = OTHER_COMMAND;
22762 break;
22763 case CMD_XMIT_BLS_RSP64_WQE:
22764 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22765 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22766 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22767 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22768 phba->vpi_ids[phba->pport->vpi]);
22769 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22770 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22771 LPFC_WQE_LENLOC_NONE);
22772 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
22773 command_type = OTHER_COMMAND;
22774 break;
22775 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */
22776 case CMD_ABORT_XRI_WQE: /* abort iotag */
22777 case CMD_SEND_FRAME: /* mds loopback */
22778 /* cases already formatted for sli4 wqe - no chgs necessary */
22779 return;
22780 default:
22781 dump_stack();
22782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22783 "6207 Invalid command 0x%x\n",
22784 cmnd);
22785 break;
22786 }
22787
22788 wqe->generic.wqe_com.abort_tag = abort_tag;
22789 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22790 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22791 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22792 }
22793