xref: /aosp_15_r20/external/google-breakpad/src/third_party/mac_headers/mach-o/loader.h (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1 /*
2  * Copyright (c) 1999-2010 Apple Inc.  All Rights Reserved.
3  *
4  * @APPLE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. Please obtain a copy of the License at
10  * http://www.opensource.apple.com/apsl/ and read it before using this
11  * file.
12  *
13  * The Original Code and all software distributed under the License are
14  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18  * Please see the License for the specific language governing rights and
19  * limitations under the License.
20  *
21  * @APPLE_LICENSE_HEADER_END@
22  */
23 #ifndef _MACHO_LOADER_H_
24 #define _MACHO_LOADER_H_
25 
26 /*
27  * This file describes the format of mach object files.
28  */
29 #include <stdint.h>
30 
31 /*
32  * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types
33  * and contains the constants for the possible values of these types.
34  */
35 #include <mach/machine.h>
36 
37 /*
38  * <mach/vm_prot.h> is needed here for the vm_prot_t type and contains the
39  * constants that are or'ed together for the possible values of this type.
40  */
41 #include <mach/vm_prot.h>
42 
43 /*
44  * <machine/thread_status.h> is expected to define the flavors of the thread
45  * states and the structures of those flavors for each machine.
46  */
47 #include <mach/machine/thread_status.h>
48 #include <architecture/byte_order.h>
49 
50 /*
51  * The 32-bit mach header appears at the very beginning of the object file for
52  * 32-bit architectures.
53  */
54 struct mach_header {
55 	uint32_t	magic;		/* mach magic number identifier */
56 	cpu_type_t	cputype;	/* cpu specifier */
57 	cpu_subtype_t	cpusubtype;	/* machine specifier */
58 	uint32_t	filetype;	/* type of file */
59 	uint32_t	ncmds;		/* number of load commands */
60 	uint32_t	sizeofcmds;	/* the size of all the load commands */
61 	uint32_t	flags;		/* flags */
62 };
63 
64 /* Constant for the magic field of the mach_header (32-bit architectures) */
65 #define	MH_MAGIC	0xfeedface	/* the mach magic number */
66 #define MH_CIGAM	0xcefaedfe	/* NXSwapInt(MH_MAGIC) */
67 
68 /*
69  * The 64-bit mach header appears at the very beginning of object files for
70  * 64-bit architectures.
71  */
72 struct mach_header_64 {
73 	uint32_t	magic;		/* mach magic number identifier */
74 	cpu_type_t	cputype;	/* cpu specifier */
75 	cpu_subtype_t	cpusubtype;	/* machine specifier */
76 	uint32_t	filetype;	/* type of file */
77 	uint32_t	ncmds;		/* number of load commands */
78 	uint32_t	sizeofcmds;	/* the size of all the load commands */
79 	uint32_t	flags;		/* flags */
80 	uint32_t	reserved;	/* reserved */
81 };
82 
83 /* Constant for the magic field of the mach_header_64 (64-bit architectures) */
84 #define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
85 #define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
86 
87 /*
88  * The layout of the file depends on the filetype.  For all but the MH_OBJECT
89  * file type the segments are padded out and aligned on a segment alignment
90  * boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
91  * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
92  * of their first segment.
93  *
94  * The file type MH_OBJECT is a compact format intended as output of the
95  * assembler and input (and possibly output) of the link editor (the .o
96  * format).  All sections are in one unnamed segment with no segment padding.
97  * This format is used as an executable format when the file is so small the
98  * segment padding greatly increases its size.
99  *
100  * The file type MH_PRELOAD is an executable format intended for things that
101  * are not executed under the kernel (proms, stand alones, kernels, etc).  The
102  * format can be executed under the kernel but may demand paged it and not
103  * preload it before execution.
104  *
105  * A core file is in MH_CORE format and can be any in an arbritray legal
106  * Mach-O file.
107  *
108  * Constants for the filetype field of the mach_header
109  */
110 #define	MH_OBJECT	0x1		/* relocatable object file */
111 #define	MH_EXECUTE	0x2		/* demand paged executable file */
112 #define	MH_FVMLIB	0x3		/* fixed VM shared library file */
113 #define	MH_CORE		0x4		/* core file */
114 #define	MH_PRELOAD	0x5		/* preloaded executable file */
115 #define	MH_DYLIB	0x6		/* dynamically bound shared library */
116 #define	MH_DYLINKER	0x7		/* dynamic link editor */
117 #define	MH_BUNDLE	0x8		/* dynamically bound bundle file */
118 #define	MH_DYLIB_STUB	0x9		/* shared library stub for static
119 					   linking only, no section contents */
120 #define	MH_DSYM		0xa		/* companion file with only debug
121 					   sections */
122 #define	MH_KEXT_BUNDLE	0xb		/* x86_64 kexts */
123 #define MH_FILESET	0xc		/* a file composed of other Mach-Os to
124 					   be run in the same userspace sharing
125 					   a single linkedit. */
126 
127 /* Constants for the flags field of the mach_header */
128 #define	MH_NOUNDEFS	0x1		/* the object file has no undefined
129 					   references */
130 #define	MH_INCRLINK	0x2		/* the object file is the output of an
131 					   incremental link against a base file
132 					   and can't be link edited again */
133 #define MH_DYLDLINK	0x4		/* the object file is input for the
134 					   dynamic linker and can't be staticly
135 					   link edited again */
136 #define MH_BINDATLOAD	0x8		/* the object file's undefined
137 					   references are bound by the dynamic
138 					   linker when loaded. */
139 #define MH_PREBOUND	0x10		/* the file has its dynamic undefined
140 					   references prebound. */
141 #define MH_SPLIT_SEGS	0x20		/* the file has its read-only and
142 					   read-write segments split */
143 #define MH_LAZY_INIT	0x40		/* the shared library init routine is
144 					   to be run lazily via catching memory
145 					   faults to its writeable segments
146 					   (obsolete) */
147 #define MH_TWOLEVEL	0x80		/* the image is using two-level name
148 					   space bindings */
149 #define MH_FORCE_FLAT	0x100		/* the executable is forcing all images
150 					   to use flat name space bindings */
151 #define MH_NOMULTIDEFS	0x200		/* this umbrella guarantees no multiple
152 					   defintions of symbols in its
153 					   sub-images so the two-level namespace
154 					   hints can always be used. */
155 #define MH_NOFIXPREBINDING 0x400	/* do not have dyld notify the
156 					   prebinding agent about this
157 					   executable */
158 #define MH_PREBINDABLE  0x800           /* the binary is not prebound but can
159 					   have its prebinding redone. only used
160                                            when MH_PREBOUND is not set. */
161 #define MH_ALLMODSBOUND 0x1000		/* indicates that this binary binds to
162                                            all two-level namespace modules of
163 					   its dependent libraries. only used
164 					   when MH_PREBINDABLE and MH_TWOLEVEL
165 					   are both set. */
166 #define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into
167 					    sub-sections via symbols for dead
168 					    code stripping */
169 #define MH_CANONICAL    0x4000		/* the binary has been canonicalized
170 					   via the unprebind operation */
171 #define MH_WEAK_DEFINES	0x8000		/* the final linked image contains
172 					   external weak symbols */
173 #define MH_BINDS_TO_WEAK 0x10000	/* the final linked image uses
174 					   weak symbols */
175 
176 #define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks
177 					   in the task will be given stack
178 					   execution privilege.  Only used in
179 					   MH_EXECUTE filetypes. */
180 #define MH_ROOT_SAFE 0x40000           /* When this bit is set, the binary
181 					  declares it is safe for use in
182 					  processes with uid zero */
183 
184 #define MH_SETUID_SAFE 0x80000         /* When this bit is set, the binary
185 					  declares it is safe for use in
186 					  processes when issetugid() is true */
187 
188 #define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib,
189 					  the static linker does not need to
190 					  examine dependent dylibs to see
191 					  if any are re-exported */
192 #define	MH_PIE 0x200000			/* When this bit is set, the OS will
193 					   load the main executable at a
194 					   random address.  Only used in
195 					   MH_EXECUTE filetypes. */
196 #define	MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs.  When
197 					     linking against a dylib that
198 					     has this bit set, the static linker
199 					     will automatically not create a
200 					     LC_LOAD_DYLIB load command to the
201 					     dylib if no symbols are being
202 					     referenced from the dylib. */
203 #define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type
204 					    S_THREAD_LOCAL_VARIABLES */
205 
206 #define MH_NO_HEAP_EXECUTION 0x1000000	/* When this bit is set, the OS will
207 					   run the main executable with
208 					   a non-executable heap even on
209 					   platforms (e.g. i386) that don't
210 					   require it. Only used in MH_EXECUTE
211 					   filetypes. */
212 
213 #define MH_APP_EXTENSION_SAFE 0x02000000 /* The code was linked for use in an
214 					    application extension. */
215 
216 #define	MH_NLIST_OUTOFSYNC_WITH_DYLDINFO 0x04000000 /* The external symbols
217 					   listed in the nlist symbol table do
218 					   not include all the symbols listed in
219 					   the dyld info. */
220 
221 #define	MH_SIM_SUPPORT 0x08000000	/* Allow LC_MIN_VERSION_MACOS and
222 					   LC_BUILD_VERSION load commands with
223 					   the platforms macOS, macCatalyst,
224 					   iOSSimulator, tvOSSimulator and
225 					   watchOSSimulator. */
226 
227 #define MH_DYLIB_IN_CACHE 0x80000000	/* Only for use on dylibs. When this bit
228 					   is set, the dylib is part of the dyld
229 					   shared cache, rather than loose in
230 					   the filesystem. */
231 
232 /*
233  * The load commands directly follow the mach_header.  The total size of all
234  * of the commands is given by the sizeofcmds field in the mach_header.  All
235  * load commands must have as their first two fields cmd and cmdsize.  The cmd
236  * field is filled in with a constant for that command type.  Each command type
237  * has a structure specifically for it.  The cmdsize field is the size in bytes
238  * of the particular load command structure plus anything that follows it that
239  * is a part of the load command (i.e. section structures, strings, etc.).  To
240  * advance to the next load command the cmdsize can be added to the offset or
241  * pointer of the current load command.  The cmdsize for 32-bit architectures
242  * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
243  * of 8 bytes (these are forever the maximum alignment of any load commands).
244  * The padded bytes must be zero.  All tables in the object file must also
245  * follow these rules so the file can be memory mapped.  Otherwise the pointers
246  * to these tables will not work well or at all on some machines.  With all
247  * padding zeroed like objects will compare byte for byte.
248  */
249 struct load_command {
250 	uint32_t cmd;		/* type of load command */
251 	uint32_t cmdsize;	/* total size of command in bytes */
252 };
253 
254 /*
255  * After MacOS X 10.1 when a new load command is added that is required to be
256  * understood by the dynamic linker for the image to execute properly the
257  * LC_REQ_DYLD bit will be or'ed into the load command constant.  If the dynamic
258  * linker sees such a load command it it does not understand will issue a
259  * "unknown load command required for execution" error and refuse to use the
260  * image.  Other load commands without this bit that are not understood will
261  * simply be ignored.
262  */
263 #define LC_REQ_DYLD 0x80000000
264 
265 /* Constants for the cmd field of all load commands, the type */
266 #define	LC_SEGMENT	0x1	/* segment of this file to be mapped */
267 #define	LC_SYMTAB	0x2	/* link-edit stab symbol table info */
268 #define	LC_SYMSEG	0x3	/* link-edit gdb symbol table info (obsolete) */
269 #define	LC_THREAD	0x4	/* thread */
270 #define	LC_UNIXTHREAD	0x5	/* unix thread (includes a stack) */
271 #define	LC_LOADFVMLIB	0x6	/* load a specified fixed VM shared library */
272 #define	LC_IDFVMLIB	0x7	/* fixed VM shared library identification */
273 #define	LC_IDENT	0x8	/* object identification info (obsolete) */
274 #define LC_FVMFILE	0x9	/* fixed VM file inclusion (internal use) */
275 #define LC_PREPAGE      0xa     /* prepage command (internal use) */
276 #define	LC_DYSYMTAB	0xb	/* dynamic link-edit symbol table info */
277 #define	LC_LOAD_DYLIB	0xc	/* load a dynamically linked shared library */
278 #define	LC_ID_DYLIB	0xd	/* dynamically linked shared lib ident */
279 #define LC_LOAD_DYLINKER 0xe	/* load a dynamic linker */
280 #define LC_ID_DYLINKER	0xf	/* dynamic linker identification */
281 #define	LC_PREBOUND_DYLIB 0x10	/* modules prebound for a dynamically */
282 				/*  linked shared library */
283 #define	LC_ROUTINES	0x11	/* image routines */
284 #define	LC_SUB_FRAMEWORK 0x12	/* sub framework */
285 #define	LC_SUB_UMBRELLA 0x13	/* sub umbrella */
286 #define	LC_SUB_CLIENT	0x14	/* sub client */
287 #define	LC_SUB_LIBRARY  0x15	/* sub library */
288 #define	LC_TWOLEVEL_HINTS 0x16	/* two-level namespace lookup hints */
289 #define	LC_PREBIND_CKSUM  0x17	/* prebind checksum */
290 
291 /*
292  * load a dynamically linked shared library that is allowed to be missing
293  * (all symbols are weak imported).
294  */
295 #define	LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD)
296 
297 #define	LC_SEGMENT_64	0x19	/* 64-bit segment of this file to be
298 				   mapped */
299 #define	LC_ROUTINES_64	0x1a	/* 64-bit image routines */
300 #define LC_UUID		0x1b	/* the uuid */
301 #define LC_RPATH       (0x1c | LC_REQ_DYLD)    /* runpath additions */
302 #define LC_CODE_SIGNATURE 0x1d	/* local of code signature */
303 #define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */
304 #define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */
305 #define	LC_LAZY_LOAD_DYLIB 0x20	/* delay load of dylib until first use */
306 #define	LC_ENCRYPTION_INFO 0x21	/* encrypted segment information */
307 #define	LC_DYLD_INFO 	0x22	/* compressed dyld information */
308 #define	LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD)	/* compressed dyld information only */
309 #define	LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */
310 #define LC_VERSION_MIN_MACOSX 0x24   /* build for MacOSX min OS version */
311 #define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */
312 #define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */
313 #define LC_DYLD_ENVIRONMENT 0x27 /* string for dyld to treat
314 				    like environment variable */
315 #define LC_MAIN (0x28|LC_REQ_DYLD) /* replacement for LC_UNIXTHREAD */
316 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
317 #define LC_SOURCE_VERSION 0x2A /* source version used to build binary */
318 #define LC_DYLIB_CODE_SIGN_DRS 0x2B /* Code signing DRs copied from linked dylibs */
319 #define	LC_ENCRYPTION_INFO_64 0x2C /* 64-bit encrypted segment information */
320 #define LC_LINKER_OPTION 0x2D /* linker options in MH_OBJECT files */
321 #define LC_LINKER_OPTIMIZATION_HINT 0x2E /* optimization hints in MH_OBJECT files */
322 #define LC_VERSION_MIN_TVOS 0x2F /* build for AppleTV min OS version */
323 #define LC_VERSION_MIN_WATCHOS 0x30 /* build for Watch min OS version */
324 #define LC_NOTE 0x31 /* arbitrary data included within a Mach-O file */
325 #define LC_BUILD_VERSION 0x32 /* build for platform min OS version */
326 #define LC_DYLD_EXPORTS_TRIE (0x33 | LC_REQ_DYLD) /* used with linkedit_data_command, payload is trie */
327 #define LC_DYLD_CHAINED_FIXUPS (0x34 | LC_REQ_DYLD) /* used with linkedit_data_command */
328 #define LC_FILESET_ENTRY (0x35 | LC_REQ_DYLD) /* used with fileset_entry_command */
329 
330 /*
331  * A variable length string in a load command is represented by an lc_str
332  * union.  The strings are stored just after the load command structure and
333  * the offset is from the start of the load command structure.  The size
334  * of the string is reflected in the cmdsize field of the load command.
335  * Once again any padded bytes to bring the cmdsize field to a multiple
336  * of 4 bytes must be zero.
337  */
338 union lc_str {
339 	uint32_t	offset;	/* offset to the string */
340 #ifndef __LP64__
341 	char		*ptr;	/* pointer to the string */
342 #endif
343 };
344 
345 /*
346  * The segment load command indicates that a part of this file is to be
347  * mapped into the task's address space.  The size of this segment in memory,
348  * vmsize, maybe equal to or larger than the amount to map from this file,
349  * filesize.  The file is mapped starting at fileoff to the beginning of
350  * the segment in memory, vmaddr.  The rest of the memory of the segment,
351  * if any, is allocated zero fill on demand.  The segment's maximum virtual
352  * memory protection and initial virtual memory protection are specified
353  * by the maxprot and initprot fields.  If the segment has sections then the
354  * section structures directly follow the segment command and their size is
355  * reflected in cmdsize.
356  */
357 struct segment_command { /* for 32-bit architectures */
358 	uint32_t	cmd;		/* LC_SEGMENT */
359 	uint32_t	cmdsize;	/* includes sizeof section structs */
360 	char		segname[16];	/* segment name */
361 	uint32_t	vmaddr;		/* memory address of this segment */
362 	uint32_t	vmsize;		/* memory size of this segment */
363 	uint32_t	fileoff;	/* file offset of this segment */
364 	uint32_t	filesize;	/* amount to map from the file */
365 	vm_prot_t	maxprot;	/* maximum VM protection */
366 	vm_prot_t	initprot;	/* initial VM protection */
367 	uint32_t	nsects;		/* number of sections in segment */
368 	uint32_t	flags;		/* flags */
369 };
370 
371 /*
372  * The 64-bit segment load command indicates that a part of this file is to be
373  * mapped into a 64-bit task's address space.  If the 64-bit segment has
374  * sections then section_64 structures directly follow the 64-bit segment
375  * command and their size is reflected in cmdsize.
376  */
377 struct segment_command_64 { /* for 64-bit architectures */
378 	uint32_t	cmd;		/* LC_SEGMENT_64 */
379 	uint32_t	cmdsize;	/* includes sizeof section_64 structs */
380 	char		segname[16];	/* segment name */
381 	uint64_t	vmaddr;		/* memory address of this segment */
382 	uint64_t	vmsize;		/* memory size of this segment */
383 	uint64_t	fileoff;	/* file offset of this segment */
384 	uint64_t	filesize;	/* amount to map from the file */
385 	vm_prot_t	maxprot;	/* maximum VM protection */
386 	vm_prot_t	initprot;	/* initial VM protection */
387 	uint32_t	nsects;		/* number of sections in segment */
388 	uint32_t	flags;		/* flags */
389 };
390 
391 /* Constants for the flags field of the segment_command */
392 #define	SG_HIGHVM	0x1	/* the file contents for this segment is for
393 				   the high part of the VM space, the low part
394 				   is zero filled (for stacks in core files) */
395 #define	SG_FVMLIB	0x2	/* this segment is the VM that is allocated by
396 				   a fixed VM library, for overlap checking in
397 				   the link editor */
398 #define	SG_NORELOC	0x4	/* this segment has nothing that was relocated
399 				   in it and nothing relocated to it, that is
400 				   it maybe safely replaced without relocation*/
401 #define SG_PROTECTED_VERSION_1	0x8 /* This segment is protected.  If the
402 				       segment starts at file offset 0, the
403 				       first page of the segment is not
404 				       protected.  All other pages of the
405 				       segment are protected. */
406 #define SG_READ_ONLY    0x10 /* This segment is made read-only after fixups */
407 
408 
409 
410 /*
411  * A segment is made up of zero or more sections.  Non-MH_OBJECT files have
412  * all of their segments with the proper sections in each, and padded to the
413  * specified segment alignment when produced by the link editor.  The first
414  * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
415  * and load commands of the object file before its first section.  The zero
416  * fill sections are always last in their segment (in all formats).  This
417  * allows the zeroed segment padding to be mapped into memory where zero fill
418  * sections might be. The gigabyte zero fill sections, those with the section
419  * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
420  * These segments are then placed after all other segments.
421  *
422  * The MH_OBJECT format has all of its sections in one segment for
423  * compactness.  There is no padding to a specified segment boundary and the
424  * mach_header and load commands are not part of the segment.
425  *
426  * Sections with the same section name, sectname, going into the same segment,
427  * segname, are combined by the link editor.  The resulting section is aligned
428  * to the maximum alignment of the combined sections and is the new section's
429  * alignment.  The combined sections are aligned to their original alignment in
430  * the combined section.  Any padded bytes to get the specified alignment are
431  * zeroed.
432  *
433  * The format of the relocation entries referenced by the reloff and nreloc
434  * fields of the section structure for mach object files is described in the
435  * header file <reloc.h>.
436  */
437 struct section { /* for 32-bit architectures */
438 	char		sectname[16];	/* name of this section */
439 	char		segname[16];	/* segment this section goes in */
440 	uint32_t	addr;		/* memory address of this section */
441 	uint32_t	size;		/* size in bytes of this section */
442 	uint32_t	offset;		/* file offset of this section */
443 	uint32_t	align;		/* section alignment (power of 2) */
444 	uint32_t	reloff;		/* file offset of relocation entries */
445 	uint32_t	nreloc;		/* number of relocation entries */
446 	uint32_t	flags;		/* flags (section type and attributes)*/
447 	uint32_t	reserved1;	/* reserved (for offset or index) */
448 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
449 };
450 
451 struct section_64 { /* for 64-bit architectures */
452 	char		sectname[16];	/* name of this section */
453 	char		segname[16];	/* segment this section goes in */
454 	uint64_t	addr;		/* memory address of this section */
455 	uint64_t	size;		/* size in bytes of this section */
456 	uint32_t	offset;		/* file offset of this section */
457 	uint32_t	align;		/* section alignment (power of 2) */
458 	uint32_t	reloff;		/* file offset of relocation entries */
459 	uint32_t	nreloc;		/* number of relocation entries */
460 	uint32_t	flags;		/* flags (section type and attributes)*/
461 	uint32_t	reserved1;	/* reserved (for offset or index) */
462 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
463 	uint32_t	reserved3;	/* reserved */
464 };
465 
466 /*
467  * The flags field of a section structure is separated into two parts a section
468  * type and section attributes.  The section types are mutually exclusive (it
469  * can only have one type) but the section attributes are not (it may have more
470  * than one attribute).
471  */
472 #define SECTION_TYPE		 0x000000ff	/* 256 section types */
473 #define SECTION_ATTRIBUTES	 0xffffff00	/*  24 section attributes */
474 
475 /* Constants for the type of a section */
476 #define	S_REGULAR		0x0	/* regular section */
477 #define	S_ZEROFILL		0x1	/* zero fill on demand section */
478 #define	S_CSTRING_LITERALS	0x2	/* section with only literal C strings*/
479 #define	S_4BYTE_LITERALS	0x3	/* section with only 4 byte literals */
480 #define	S_8BYTE_LITERALS	0x4	/* section with only 8 byte literals */
481 #define	S_LITERAL_POINTERS	0x5	/* section with only pointers to */
482 					/*  literals */
483 /*
484  * For the two types of symbol pointers sections and the symbol stubs section
485  * they have indirect symbol table entries.  For each of the entries in the
486  * section the indirect symbol table entries, in corresponding order in the
487  * indirect symbol table, start at the index stored in the reserved1 field
488  * of the section structure.  Since the indirect symbol table entries
489  * correspond to the entries in the section the number of indirect symbol table
490  * entries is inferred from the size of the section divided by the size of the
491  * entries in the section.  For symbol pointers sections the size of the entries
492  * in the section is 4 bytes and for symbol stubs sections the byte size of the
493  * stubs is stored in the reserved2 field of the section structure.
494  */
495 #define	S_NON_LAZY_SYMBOL_POINTERS	0x6	/* section with only non-lazy
496 						   symbol pointers */
497 #define	S_LAZY_SYMBOL_POINTERS		0x7	/* section with only lazy symbol
498 						   pointers */
499 #define	S_SYMBOL_STUBS			0x8	/* section with only symbol
500 						   stubs, byte size of stub in
501 						   the reserved2 field */
502 #define	S_MOD_INIT_FUNC_POINTERS	0x9	/* section with only function
503 						   pointers for initialization*/
504 #define	S_MOD_TERM_FUNC_POINTERS	0xa	/* section with only function
505 						   pointers for termination */
506 #define	S_COALESCED			0xb	/* section contains symbols that
507 						   are to be coalesced */
508 #define	S_GB_ZEROFILL			0xc	/* zero fill on demand section
509 						   (that can be larger than 4
510 						   gigabytes) */
511 #define	S_INTERPOSING			0xd	/* section with only pairs of
512 						   function pointers for
513 						   interposing */
514 #define	S_16BYTE_LITERALS		0xe	/* section with only 16 byte
515 						   literals */
516 #define	S_DTRACE_DOF			0xf	/* section contains
517 						   DTrace Object Format */
518 #define	S_LAZY_DYLIB_SYMBOL_POINTERS	0x10	/* section with only lazy
519 						   symbol pointers to lazy
520 						   loaded dylibs */
521 /*
522  * Section types to support thread local variables
523  */
524 #define S_THREAD_LOCAL_REGULAR                   0x11  /* template of initial
525 							  values for TLVs */
526 #define S_THREAD_LOCAL_ZEROFILL                  0x12  /* template of initial
527 							  values for TLVs */
528 #define S_THREAD_LOCAL_VARIABLES                 0x13  /* TLV descriptors */
529 #define S_THREAD_LOCAL_VARIABLE_POINTERS         0x14  /* pointers to TLV
530                                                           descriptors */
531 #define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS    0x15  /* functions to call
532 							  to initialize TLV
533 							  values */
534 #define S_INIT_FUNC_OFFSETS                      0x16  /* 32-bit offsets to
535 							  initializers */
536 
537 /*
538  * Constants for the section attributes part of the flags field of a section
539  * structure.
540  */
541 #define SECTION_ATTRIBUTES_USR	 0xff000000	/* User setable attributes */
542 #define S_ATTR_PURE_INSTRUCTIONS 0x80000000	/* section contains only true
543 						   machine instructions */
544 #define S_ATTR_NO_TOC 		 0x40000000	/* section contains coalesced
545 						   symbols that are not to be
546 						   in a ranlib table of
547 						   contents */
548 #define S_ATTR_STRIP_STATIC_SYMS 0x20000000	/* ok to strip static symbols
549 						   in this section in files
550 						   with the MH_DYLDLINK flag */
551 #define S_ATTR_NO_DEAD_STRIP	 0x10000000	/* no dead stripping */
552 #define S_ATTR_LIVE_SUPPORT	 0x08000000	/* blocks are live if they
553 						   reference live blocks */
554 #define S_ATTR_SELF_MODIFYING_CODE 0x04000000	/* Used with i386 code stubs
555 						   written on by dyld */
556 /*
557  * If a segment contains any sections marked with S_ATTR_DEBUG then all
558  * sections in that segment must have this attribute.  No section other than
559  * a section marked with this attribute may reference the contents of this
560  * section.  A section with this attribute may contain no symbols and must have
561  * a section type S_REGULAR.  The static linker will not copy section contents
562  * from sections with this attribute into its output file.  These sections
563  * generally contain DWARF debugging info.
564  */
565 #define	S_ATTR_DEBUG		 0x02000000	/* a debug section */
566 #define SECTION_ATTRIBUTES_SYS	 0x00ffff00	/* system setable attributes */
567 #define S_ATTR_SOME_INSTRUCTIONS 0x00000400	/* section contains some
568 						   machine instructions */
569 #define S_ATTR_EXT_RELOC	 0x00000200	/* section has external
570 						   relocation entries */
571 #define S_ATTR_LOC_RELOC	 0x00000100	/* section has local
572 						   relocation entries */
573 
574 
575 /*
576  * The names of segments and sections in them are mostly meaningless to the
577  * link-editor.  But there are few things to support traditional UNIX
578  * executables that require the link-editor and assembler to use some names
579  * agreed upon by convention.
580  *
581  * The initial protection of the "__TEXT" segment has write protection turned
582  * off (not writeable).
583  *
584  * The link-editor will allocate common symbols at the end of the "__common"
585  * section in the "__DATA" segment.  It will create the section and segment
586  * if needed.
587  */
588 
589 /* The currently known segment names and the section names in those segments */
590 
591 #define	SEG_PAGEZERO	"__PAGEZERO"	/* the pagezero segment which has no */
592 					/* protections and catches NULL */
593 					/* references for MH_EXECUTE files */
594 
595 
596 #define	SEG_TEXT	"__TEXT"	/* the tradition UNIX text segment */
597 #define	SECT_TEXT	"__text"	/* the real text part of the text */
598 					/* section no headers, and no padding */
599 #define SECT_FVMLIB_INIT0 "__fvmlib_init0"	/* the fvmlib initialization */
600 						/*  section */
601 #define SECT_FVMLIB_INIT1 "__fvmlib_init1"	/* the section following the */
602 					        /*  fvmlib initialization */
603 						/*  section */
604 
605 #define	SEG_DATA	"__DATA"	/* the tradition UNIX data segment */
606 #define	SECT_DATA	"__data"	/* the real initialized data section */
607 					/* no padding, no bss overlap */
608 #define	SECT_BSS	"__bss"		/* the real uninitialized data section*/
609 					/* no padding */
610 #define SECT_COMMON	"__common"	/* the section common symbols are */
611 					/* allocated in by the link editor */
612 
613 #define	SEG_OBJC	"__OBJC"	/* objective-C runtime segment */
614 #define SECT_OBJC_SYMBOLS "__symbol_table"	/* symbol table */
615 #define SECT_OBJC_MODULES "__module_info"	/* module information */
616 #define SECT_OBJC_STRINGS "__selector_strs"	/* string table */
617 #define SECT_OBJC_REFS "__selector_refs"	/* string table */
618 
619 #define	SEG_ICON	 "__ICON"	/* the icon segment */
620 #define	SECT_ICON_HEADER "__header"	/* the icon headers */
621 #define	SECT_ICON_TIFF   "__tiff"	/* the icons in tiff format */
622 
623 #define	SEG_LINKEDIT	"__LINKEDIT"	/* the segment containing all structs */
624 					/* created and maintained by the link */
625 					/* editor.  Created with -seglinkedit */
626 					/* option to ld(1) for MH_EXECUTE and */
627 					/* FVMLIB file types only */
628 
629 #define SEG_UNIXSTACK	"__UNIXSTACK"	/* the unix stack segment */
630 
631 #define SEG_IMPORT	"__IMPORT"	/* the segment for the self (dyld) */
632 					/* modifing code stubs that has read, */
633 					/* write and execute permissions */
634 
635 /*
636  * Fixed virtual memory shared libraries are identified by two things.  The
637  * target pathname (the name of the library as found for execution), and the
638  * minor version number.  The address of where the headers are loaded is in
639  * header_addr. (THIS IS OBSOLETE and no longer supported).
640  */
641 struct fvmlib {
642 	union lc_str	name;		/* library's target pathname */
643 	uint32_t	minor_version;	/* library's minor version number */
644 	uint32_t	header_addr;	/* library's header address */
645 };
646 
647 /*
648  * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header)
649  * contains a fvmlib_command (cmd == LC_IDFVMLIB) to identify the library.
650  * An object that uses a fixed virtual shared library also contains a
651  * fvmlib_command (cmd == LC_LOADFVMLIB) for each library it uses.
652  * (THIS IS OBSOLETE and no longer supported).
653  */
654 struct fvmlib_command {
655 	uint32_t	cmd;		/* LC_IDFVMLIB or LC_LOADFVMLIB */
656 	uint32_t	cmdsize;	/* includes pathname string */
657 	struct fvmlib	fvmlib;		/* the library identification */
658 };
659 
660 /*
661  * Dynamicly linked shared libraries are identified by two things.  The
662  * pathname (the name of the library as found for execution), and the
663  * compatibility version number.  The pathname must match and the compatibility
664  * number in the user of the library must be greater than or equal to the
665  * library being used.  The time stamp is used to record the time a library was
666  * built and copied into user so it can be use to determined if the library used
667  * at runtime is exactly the same as used to built the program.
668  */
669 struct dylib {
670     union lc_str  name;			/* library's path name */
671     uint32_t timestamp;			/* library's build time stamp */
672     uint32_t current_version;		/* library's current version number */
673     uint32_t compatibility_version;	/* library's compatibility vers number*/
674 };
675 
676 /*
677  * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
678  * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library.
679  * An object that uses a dynamically linked shared library also contains a
680  * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
681  * LC_REEXPORT_DYLIB) for each library it uses.
682  */
683 struct dylib_command {
684 	uint32_t	cmd;		/* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB,
685 					   LC_REEXPORT_DYLIB */
686 	uint32_t	cmdsize;	/* includes pathname string */
687 	struct dylib	dylib;		/* the library identification */
688 };
689 
690 /*
691  * A dynamically linked shared library may be a subframework of an umbrella
692  * framework.  If so it will be linked with "-umbrella umbrella_name" where
693  * Where "umbrella_name" is the name of the umbrella framework. A subframework
694  * can only be linked against by its umbrella framework or other subframeworks
695  * that are part of the same umbrella framework.  Otherwise the static link
696  * editor produces an error and states to link against the umbrella framework.
697  * The name of the umbrella framework for subframeworks is recorded in the
698  * following structure.
699  */
700 struct sub_framework_command {
701 	uint32_t	cmd;		/* LC_SUB_FRAMEWORK */
702 	uint32_t	cmdsize;	/* includes umbrella string */
703 	union lc_str 	umbrella;	/* the umbrella framework name */
704 };
705 
706 /*
707  * For dynamically linked shared libraries that are subframework of an umbrella
708  * framework they can allow clients other than the umbrella framework or other
709  * subframeworks in the same umbrella framework.  To do this the subframework
710  * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load
711  * command is created for each -allowable_client flag.  The client_name is
712  * usually a framework name.  It can also be a name used for bundles clients
713  * where the bundle is built with "-client_name client_name".
714  */
715 struct sub_client_command {
716 	uint32_t	cmd;		/* LC_SUB_CLIENT */
717 	uint32_t	cmdsize;	/* includes client string */
718 	union lc_str 	client;		/* the client name */
719 };
720 
721 /*
722  * A dynamically linked shared library may be a sub_umbrella of an umbrella
723  * framework.  If so it will be linked with "-sub_umbrella umbrella_name" where
724  * Where "umbrella_name" is the name of the sub_umbrella framework.  When
725  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
726  * umbrella framework will only cause its subframeworks and those frameworks
727  * listed as sub_umbrella frameworks to be implicited linked in.  Any other
728  * dependent dynamic libraries will not be linked it when -twolevel_namespace
729  * is in effect.  The primary library recorded by the static linker when
730  * resolving a symbol in these libraries will be the umbrella framework.
731  * Zero or more sub_umbrella frameworks may be use by an umbrella framework.
732  * The name of a sub_umbrella framework is recorded in the following structure.
733  */
734 struct sub_umbrella_command {
735 	uint32_t	cmd;		/* LC_SUB_UMBRELLA */
736 	uint32_t	cmdsize;	/* includes sub_umbrella string */
737 	union lc_str 	sub_umbrella;	/* the sub_umbrella framework name */
738 };
739 
740 /*
741  * A dynamically linked shared library may be a sub_library of another shared
742  * library.  If so it will be linked with "-sub_library library_name" where
743  * Where "library_name" is the name of the sub_library shared library.  When
744  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
745  * shared library will only cause its subframeworks and those frameworks
746  * listed as sub_umbrella frameworks and libraries listed as sub_libraries to
747  * be implicited linked in.  Any other dependent dynamic libraries will not be
748  * linked it when -twolevel_namespace is in effect.  The primary library
749  * recorded by the static linker when resolving a symbol in these libraries
750  * will be the umbrella framework (or dynamic library). Zero or more sub_library
751  * shared libraries may be use by an umbrella framework or (or dynamic library).
752  * The name of a sub_library framework is recorded in the following structure.
753  * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc".
754  */
755 struct sub_library_command {
756 	uint32_t	cmd;		/* LC_SUB_LIBRARY */
757 	uint32_t	cmdsize;	/* includes sub_library string */
758 	union lc_str 	sub_library;	/* the sub_library name */
759 };
760 
761 /*
762  * A program (filetype == MH_EXECUTE) that is
763  * prebound to its dynamic libraries has one of these for each library that
764  * the static linker used in prebinding.  It contains a bit vector for the
765  * modules in the library.  The bits indicate which modules are bound (1) and
766  * which are not (0) from the library.  The bit for module 0 is the low bit
767  * of the first byte.  So the bit for the Nth module is:
768  * (linked_modules[N/8] >> N%8) & 1
769  */
770 struct prebound_dylib_command {
771 	uint32_t	cmd;		/* LC_PREBOUND_DYLIB */
772 	uint32_t	cmdsize;	/* includes strings */
773 	union lc_str	name;		/* library's path name */
774 	uint32_t	nmodules;	/* number of modules in library */
775 	union lc_str	linked_modules;	/* bit vector of linked modules */
776 };
777 
778 /*
779  * A program that uses a dynamic linker contains a dylinker_command to identify
780  * the name of the dynamic linker (LC_LOAD_DYLINKER).  And a dynamic linker
781  * contains a dylinker_command to identify the dynamic linker (LC_ID_DYLINKER).
782  * A file can have at most one of these.
783  * This struct is also used for the LC_DYLD_ENVIRONMENT load command and
784  * contains string for dyld to treat like environment variable.
785  */
786 struct dylinker_command {
787 	uint32_t	cmd;		/* LC_ID_DYLINKER, LC_LOAD_DYLINKER or
788 					   LC_DYLD_ENVIRONMENT */
789 	uint32_t	cmdsize;	/* includes pathname string */
790 	union lc_str    name;		/* dynamic linker's path name */
791 };
792 
793 /*
794  * Thread commands contain machine-specific data structures suitable for
795  * use in the thread state primitives.  The machine specific data structures
796  * follow the struct thread_command as follows.
797  * Each flavor of machine specific data structure is preceded by an uint32_t
798  * constant for the flavor of that data structure, an uint32_t that is the
799  * count of uint32_t's of the size of the state data structure and then
800  * the state data structure follows.  This triple may be repeated for many
801  * flavors.  The constants for the flavors, counts and state data structure
802  * definitions are expected to be in the header file <machine/thread_status.h>.
803  * These machine specific data structures sizes must be multiples of
804  * 4 bytes.  The cmdsize reflects the total size of the thread_command
805  * and all of the sizes of the constants for the flavors, counts and state
806  * data structures.
807  *
808  * For executable objects that are unix processes there will be one
809  * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor.
810  * This is the same as a LC_THREAD, except that a stack is automatically
811  * created (based on the shell's limit for the stack size).  Command arguments
812  * and environment variables are copied onto that stack.
813  */
814 struct thread_command {
815 	uint32_t	cmd;		/* LC_THREAD or  LC_UNIXTHREAD */
816 	uint32_t	cmdsize;	/* total size of this command */
817 	/* uint32_t flavor		   flavor of thread state */
818 	/* uint32_t count		   count of uint32_t's in thread state */
819 	/* struct XXX_thread_state state   thread state for this flavor */
820 	/* ... */
821 };
822 
823 /*
824  * The routines command contains the address of the dynamic shared library
825  * initialization routine and an index into the module table for the module
826  * that defines the routine.  Before any modules are used from the library the
827  * dynamic linker fully binds the module that defines the initialization routine
828  * and then calls it.  This gets called before any module initialization
829  * routines (used for C++ static constructors) in the library.
830  */
831 struct routines_command { /* for 32-bit architectures */
832 	uint32_t	cmd;		/* LC_ROUTINES */
833 	uint32_t	cmdsize;	/* total size of this command */
834 	uint32_t	init_address;	/* address of initialization routine */
835 	uint32_t	init_module;	/* index into the module table that */
836 				        /*  the init routine is defined in */
837 	uint32_t	reserved1;
838 	uint32_t	reserved2;
839 	uint32_t	reserved3;
840 	uint32_t	reserved4;
841 	uint32_t	reserved5;
842 	uint32_t	reserved6;
843 };
844 
845 /*
846  * The 64-bit routines command.  Same use as above.
847  */
848 struct routines_command_64 { /* for 64-bit architectures */
849 	uint32_t	cmd;		/* LC_ROUTINES_64 */
850 	uint32_t	cmdsize;	/* total size of this command */
851 	uint64_t	init_address;	/* address of initialization routine */
852 	uint64_t	init_module;	/* index into the module table that */
853 					/*  the init routine is defined in */
854 	uint64_t	reserved1;
855 	uint64_t	reserved2;
856 	uint64_t	reserved3;
857 	uint64_t	reserved4;
858 	uint64_t	reserved5;
859 	uint64_t	reserved6;
860 };
861 
862 /*
863  * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
864  * "stab" style symbol table information as described in the header files
865  * <nlist.h> and <stab.h>.
866  */
867 struct symtab_command {
868 	uint32_t	cmd;		/* LC_SYMTAB */
869 	uint32_t	cmdsize;	/* sizeof(struct symtab_command) */
870 	uint32_t	symoff;		/* symbol table offset */
871 	uint32_t	nsyms;		/* number of symbol table entries */
872 	uint32_t	stroff;		/* string table offset */
873 	uint32_t	strsize;	/* string table size in bytes */
874 };
875 
876 /*
877  * This is the second set of the symbolic information which is used to support
878  * the data structures for the dynamically link editor.
879  *
880  * The original set of symbolic information in the symtab_command which contains
881  * the symbol and string tables must also be present when this load command is
882  * present.  When this load command is present the symbol table is organized
883  * into three groups of symbols:
884  *	local symbols (static and debugging symbols) - grouped by module
885  *	defined external symbols - grouped by module (sorted by name if not lib)
886  *	undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
887  *	     			    and in order the were seen by the static
888  *				    linker if MH_BINDATLOAD is set)
889  * In this load command there are offsets and counts to each of the three groups
890  * of symbols.
891  *
892  * This load command contains a the offsets and sizes of the following new
893  * symbolic information tables:
894  *	table of contents
895  *	module table
896  *	reference symbol table
897  *	indirect symbol table
898  * The first three tables above (the table of contents, module table and
899  * reference symbol table) are only present if the file is a dynamically linked
900  * shared library.  For executable and object modules, which are files
901  * containing only one module, the information that would be in these three
902  * tables is determined as follows:
903  * 	table of contents - the defined external symbols are sorted by name
904  *	module table - the file contains only one module so everything in the
905  *		       file is part of the module.
906  *	reference symbol table - is the defined and undefined external symbols
907  *
908  * For dynamically linked shared library files this load command also contains
909  * offsets and sizes to the pool of relocation entries for all sections
910  * separated into two groups:
911  *	external relocation entries
912  *	local relocation entries
913  * For executable and object modules the relocation entries continue to hang
914  * off the section structures.
915  */
916 struct dysymtab_command {
917     uint32_t cmd;	/* LC_DYSYMTAB */
918     uint32_t cmdsize;	/* sizeof(struct dysymtab_command) */
919 
920     /*
921      * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
922      * are grouped into the following three groups:
923      *    local symbols (further grouped by the module they are from)
924      *    defined external symbols (further grouped by the module they are from)
925      *    undefined symbols
926      *
927      * The local symbols are used only for debugging.  The dynamic binding
928      * process may have to use them to indicate to the debugger the local
929      * symbols for a module that is being bound.
930      *
931      * The last two groups are used by the dynamic binding process to do the
932      * binding (indirectly through the module table and the reference symbol
933      * table when this is a dynamically linked shared library file).
934      */
935     uint32_t ilocalsym;	/* index to local symbols */
936     uint32_t nlocalsym;	/* number of local symbols */
937 
938     uint32_t iextdefsym;/* index to externally defined symbols */
939     uint32_t nextdefsym;/* number of externally defined symbols */
940 
941     uint32_t iundefsym;	/* index to undefined symbols */
942     uint32_t nundefsym;	/* number of undefined symbols */
943 
944     /*
945      * For the for the dynamic binding process to find which module a symbol
946      * is defined in the table of contents is used (analogous to the ranlib
947      * structure in an archive) which maps defined external symbols to modules
948      * they are defined in.  This exists only in a dynamically linked shared
949      * library file.  For executable and object modules the defined external
950      * symbols are sorted by name and is use as the table of contents.
951      */
952     uint32_t tocoff;	/* file offset to table of contents */
953     uint32_t ntoc;	/* number of entries in table of contents */
954 
955     /*
956      * To support dynamic binding of "modules" (whole object files) the symbol
957      * table must reflect the modules that the file was created from.  This is
958      * done by having a module table that has indexes and counts into the merged
959      * tables for each module.  The module structure that these two entries
960      * refer to is described below.  This exists only in a dynamically linked
961      * shared library file.  For executable and object modules the file only
962      * contains one module so everything in the file belongs to the module.
963      */
964     uint32_t modtaboff;	/* file offset to module table */
965     uint32_t nmodtab;	/* number of module table entries */
966 
967     /*
968      * To support dynamic module binding the module structure for each module
969      * indicates the external references (defined and undefined) each module
970      * makes.  For each module there is an offset and a count into the
971      * reference symbol table for the symbols that the module references.
972      * This exists only in a dynamically linked shared library file.  For
973      * executable and object modules the defined external symbols and the
974      * undefined external symbols indicates the external references.
975      */
976     uint32_t extrefsymoff;	/* offset to referenced symbol table */
977     uint32_t nextrefsyms;	/* number of referenced symbol table entries */
978 
979     /*
980      * The sections that contain "symbol pointers" and "routine stubs" have
981      * indexes and (implied counts based on the size of the section and fixed
982      * size of the entry) into the "indirect symbol" table for each pointer
983      * and stub.  For every section of these two types the index into the
984      * indirect symbol table is stored in the section header in the field
985      * reserved1.  An indirect symbol table entry is simply a 32bit index into
986      * the symbol table to the symbol that the pointer or stub is referring to.
987      * The indirect symbol table is ordered to match the entries in the section.
988      */
989     uint32_t indirectsymoff; /* file offset to the indirect symbol table */
990     uint32_t nindirectsyms;  /* number of indirect symbol table entries */
991 
992     /*
993      * To support relocating an individual module in a library file quickly the
994      * external relocation entries for each module in the library need to be
995      * accessed efficiently.  Since the relocation entries can't be accessed
996      * through the section headers for a library file they are separated into
997      * groups of local and external entries further grouped by module.  In this
998      * case the presents of this load command who's extreloff, nextrel,
999      * locreloff and nlocrel fields are non-zero indicates that the relocation
1000      * entries of non-merged sections are not referenced through the section
1001      * structures (and the reloff and nreloc fields in the section headers are
1002      * set to zero).
1003      *
1004      * Since the relocation entries are not accessed through the section headers
1005      * this requires the r_address field to be something other than a section
1006      * offset to identify the item to be relocated.  In this case r_address is
1007      * set to the offset from the vmaddr of the first LC_SEGMENT command.
1008      * For MH_SPLIT_SEGS images r_address is set to the the offset from the
1009      * vmaddr of the first read-write LC_SEGMENT command.
1010      *
1011      * The relocation entries are grouped by module and the module table
1012      * entries have indexes and counts into them for the group of external
1013      * relocation entries for that the module.
1014      *
1015      * For sections that are merged across modules there must not be any
1016      * remaining external relocation entries for them (for merged sections
1017      * remaining relocation entries must be local).
1018      */
1019     uint32_t extreloff;	/* offset to external relocation entries */
1020     uint32_t nextrel;	/* number of external relocation entries */
1021 
1022     /*
1023      * All the local relocation entries are grouped together (they are not
1024      * grouped by their module since they are only used if the object is moved
1025      * from it staticly link edited address).
1026      */
1027     uint32_t locreloff;	/* offset to local relocation entries */
1028     uint32_t nlocrel;	/* number of local relocation entries */
1029 
1030 };
1031 
1032 /*
1033  * An indirect symbol table entry is simply a 32bit index into the symbol table
1034  * to the symbol that the pointer or stub is refering to.  Unless it is for a
1035  * non-lazy symbol pointer section for a defined symbol which strip(1) as
1036  * removed.  In which case it has the value INDIRECT_SYMBOL_LOCAL.  If the
1037  * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
1038  */
1039 #define INDIRECT_SYMBOL_LOCAL	0x80000000
1040 #define INDIRECT_SYMBOL_ABS	0x40000000
1041 
1042 
1043 /* a table of contents entry */
1044 struct dylib_table_of_contents {
1045     uint32_t symbol_index;	/* the defined external symbol
1046 				   (index into the symbol table) */
1047     uint32_t module_index;	/* index into the module table this symbol
1048 				   is defined in */
1049 };
1050 
1051 /* a module table entry */
1052 struct dylib_module {
1053     uint32_t module_name;	/* the module name (index into string table) */
1054 
1055     uint32_t iextdefsym;	/* index into externally defined symbols */
1056     uint32_t nextdefsym;	/* number of externally defined symbols */
1057     uint32_t irefsym;		/* index into reference symbol table */
1058     uint32_t nrefsym;		/* number of reference symbol table entries */
1059     uint32_t ilocalsym;		/* index into symbols for local symbols */
1060     uint32_t nlocalsym;		/* number of local symbols */
1061 
1062     uint32_t iextrel;		/* index into external relocation entries */
1063     uint32_t nextrel;		/* number of external relocation entries */
1064 
1065     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1066 				   section, high 16 bits are the index into
1067 			           the term section */
1068     uint32_t ninit_nterm;	/* low 16 bits are the number of init section
1069 				   entries, high 16 bits are the number of
1070 				   term section entries */
1071 
1072     uint32_t			/* for this module address of the start of */
1073 	objc_module_info_addr;  /*  the (__OBJC,__module_info) section */
1074     uint32_t			/* for this module size of */
1075 	objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1076 };
1077 
1078 /* a 64-bit module table entry */
1079 struct dylib_module_64 {
1080     uint32_t module_name;	/* the module name (index into string table) */
1081 
1082     uint32_t iextdefsym;	/* index into externally defined symbols */
1083     uint32_t nextdefsym;	/* number of externally defined symbols */
1084     uint32_t irefsym;		/* index into reference symbol table */
1085     uint32_t nrefsym;		/* number of reference symbol table entries */
1086     uint32_t ilocalsym;		/* index into symbols for local symbols */
1087     uint32_t nlocalsym;		/* number of local symbols */
1088 
1089     uint32_t iextrel;		/* index into external relocation entries */
1090     uint32_t nextrel;		/* number of external relocation entries */
1091 
1092     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1093 				   section, high 16 bits are the index into
1094 				   the term section */
1095     uint32_t ninit_nterm;      /* low 16 bits are the number of init section
1096 				  entries, high 16 bits are the number of
1097 				  term section entries */
1098 
1099     uint32_t			/* for this module size of */
1100         objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1101     uint64_t			/* for this module address of the start of */
1102         objc_module_info_addr;	/*  the (__OBJC,__module_info) section */
1103 };
1104 
1105 /*
1106  * The entries in the reference symbol table are used when loading the module
1107  * (both by the static and dynamic link editors) and if the module is unloaded
1108  * or replaced.  Therefore all external symbols (defined and undefined) are
1109  * listed in the module's reference table.  The flags describe the type of
1110  * reference that is being made.  The constants for the flags are defined in
1111  * <mach-o/nlist.h> as they are also used for symbol table entries.
1112  */
1113 struct dylib_reference {
1114     uint32_t isym:24,		/* index into the symbol table */
1115     		  flags:8;	/* flags to indicate the type of reference */
1116 };
1117 
1118 /*
1119  * The twolevel_hints_command contains the offset and number of hints in the
1120  * two-level namespace lookup hints table.
1121  */
1122 struct twolevel_hints_command {
1123     uint32_t cmd;	/* LC_TWOLEVEL_HINTS */
1124     uint32_t cmdsize;	/* sizeof(struct twolevel_hints_command) */
1125     uint32_t offset;	/* offset to the hint table */
1126     uint32_t nhints;	/* number of hints in the hint table */
1127 };
1128 
1129 /*
1130  * The entries in the two-level namespace lookup hints table are twolevel_hint
1131  * structs.  These provide hints to the dynamic link editor where to start
1132  * looking for an undefined symbol in a two-level namespace image.  The
1133  * isub_image field is an index into the sub-images (sub-frameworks and
1134  * sub-umbrellas list) that made up the two-level image that the undefined
1135  * symbol was found in when it was built by the static link editor.  If
1136  * isub-image is 0 the the symbol is expected to be defined in library and not
1137  * in the sub-images.  If isub-image is non-zero it is an index into the array
1138  * of sub-images for the umbrella with the first index in the sub-images being
1139  * 1. The array of sub-images is the ordered list of sub-images of the umbrella
1140  * that would be searched for a symbol that has the umbrella recorded as its
1141  * primary library.  The table of contents index is an index into the
1142  * library's table of contents.  This is used as the starting point of the
1143  * binary search or a directed linear search.
1144  */
1145 struct twolevel_hint {
1146     uint32_t
1147 	isub_image:8,	/* index into the sub images */
1148 	itoc:24;	/* index into the table of contents */
1149 };
1150 
1151 /*
1152  * The prebind_cksum_command contains the value of the original check sum for
1153  * prebound files or zero.  When a prebound file is first created or modified
1154  * for other than updating its prebinding information the value of the check sum
1155  * is set to zero.  When the file has it prebinding re-done and if the value of
1156  * the check sum is zero the original check sum is calculated and stored in
1157  * cksum field of this load command in the output file.  If when the prebinding
1158  * is re-done and the cksum field is non-zero it is left unchanged from the
1159  * input file.
1160  */
1161 struct prebind_cksum_command {
1162     uint32_t cmd;	/* LC_PREBIND_CKSUM */
1163     uint32_t cmdsize;	/* sizeof(struct prebind_cksum_command) */
1164     uint32_t cksum;	/* the check sum or zero */
1165 };
1166 
1167 /*
1168  * The uuid load command contains a single 128-bit unique random number that
1169  * identifies an object produced by the static link editor.
1170  */
1171 struct uuid_command {
1172     uint32_t	cmd;		/* LC_UUID */
1173     uint32_t	cmdsize;	/* sizeof(struct uuid_command) */
1174     uint8_t	uuid[16];	/* the 128-bit uuid */
1175 };
1176 
1177 /*
1178  * The rpath_command contains a path which at runtime should be added to
1179  * the current run path used to find @rpath prefixed dylibs.
1180  */
1181 struct rpath_command {
1182     uint32_t	 cmd;		/* LC_RPATH */
1183     uint32_t	 cmdsize;	/* includes string */
1184     union lc_str path;		/* path to add to run path */
1185 };
1186 
1187 /*
1188  * The linkedit_data_command contains the offsets and sizes of a blob
1189  * of data in the __LINKEDIT segment.
1190  */
1191 struct linkedit_data_command {
1192     uint32_t	cmd;		/* LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO,
1193 				   LC_FUNCTION_STARTS, LC_DATA_IN_CODE,
1194 				   LC_DYLIB_CODE_SIGN_DRS,
1195 				   LC_LINKER_OPTIMIZATION_HINT,
1196 				   LC_DYLD_EXPORTS_TRIE, or
1197 				   LC_DYLD_CHAINED_FIXUPS. */
1198     uint32_t	cmdsize;	/* sizeof(struct linkedit_data_command) */
1199     uint32_t	dataoff;	/* file offset of data in __LINKEDIT segment */
1200     uint32_t	datasize;	/* file size of data in __LINKEDIT segment  */
1201 };
1202 
1203 /*
1204  * The encryption_info_command contains the file offset and size of an
1205  * of an encrypted segment.
1206  */
1207 struct encryption_info_command {
1208    uint32_t	cmd;		/* LC_ENCRYPTION_INFO */
1209    uint32_t	cmdsize;	/* sizeof(struct encryption_info_command) */
1210    uint32_t	cryptoff;	/* file offset of encrypted range */
1211    uint32_t	cryptsize;	/* file size of encrypted range */
1212    uint32_t	cryptid;	/* which enryption system,
1213 				   0 means not-encrypted yet */
1214 };
1215 
1216 /*
1217  * The encryption_info_command_64 contains the file offset and size of an
1218  * of an encrypted segment (for use in x86_64 targets).
1219  */
1220 struct encryption_info_command_64 {
1221    uint32_t	cmd;		/* LC_ENCRYPTION_INFO_64 */
1222    uint32_t	cmdsize;	/* sizeof(struct encryption_info_command_64) */
1223    uint32_t	cryptoff;	/* file offset of encrypted range */
1224    uint32_t	cryptsize;	/* file size of encrypted range */
1225    uint32_t	cryptid;	/* which enryption system,
1226 				   0 means not-encrypted yet */
1227    uint32_t	pad;		/* padding to make this struct's size a multiple
1228 				   of 8 bytes */
1229 };
1230 
1231 /*
1232  * The version_min_command contains the min OS version on which this
1233  * binary was built to run.
1234  */
1235 struct version_min_command {
1236     uint32_t	cmd;		/* LC_VERSION_MIN_MACOSX or
1237 				   LC_VERSION_MIN_IPHONEOS or
1238 				   LC_VERSION_MIN_WATCHOS or
1239 				   LC_VERSION_MIN_TVOS */
1240     uint32_t	cmdsize;	/* sizeof(struct min_version_command) */
1241     uint32_t	version;	/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1242     uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1243 };
1244 
1245 /*
1246  * The build_version_command contains the min OS version on which this
1247  * binary was built to run for its platform.  The list of known platforms and
1248  * tool values following it.
1249  */
1250 struct build_version_command {
1251     uint32_t	cmd;		/* LC_BUILD_VERSION */
1252     uint32_t	cmdsize;	/* sizeof(struct build_version_command) plus */
1253 				/* ntools * sizeof(struct build_tool_version) */
1254     uint32_t	platform;	/* platform */
1255     uint32_t	minos;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1256     uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1257     uint32_t	ntools;		/* number of tool entries following this */
1258 };
1259 
1260 struct build_tool_version {
1261     uint32_t	tool;		/* enum for the tool */
1262     uint32_t	version;	/* version number of the tool */
1263 };
1264 
1265 /* Known values for the platform field above. */
1266 #define PLATFORM_MACOS 1
1267 #define PLATFORM_IOS 2
1268 #define PLATFORM_TVOS 3
1269 #define PLATFORM_WATCHOS 4
1270 #define PLATFORM_BRIDGEOS 5
1271 #define PLATFORM_MACCATALYST 6
1272 #define PLATFORM_IOSSIMULATOR 7
1273 #define PLATFORM_TVOSSIMULATOR 8
1274 #define PLATFORM_WATCHOSSIMULATOR 9
1275 #define PLATFORM_DRIVERKIT 10
1276 
1277 #ifndef __APPLE_BLEACH_SDK__
1278 #endif /* __APPLE_BLEACH_SDK__ */
1279 
1280 /* Known values for the tool field above. */
1281 #define TOOL_CLANG 1
1282 #define TOOL_SWIFT 2
1283 #define TOOL_LD	3
1284 
1285 /*
1286  * The dyld_info_command contains the file offsets and sizes of
1287  * the new compressed form of the information dyld needs to
1288  * load the image.  This information is used by dyld on Mac OS X
1289  * 10.6 and later.  All information pointed to by this command
1290  * is encoded using byte streams, so no endian swapping is needed
1291  * to interpret it.
1292  */
1293 struct dyld_info_command {
1294    uint32_t   cmd;		/* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */
1295    uint32_t   cmdsize;		/* sizeof(struct dyld_info_command) */
1296 
1297     /*
1298      * Dyld rebases an image whenever dyld loads it at an address different
1299      * from its preferred address.  The rebase information is a stream
1300      * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
1301      * Conceptually the rebase information is a table of tuples:
1302      *    <seg-index, seg-offset, type>
1303      * The opcodes are a compressed way to encode the table by only
1304      * encoding when a column changes.  In addition simple patterns
1305      * like "every n'th offset for m times" can be encoded in a few
1306      * bytes.
1307      */
1308     uint32_t   rebase_off;	/* file offset to rebase info  */
1309     uint32_t   rebase_size;	/* size of rebase info   */
1310 
1311     /*
1312      * Dyld binds an image during the loading process, if the image
1313      * requires any pointers to be initialized to symbols in other images.
1314      * The bind information is a stream of byte sized
1315      * opcodes whose symbolic names start with BIND_OPCODE_.
1316      * Conceptually the bind information is a table of tuples:
1317      *    <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
1318      * The opcodes are a compressed way to encode the table by only
1319      * encoding when a column changes.  In addition simple patterns
1320      * like for runs of pointers initialzed to the same value can be
1321      * encoded in a few bytes.
1322      */
1323     uint32_t   bind_off;	/* file offset to binding info   */
1324     uint32_t   bind_size;	/* size of binding info  */
1325 
1326     /*
1327      * Some C++ programs require dyld to unique symbols so that all
1328      * images in the process use the same copy of some code/data.
1329      * This step is done after binding. The content of the weak_bind
1330      * info is an opcode stream like the bind_info.  But it is sorted
1331      * alphabetically by symbol name.  This enable dyld to walk
1332      * all images with weak binding information in order and look
1333      * for collisions.  If there are no collisions, dyld does
1334      * no updating.  That means that some fixups are also encoded
1335      * in the bind_info.  For instance, all calls to "operator new"
1336      * are first bound to libstdc++.dylib using the information
1337      * in bind_info.  Then if some image overrides operator new
1338      * that is detected when the weak_bind information is processed
1339      * and the call to operator new is then rebound.
1340      */
1341     uint32_t   weak_bind_off;	/* file offset to weak binding info   */
1342     uint32_t   weak_bind_size;  /* size of weak binding info  */
1343 
1344     /*
1345      * Some uses of external symbols do not need to be bound immediately.
1346      * Instead they can be lazily bound on first use.  The lazy_bind
1347      * are contains a stream of BIND opcodes to bind all lazy symbols.
1348      * Normal use is that dyld ignores the lazy_bind section when
1349      * loading an image.  Instead the static linker arranged for the
1350      * lazy pointer to initially point to a helper function which
1351      * pushes the offset into the lazy_bind area for the symbol
1352      * needing to be bound, then jumps to dyld which simply adds
1353      * the offset to lazy_bind_off to get the information on what
1354      * to bind.
1355      */
1356     uint32_t   lazy_bind_off;	/* file offset to lazy binding info */
1357     uint32_t   lazy_bind_size;  /* size of lazy binding infs */
1358 
1359     /*
1360      * The symbols exported by a dylib are encoded in a trie.  This
1361      * is a compact representation that factors out common prefixes.
1362      * It also reduces LINKEDIT pages in RAM because it encodes all
1363      * information (name, address, flags) in one small, contiguous range.
1364      * The export area is a stream of nodes.  The first node sequentially
1365      * is the start node for the trie.
1366      *
1367      * Nodes for a symbol start with a uleb128 that is the length of
1368      * the exported symbol information for the string so far.
1369      * If there is no exported symbol, the node starts with a zero byte.
1370      * If there is exported info, it follows the length.
1371      *
1372      * First is a uleb128 containing flags. Normally, it is followed by
1373      * a uleb128 encoded offset which is location of the content named
1374      * by the symbol from the mach_header for the image.  If the flags
1375      * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
1376      * a uleb128 encoded library ordinal, then a zero terminated
1377      * UTF8 string.  If the string is zero length, then the symbol
1378      * is re-export from the specified dylib with the same name.
1379      * If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
1380      * the flags is two uleb128s: the stub offset and the resolver offset.
1381      * The stub is used by non-lazy pointers.  The resolver is used
1382      * by lazy pointers and must be called to get the actual address to use.
1383      *
1384      * After the optional exported symbol information is a byte of
1385      * how many edges (0-255) that this node has leaving it,
1386      * followed by each edge.
1387      * Each edge is a zero terminated UTF8 of the addition chars
1388      * in the symbol, followed by a uleb128 offset for the node that
1389      * edge points to.
1390      *
1391      */
1392     uint32_t   export_off;	/* file offset to lazy binding info */
1393     uint32_t   export_size;	/* size of lazy binding infs */
1394 };
1395 
1396 /*
1397  * The following are used to encode rebasing information
1398  */
1399 #define REBASE_TYPE_POINTER					1
1400 #define REBASE_TYPE_TEXT_ABSOLUTE32				2
1401 #define REBASE_TYPE_TEXT_PCREL32				3
1402 
1403 #define REBASE_OPCODE_MASK					0xF0
1404 #define REBASE_IMMEDIATE_MASK					0x0F
1405 #define REBASE_OPCODE_DONE					0x00
1406 #define REBASE_OPCODE_SET_TYPE_IMM				0x10
1407 #define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB		0x20
1408 #define REBASE_OPCODE_ADD_ADDR_ULEB				0x30
1409 #define REBASE_OPCODE_ADD_ADDR_IMM_SCALED			0x40
1410 #define REBASE_OPCODE_DO_REBASE_IMM_TIMES			0x50
1411 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES			0x60
1412 #define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB			0x70
1413 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB	0x80
1414 
1415 
1416 /*
1417  * The following are used to encode binding information
1418  */
1419 #define BIND_TYPE_POINTER					1
1420 #define BIND_TYPE_TEXT_ABSOLUTE32				2
1421 #define BIND_TYPE_TEXT_PCREL32					3
1422 
1423 #define BIND_SPECIAL_DYLIB_SELF					 0
1424 #define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE			-1
1425 #define BIND_SPECIAL_DYLIB_FLAT_LOOKUP				-2
1426 #define BIND_SPECIAL_DYLIB_WEAK_LOOKUP				-3
1427 
1428 #define BIND_SYMBOL_FLAGS_WEAK_IMPORT				0x1
1429 #define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION			0x8
1430 
1431 #define BIND_OPCODE_MASK					0xF0
1432 #define BIND_IMMEDIATE_MASK					0x0F
1433 #define BIND_OPCODE_DONE					0x00
1434 #define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM			0x10
1435 #define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB			0x20
1436 #define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM			0x30
1437 #define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM		0x40
1438 #define BIND_OPCODE_SET_TYPE_IMM				0x50
1439 #define BIND_OPCODE_SET_ADDEND_SLEB				0x60
1440 #define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB			0x70
1441 #define BIND_OPCODE_ADD_ADDR_ULEB				0x80
1442 #define BIND_OPCODE_DO_BIND					0x90
1443 #define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB			0xA0
1444 #define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED			0xB0
1445 #define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB		0xC0
1446 #define	BIND_OPCODE_THREADED					0xD0
1447 #define	BIND_SUBOPCODE_THREADED_SET_BIND_ORDINAL_TABLE_SIZE_ULEB 0x00
1448 #define	BIND_SUBOPCODE_THREADED_APPLY				 0x01
1449 
1450 
1451 /*
1452  * The following are used on the flags byte of a terminal node
1453  * in the export information.
1454  */
1455 #define EXPORT_SYMBOL_FLAGS_KIND_MASK				0x03
1456 #define EXPORT_SYMBOL_FLAGS_KIND_REGULAR			0x00
1457 #define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL			0x01
1458 #define EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE			0x02
1459 #define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION			0x04
1460 #define EXPORT_SYMBOL_FLAGS_REEXPORT				0x08
1461 #define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER			0x10
1462 #define EXPORT_SYMBOL_FLAGS_STATIC_RESOLVER			0x20
1463 
1464 
1465 /*
1466  * The linker_option_command contains linker options embedded in object files.
1467  */
1468 struct linker_option_command {
1469     uint32_t  cmd;	/* LC_LINKER_OPTION only used in MH_OBJECT filetypes */
1470     uint32_t  cmdsize;
1471     uint32_t  count;	/* number of strings */
1472     /* concatenation of zero terminated UTF8 strings.
1473        Zero filled at end to align */
1474 };
1475 
1476 /*
1477  * The symseg_command contains the offset and size of the GNU style
1478  * symbol table information as described in the header file <symseg.h>.
1479  * The symbol roots of the symbol segments must also be aligned properly
1480  * in the file.  So the requirement of keeping the offsets aligned to a
1481  * multiple of a 4 bytes translates to the length field of the symbol
1482  * roots also being a multiple of a long.  Also the padding must again be
1483  * zeroed. (THIS IS OBSOLETE and no longer supported).
1484  */
1485 struct symseg_command {
1486 	uint32_t	cmd;		/* LC_SYMSEG */
1487 	uint32_t	cmdsize;	/* sizeof(struct symseg_command) */
1488 	uint32_t	offset;		/* symbol segment offset */
1489 	uint32_t	size;		/* symbol segment size in bytes */
1490 };
1491 
1492 /*
1493  * The ident_command contains a free format string table following the
1494  * ident_command structure.  The strings are null terminated and the size of
1495  * the command is padded out with zero bytes to a multiple of 4 bytes/
1496  * (THIS IS OBSOLETE and no longer supported).
1497  */
1498 struct ident_command {
1499 	uint32_t cmd;		/* LC_IDENT */
1500 	uint32_t cmdsize;	/* strings that follow this command */
1501 };
1502 
1503 /*
1504  * The fvmfile_command contains a reference to a file to be loaded at the
1505  * specified virtual address.  (Presently, this command is reserved for
1506  * internal use.  The kernel ignores this command when loading a program into
1507  * memory).
1508  */
1509 struct fvmfile_command {
1510 	uint32_t cmd;			/* LC_FVMFILE */
1511 	uint32_t cmdsize;		/* includes pathname string */
1512 	union lc_str	name;		/* files pathname */
1513 	uint32_t	header_addr;	/* files virtual address */
1514 };
1515 
1516 
1517 /*
1518  * The entry_point_command is a replacement for thread_command.
1519  * It is used for main executables to specify the location (file offset)
1520  * of main().  If -stack_size was used at link time, the stacksize
1521  * field will contain the stack size need for the main thread.
1522  */
1523 struct entry_point_command {
1524     uint32_t  cmd;	/* LC_MAIN only used in MH_EXECUTE filetypes */
1525     uint32_t  cmdsize;	/* 24 */
1526     uint64_t  entryoff;	/* file (__TEXT) offset of main() */
1527     uint64_t  stacksize;/* if not zero, initial stack size */
1528 };
1529 
1530 
1531 /*
1532  * The source_version_command is an optional load command containing
1533  * the version of the sources used to build the binary.
1534  */
1535 struct source_version_command {
1536     uint32_t  cmd;	/* LC_SOURCE_VERSION */
1537     uint32_t  cmdsize;	/* 16 */
1538     uint64_t  version;	/* A.B.C.D.E packed as a24.b10.c10.d10.e10 */
1539 };
1540 
1541 
1542 /*
1543  * The LC_DATA_IN_CODE load commands uses a linkedit_data_command
1544  * to point to an array of data_in_code_entry entries. Each entry
1545  * describes a range of data in a code section.
1546  */
1547 struct data_in_code_entry {
1548     uint32_t	offset;  /* from mach_header to start of data range*/
1549     uint16_t	length;  /* number of bytes in data range */
1550     uint16_t	kind;    /* a DICE_KIND_* value  */
1551 };
1552 #define DICE_KIND_DATA              0x0001
1553 #define DICE_KIND_JUMP_TABLE8       0x0002
1554 #define DICE_KIND_JUMP_TABLE16      0x0003
1555 #define DICE_KIND_JUMP_TABLE32      0x0004
1556 #define DICE_KIND_ABS_JUMP_TABLE32  0x0005
1557 
1558 
1559 
1560 /*
1561  * Sections of type S_THREAD_LOCAL_VARIABLES contain an array
1562  * of tlv_descriptor structures.
1563  */
1564 struct tlv_descriptor
1565 {
1566 	void*		(*thunk)(struct tlv_descriptor*);
1567 	unsigned long	key;
1568 	unsigned long	offset;
1569 };
1570 
1571 /*
1572  * LC_NOTE commands describe a region of arbitrary data included in a Mach-O
1573  * file.  Its initial use is to record extra data in MH_CORE files.
1574  */
1575 struct note_command {
1576     uint32_t	cmd;		/* LC_NOTE */
1577     uint32_t	cmdsize;	/* sizeof(struct note_command) */
1578     char	data_owner[16];	/* owner name for this LC_NOTE */
1579     uint64_t	offset;		/* file offset of this data */
1580     uint64_t	size;		/* length of data region */
1581 };
1582 
1583 /*
1584  * LC_FILESET_ENTRY commands describe constituent Mach-O files that are part
1585  * of a fileset. In one implementation, entries are dylibs with individual
1586  * mach headers and repositionable text and data segments. Each entry is
1587  * further described by its own mach header.
1588  */
1589 struct fileset_entry_command {
1590     uint32_t     cmd;        /* LC_FILESET_ENTRY */
1591     uint32_t     cmdsize;    /* includes entry_id string */
1592     uint64_t     vmaddr;     /* memory address of the entry */
1593     uint64_t     fileoff;    /* file offset of the entry */
1594     union lc_str entry_id;   /* contained entry id */
1595     uint32_t     reserved;   /* reserved */
1596 };
1597 
1598 /*
1599  * These deprecated values may still be used within Apple but are mechanically
1600  * removed from public API. The mechanical process may produce unusual results.
1601  */
1602 #if (!defined(PLATFORM_IOSMAC))
1603 #define PLATFORM_IOSMAC PLATFORM_MACCATALYST
1604 #endif
1605 
1606 #endif /* _MACHO_LOADER_H_ */