1# 2# Copyright (C) 2018 Red Hat 3# Copyright (C) 2014 Intel Corporation 4# 5# Permission is hereby granted, free of charge, to any person obtaining a 6# copy of this software and associated documentation files (the "Software"), 7# to deal in the Software without restriction, including without limitation 8# the rights to use, copy, modify, merge, publish, distribute, sublicense, 9# and/or sell copies of the Software, and to permit persons to whom the 10# Software is furnished to do so, subject to the following conditions: 11# 12# The above copyright notice and this permission notice (including the next 13# paragraph) shall be included in all copies or substantial portions of the 14# Software. 15# 16# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22# IN THE SOFTWARE. 23# 24 25# This file defines all the available intrinsics in one place. 26# 27# The Intrinsic class corresponds one-to-one with nir_intrinsic_info 28# structure. 29 30src0 = ('src', 0) 31src1 = ('src', 1) 32src2 = ('src', 2) 33src3 = ('src', 3) 34src4 = ('src', 4) 35 36class Index(object): 37 def __init__(self, c_data_type, name): 38 self.c_data_type = c_data_type 39 self.name = name 40 41class Intrinsic(object): 42 """Class that represents all the information about an intrinsic opcode. 43 NOTE: this must be kept in sync with nir_intrinsic_info. 44 """ 45 def __init__(self, name, src_components, dest_components, 46 indices, flags, sysval, bit_sizes): 47 """Parameters: 48 49 - name: the intrinsic name 50 - src_components: list of the number of components per src, 0 means 51 vectorized instruction with number of components given in the 52 num_components field in nir_intrinsic_instr. 53 - dest_components: number of destination components, -1 means no 54 dest, 0 means number of components given in num_components field 55 in nir_intrinsic_instr. 56 - indices: list of constant indicies 57 - flags: list of semantic flags 58 - sysval: is this a system-value intrinsic 59 - bit_sizes: allowed dest bit_sizes or the source it must match 60 """ 61 assert isinstance(name, str) 62 assert isinstance(src_components, list) 63 if src_components: 64 assert isinstance(src_components[0], int) 65 assert isinstance(dest_components, int) 66 assert isinstance(indices, list) 67 if indices: 68 assert isinstance(indices[0], Index) 69 assert isinstance(flags, list) 70 if flags: 71 assert isinstance(flags[0], str) 72 assert isinstance(sysval, bool) 73 if isinstance(bit_sizes, list): 74 assert not bit_sizes or isinstance(bit_sizes[0], int) 75 else: 76 assert isinstance(bit_sizes, tuple) 77 assert bit_sizes[0] == 'src' 78 assert isinstance(bit_sizes[1], int) 79 80 self.name = name 81 self.num_srcs = len(src_components) 82 self.src_components = src_components 83 self.has_dest = (dest_components >= 0) 84 self.dest_components = dest_components 85 self.num_indices = len(indices) 86 self.indices = indices 87 self.flags = flags 88 self.sysval = sysval 89 self.bit_sizes = bit_sizes if isinstance(bit_sizes, list) else [] 90 self.bit_size_src = bit_sizes[1] if isinstance(bit_sizes, tuple) else -1 91 92# 93# Possible flags: 94# 95 96CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE" 97CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER" 98 99INTR_INDICES = [] 100INTR_OPCODES = {} 101 102def index(c_data_type, name): 103 idx = Index(c_data_type, name) 104 INTR_INDICES.append(idx) 105 globals()[name.upper()] = idx 106 107# Defines a new NIR intrinsic. By default, the intrinsic will have no sources 108# and no destination. 109# 110# You can set dest_comp=n to enable a destination for the intrinsic, in which 111# case it will have that many components, or =0 for "as many components as the 112# NIR destination value." 113# 114# Set src_comp=n to enable sources for the intruction. It can be an array of 115# component counts, or (for convenience) a scalar component count if there's 116# only one source. If a component count is 0, it will be as many components as 117# the intrinsic has based on the dest_comp. 118def intrinsic(name, src_comp=[], dest_comp=-1, indices=[], 119 flags=[], sysval=False, bit_sizes=[]): 120 assert name not in INTR_OPCODES 121 INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp, 122 indices, flags, sysval, bit_sizes) 123 124# 125# Possible indices: 126# 127 128# Generally instructions that take a offset src argument, can encode 129# a constant 'base' value which is added to the offset. 130index("int", "base") 131 132# For store instructions, a writemask for the store. 133index("unsigned", "write_mask") 134 135# The stream-id for GS emit_vertex/end_primitive intrinsics. 136index("unsigned", "stream_id") 137 138# The clip-plane id for load_user_clip_plane intrinsic. 139index("unsigned", "ucp_id") 140 141# The offset to the start of the NIR_INTRINSIC_RANGE. This is an alternative 142# to NIR_INTRINSIC_BASE for describing the valid range in intrinsics that don't 143# have the implicit addition of a base to the offset. 144# 145# If the [range_base, range] is [0, ~0], then we don't know the possible 146# range of the access. 147index("unsigned", "range_base") 148 149# The amount of data, starting from BASE or RANGE_BASE, that this 150# instruction may access. This is used to provide bounds if the offset is 151# not constant. 152index("unsigned", "range") 153 154# The Vulkan descriptor set for vulkan_resource_index intrinsic. 155index("unsigned", "desc_set") 156 157# The Vulkan descriptor set binding for vulkan_resource_index intrinsic. 158index("unsigned", "binding") 159 160# Component offset 161index("unsigned", "component") 162 163# Column index for matrix system values 164index("unsigned", "column") 165 166# Interpolation mode (only meaningful for FS inputs) 167index("unsigned", "interp_mode") 168 169# A binary nir_op to use when performing a reduction or scan operation 170index("unsigned", "reduction_op") 171 172# Cluster size for reduction operations 173index("unsigned", "cluster_size") 174 175# Parameter index for a load_param intrinsic 176index("unsigned", "param_idx") 177 178# Image dimensionality for image intrinsics 179index("enum glsl_sampler_dim", "image_dim") 180 181# Non-zero if we are accessing an array image 182index("bool", "image_array") 183 184# Image format for image intrinsics 185# Vertex buffer format for load_typed_buffer_amd 186index("enum pipe_format", "format") 187 188# Access qualifiers for image and memory access intrinsics. ACCESS_RESTRICT is 189# not set at the intrinsic if the NIR was created from SPIR-V. 190index("enum gl_access_qualifier", "access") 191 192# call index for split raytracing shaders 193index("unsigned", "call_idx") 194 195# The stack size increment/decrement for split raytracing shaders 196index("unsigned", "stack_size") 197 198# Alignment for offsets and addresses 199# 200# These two parameters, specify an alignment in terms of a multiplier and 201# an offset. The multiplier is always a power of two. The offset or 202# address parameter X of the intrinsic is guaranteed to satisfy the 203# following: 204# 205# (X - align_offset) % align_mul == 0 206# 207# For constant offset values, align_mul will be NIR_ALIGN_MUL_MAX and the 208# align_offset will be modulo that. 209index("unsigned", "align_mul") 210index("unsigned", "align_offset") 211 212# The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic. 213index("unsigned", "desc_type") 214 215# The nir_alu_type of input data to a store or conversion 216index("nir_alu_type", "src_type") 217 218# The nir_alu_type of the data output from a load or conversion 219index("nir_alu_type", "dest_type") 220 221# The swizzle mask for quad_swizzle_amd & masked_swizzle_amd 222index("unsigned", "swizzle_mask") 223 224# Allow FI=1 for quad_swizzle_amd & masked_swizzle_amd 225index("bool", "fetch_inactive") 226 227# Offsets for load_shared2_amd/store_shared2_amd 228index("uint8_t", "offset0") 229index("uint8_t", "offset1") 230 231# If true, both offsets have an additional stride of 64 dwords (ie. they are multiplied by 256 bytes 232# in hardware, instead of 4). 233index("bool", "st64") 234 235# When set, range analysis will use it for nir_unsigned_upper_bound 236index("unsigned", "arg_upper_bound_u32_amd") 237 238# Separate source/dest access flags for copies 239index("enum gl_access_qualifier", "dst_access") 240index("enum gl_access_qualifier", "src_access") 241 242# Driver location of attribute 243index("unsigned", "driver_location") 244 245# Ordering and visibility of a memory operation 246index("nir_memory_semantics", "memory_semantics") 247 248# Modes affected by a memory operation 249index("nir_variable_mode", "memory_modes") 250 251# Scope of a memory operation 252index("mesa_scope", "memory_scope") 253 254# Scope of a control barrier 255index("mesa_scope", "execution_scope") 256 257# Semantics of an IO instruction 258index("struct nir_io_semantics", "io_semantics") 259 260# Transform feedback info 261index("struct nir_io_xfb", "io_xfb") 262index("struct nir_io_xfb", "io_xfb2") 263 264# Ray query values accessible from the RayQueryKHR object 265index("nir_ray_query_value", "ray_query_value") 266 267# Select between committed and candidate ray queriy intersections 268index("bool", "committed") 269 270# Rounding mode for conversions 271index("nir_rounding_mode", "rounding_mode") 272 273# Whether or not to saturate in conversions 274index("unsigned", "saturate") 275 276# Whether or not trace_ray_intel is synchronous 277index("bool", "synchronous") 278 279# Value ID to identify SSA value loaded/stored on the stack 280index("unsigned", "value_id") 281 282# Whether to sign-extend offsets in address arithmatic (else zero extend) 283index("bool", "sign_extend") 284 285# Instruction specific flags 286index("unsigned", "flags") 287 288# Logical operation of an atomic intrinsic 289index("nir_atomic_op", "atomic_op") 290 291# Block identifier to push promotion 292index("unsigned", "resource_block_intel") 293 294# Various flags describing the resource access 295index("nir_resource_data_intel", "resource_access_intel") 296 297# Register metadata 298# number of vector components 299index("unsigned", "num_components") 300# size of array (0 for no array) 301index("unsigned", "num_array_elems") 302# The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 303index("unsigned", "bit_size") 304# True if this register may have different values in different SIMD invocations 305# of the shader. 306index("bool", "divergent") 307 308# On a register load, floating-point absolute value/negate loaded value. 309index("bool", "legacy_fabs") 310index("bool", "legacy_fneg") 311 312# On a register store, floating-point saturate the stored value. 313index("bool", "legacy_fsat") 314 315# For Cooperative Matrix intrinsics. 316index("struct glsl_cmat_description", "cmat_desc") 317index("enum glsl_matrix_layout", "matrix_layout") 318index("nir_cmat_signed", "cmat_signed_mask") 319index("nir_op", "alu_op") 320 321# For Intel DPAS instrinsic. 322index("unsigned", "systolic_depth") 323index("unsigned", "repeat_count") 324 325# For an AGX tilebuffer intrinsics, whether the coordinates are implicit or 326# explicit. Implicit coordinates are used in fragment shaders, explicit 327# coordinates in compute. 328index("bool", "explicit_coord") 329 330intrinsic("nop", flags=[CAN_ELIMINATE]) 331 332# Uses a value and cannot be eliminated. 333# 334# This is helpful when writing unit tests 335intrinsic("use", src_comp=[0], flags=[]) 336 337intrinsic("convert_alu_types", dest_comp=0, src_comp=[0], 338 indices=[SRC_TYPE, DEST_TYPE, ROUNDING_MODE, SATURATE], 339 flags=[CAN_ELIMINATE, CAN_REORDER]) 340 341intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE]) 342 343intrinsic("load_deref", dest_comp=0, src_comp=[-1], 344 indices=[ACCESS], flags=[CAN_ELIMINATE]) 345intrinsic("store_deref", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS]) 346intrinsic("copy_deref", src_comp=[-1, -1], indices=[DST_ACCESS, SRC_ACCESS]) 347intrinsic("memcpy_deref", src_comp=[-1, -1, 1], indices=[DST_ACCESS, SRC_ACCESS]) 348 349# Returns an opaque handle representing a register indexed by BASE. The 350# logically def-use list of a register is given by the use list of this handle. 351# The shape of the underlying register is given by the indices, the handle 352# itself is always a 32-bit scalar. 353intrinsic("decl_reg", dest_comp=1, 354 indices=[NUM_COMPONENTS, NUM_ARRAY_ELEMS, BIT_SIZE, DIVERGENT], 355 flags=[CAN_ELIMINATE]) 356 357# Load a register given as the source directly with base offset BASE. 358intrinsic("load_reg", dest_comp=0, src_comp=[1], 359 indices=[BASE, LEGACY_FABS, LEGACY_FNEG], flags=[CAN_ELIMINATE]) 360 361# Load a register given as first source indirectly with base offset BASE and 362# indirect offset as second source. 363intrinsic("load_reg_indirect", dest_comp=0, src_comp=[1, 1], 364 indices=[BASE, LEGACY_FABS, LEGACY_FNEG], flags=[CAN_ELIMINATE]) 365 366# Store the value in the first source to a register given as the second source 367# directly with base offset BASE. 368intrinsic("store_reg", src_comp=[0, 1], 369 indices=[BASE, WRITE_MASK, LEGACY_FSAT]) 370 371# Store the value in the first source to a register given as the second 372# source indirectly with base offset BASE and indirect offset as third source. 373intrinsic("store_reg_indirect", src_comp=[0, 1, 1], 374 indices=[BASE, WRITE_MASK, LEGACY_FSAT]) 375 376# Interpolation of input. The interp_deref_at* intrinsics are similar to the 377# load_var intrinsic acting on a shader input except that they interpolate the 378# input differently. The at_sample, at_offset and at_vertex intrinsics take an 379# additional source that is an integer sample id, a vec2 position offset, or a 380# vertex ID respectively. 381 382intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1], 383 flags=[ CAN_ELIMINATE, CAN_REORDER]) 384intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0, 385 flags=[CAN_ELIMINATE, CAN_REORDER]) 386intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0, 387 flags=[CAN_ELIMINATE, CAN_REORDER]) 388intrinsic("interp_deref_at_vertex", src_comp=[1, 1], dest_comp=0, 389 flags=[CAN_ELIMINATE, CAN_REORDER]) 390 391# Gets the length of an unsized array at the end of a buffer 392intrinsic("deref_buffer_array_length", src_comp=[-1], dest_comp=1, 393 indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER]) 394 395# Ask the driver for the size of a given SSBO. It takes the buffer index 396# as source. 397intrinsic("get_ssbo_size", src_comp=[-1], dest_comp=1, bit_sizes=[32], 398 indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER]) 399intrinsic("get_ubo_size", src_comp=[-1], dest_comp=1, 400 flags=[CAN_ELIMINATE, CAN_REORDER]) 401 402# Intrinsics which provide a run-time mode-check. Unlike the compile-time 403# mode checks, a pointer can only have exactly one mode at runtime. 404intrinsic("deref_mode_is", src_comp=[-1], dest_comp=1, 405 indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER]) 406intrinsic("addr_mode_is", src_comp=[-1], dest_comp=1, 407 indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER]) 408 409intrinsic("is_sparse_texels_resident", dest_comp=1, src_comp=[1], bit_sizes=[1,32], 410 flags=[CAN_ELIMINATE, CAN_REORDER]) 411# result code is resident only if both inputs are resident 412intrinsic("sparse_residency_code_and", dest_comp=1, src_comp=[1, 1], bit_sizes=[32], 413 flags=[CAN_ELIMINATE, CAN_REORDER]) 414 415# Unlike is_sparse_texels_resident, this intrinsic is required to consume 416# the destination of the nir_tex_instr or sparse_load intrinsic directly. 417# As such it is allowed to ignore the .e component where we usually store 418# sparse information. 419intrinsic("is_sparse_resident_zink", dest_comp=1, src_comp=[0], bit_sizes=[1], 420 flags=[CAN_ELIMINATE, CAN_REORDER]) 421 422# The following intrinsics calculate screen-space partial derivatives. These are 423# not CAN_REORDER as they cannot be moved across discards. 424for suffix in ["", "_fine", "_coarse"]: 425 for axis in ["x", "y"]: 426 intrinsic(f"dd{axis}{suffix}", dest_comp=0, src_comp=[0], 427 bit_sizes=[16, 32], flags=[CAN_ELIMINATE]) 428 429# a barrier is an intrinsic with no inputs/outputs but which can't be moved 430# around/optimized in general 431def barrier(name): 432 intrinsic(name) 433 434# Demote fragment shader invocation to a helper invocation. Any stores to 435# memory after this instruction are suppressed and the fragment does not write 436# outputs to the framebuffer. Unlike discard, demote needs to ensure that 437# derivatives will still work for invocations that were not demoted. 438# 439# As specified by SPV_EXT_demote_to_helper_invocation. 440barrier("demote") 441intrinsic("is_helper_invocation", dest_comp=1, flags=[CAN_ELIMINATE]) 442 443# SpvOpTerminateInvocation from SPIR-V. Essentially a discard "for real". 444barrier("terminate") 445 446# Control/Memory barrier with explicit scope. Follows the semantics of SPIR-V 447# OpMemoryBarrier and OpControlBarrier, used to implement Vulkan Memory Model. 448# Storage that the barrier applies is represented using NIR variable modes. 449# For an OpMemoryBarrier, set EXECUTION_SCOPE to SCOPE_NONE. 450intrinsic("barrier", 451 indices=[EXECUTION_SCOPE, MEMORY_SCOPE, MEMORY_SEMANTICS, MEMORY_MODES]) 452 453# Shader clock intrinsic with semantics analogous to the clock2x32ARB() 454# GLSL intrinsic. 455# The latter can be used as code motion barrier, which is currently not 456# feasible with NIR. 457intrinsic("shader_clock", dest_comp=2, bit_sizes=[32], flags=[CAN_ELIMINATE], 458 indices=[MEMORY_SCOPE]) 459 460# Shader ballot intrinsics with semantics analogous to the 461# 462# ballotARB() 463# readInvocationARB() 464# readFirstInvocationARB() 465# 466# GLSL functions from ARB_shader_ballot. 467intrinsic("ballot", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE]) 468intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 469intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 470 471# Same as ballot, but inactive invocations contribute undefined bits. 472intrinsic("ballot_relaxed", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE]) 473 474# Allows the backend compiler to move this value to an uniform register. 475# Result is undefined if src is not uniform. 476# Unlike read_first_invocation, it may be replaced by a divergent move or CSE'd. 477intrinsic("as_uniform", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 478 479# Returns the value of the first source for the lane where the second source is 480# true. The second source must be true for exactly one lane. 481intrinsic("read_invocation_cond_ir3", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE]) 482 483# Additional SPIR-V ballot intrinsics 484# 485# These correspond to the SPIR-V opcodes 486# 487# OpGroupNonUniformElect 488# OpSubgroupFirstInvocationKHR 489# OpGroupNonUniformInverseBallot 490intrinsic("elect", dest_comp=1, flags=[CAN_ELIMINATE]) 491intrinsic("first_invocation", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE]) 492intrinsic("last_invocation", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE]) 493intrinsic("inverse_ballot", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE]) 494 495barrier("begin_invocation_interlock") 496barrier("end_invocation_interlock") 497 498# A conditional demote/terminate, with a single boolean source. 499intrinsic("demote_if", src_comp=[1]) 500intrinsic("terminate_if", src_comp=[1]) 501 502# ARB_shader_group_vote intrinsics 503intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE]) 504intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE]) 505intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE]) 506intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE]) 507 508# Ballot ALU operations from SPIR-V. 509# 510# These operations work like their ALU counterparts except that the operate 511# on a uvec4 which is treated as a 128bit integer. Also, they are, in 512# general, free to ignore any bits which are above the subgroup size. 513intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, flags=[CAN_ELIMINATE]) 514intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE]) 515intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE]) 516intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE]) 517intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE]) 518intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE]) 519 520# Shuffle operations from SPIR-V. 521intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 522intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 523intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 524intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 525 526# Quad operations from SPIR-V. 527intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 528intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 529intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 530intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE]) 531 532# Similar to vote_any and vote_all, but per-quad instead of per-wavefront. 533# Equivalent to subgroupOr(val, 4) and subgroupAnd(val, 4) assuming val is 534# boolean. 535intrinsic("quad_vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE]) 536intrinsic("quad_vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE]) 537 538# Rotate operation from SPIR-V: SpvOpGroupNonUniformRotateKHR. 539intrinsic("rotate", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, 540 indices=[CLUSTER_SIZE], flags=[CAN_ELIMINATE]); 541 542intrinsic("reduce", src_comp=[0], dest_comp=0, bit_sizes=src0, 543 indices=[REDUCTION_OP, CLUSTER_SIZE], flags=[CAN_ELIMINATE]) 544intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0, 545 indices=[REDUCTION_OP], flags=[CAN_ELIMINATE]) 546intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0, 547 indices=[REDUCTION_OP], flags=[CAN_ELIMINATE]) 548 549# AMD shader ballot operations 550intrinsic("quad_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0, 551 indices=[SWIZZLE_MASK, FETCH_INACTIVE], flags=[CAN_ELIMINATE]) 552intrinsic("masked_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0, 553 indices=[SWIZZLE_MASK, FETCH_INACTIVE], flags=[CAN_ELIMINATE]) 554intrinsic("write_invocation_amd", src_comp=[0, 0, 1], dest_comp=0, bit_sizes=src0, 555 flags=[CAN_ELIMINATE]) 556# src = [ mask, addition ] 557intrinsic("mbcnt_amd", src_comp=[1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE]) 558# Compiled to v_permlane16_b32. src = [ value, lanesel_lo, lanesel_hi ] 559intrinsic("lane_permute_16_amd", src_comp=[1, 1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE]) 560# subgroup shuffle up/down with cluster size 16. 561# base in [-15, -1]: DPP_ROW_SR 562# base in [ 1, 15]: DPP_ROW_SL, otherwise invalid. 563# Returns zero for invocations that try to read out of bounds 564intrinsic("dpp16_shift_amd", src_comp=[0], dest_comp=0, bit_sizes=src0, indices=[BASE], flags=[CAN_ELIMINATE]) 565 566# Basic Geometry Shader intrinsics. 567# 568# emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single 569# index, which is the stream ID to write to. 570# 571# end_primitive implements GLSL's EndPrimitive() built-in. 572intrinsic("emit_vertex", indices=[STREAM_ID]) 573intrinsic("end_primitive", indices=[STREAM_ID]) 574 575# Geometry Shader intrinsics with a vertex count. 576# 577# Alternatively, drivers may implement these intrinsics, and use 578# nir_lower_gs_intrinsics() to convert from the basic intrinsics. 579# 580# These contain four additional unsigned integer sources: 581# 1. The total number of vertices emitted so far. 582# 2. The number of vertices emitted for the current primitive 583# so far if we're counting, otherwise undef. 584# 3. The total number of primitives emitted so far. 585# 4. The total number of decomposed primitives emitted so far. This counts like 586# the PRIMITIVES_GENERATED query: a triangle strip with 5 vertices is counted 587# as 3 primitives (not 1). 588intrinsic("emit_vertex_with_counter", src_comp=[1, 1, 1, 1], indices=[STREAM_ID]) 589intrinsic("end_primitive_with_counter", src_comp=[1, 1, 1, 1], indices=[STREAM_ID]) 590# Contains the final total vertex, primitive, and decomposed primitives counts 591# in the current GS thread. 592intrinsic("set_vertex_and_primitive_count", src_comp=[1, 1, 1], indices=[STREAM_ID]) 593 594# Launches mesh shader workgroups from a task shader, with explicit task_payload. 595# Rules: 596# - This is a terminating instruction. 597# - May only occur in workgroup-uniform control flow. 598# - Dispatch sizes may be divergent (in which case the values 599# from the first invocation are used). 600# Meaning of indices: 601# - BASE: address of the task_payload variable used. 602# - RANGE: size of the task_payload variable used. 603# 604# src[] = {vec(x, y, z)} 605intrinsic("launch_mesh_workgroups", src_comp=[3], indices=[BASE, RANGE]) 606 607# Launches mesh shader workgroups from a task shader, with task_payload variable deref. 608# Same rules as launch_mesh_workgroups apply here as well. 609# src[] = {vec(x, y, z), payload pointer} 610intrinsic("launch_mesh_workgroups_with_payload_deref", src_comp=[3, -1], indices=[]) 611 612# Trace a ray through an acceleration structure 613# 614# This instruction has a lot of parameters: 615# 0. Acceleration Structure 616# 1. Ray Flags 617# 2. Cull Mask 618# 3. SBT Offset 619# 4. SBT Stride 620# 5. Miss shader index 621# 6. Ray Origin 622# 7. Ray Tmin 623# 8. Ray Direction 624# 9. Ray Tmax 625# 10. Payload 626intrinsic("trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1]) 627# src[] = { hit_t, hit_kind } 628intrinsic("report_ray_intersection", src_comp=[1, 1], dest_comp=1) 629intrinsic("ignore_ray_intersection") 630intrinsic("accept_ray_intersection") # Not in SPIR-V; useful for lowering 631intrinsic("terminate_ray") 632# src[] = { sbt_index, payload } 633intrinsic("execute_callable", src_comp=[1, -1]) 634 635# Initialize a ray query 636# 637# 0. Ray Query 638# 1. Acceleration Structure 639# 2. Ray Flags 640# 3. Cull Mask 641# 4. Ray Origin 642# 5. Ray Tmin 643# 6. Ray Direction 644# 7. Ray Tmax 645intrinsic("rq_initialize", src_comp=[-1, -1, 1, 1, 3, 1, 3, 1]) 646# src[] = { query } 647intrinsic("rq_terminate", src_comp=[-1]) 648# src[] = { query } 649intrinsic("rq_proceed", src_comp=[-1], dest_comp=1) 650# src[] = { query, hit } 651intrinsic("rq_generate_intersection", src_comp=[-1, 1]) 652# src[] = { query } 653intrinsic("rq_confirm_intersection", src_comp=[-1]) 654# src[] = { query } 655intrinsic("rq_load", src_comp=[-1], dest_comp=0, indices=[RAY_QUERY_VALUE,COMMITTED,COLUMN]) 656 657# Driver independent raytracing helpers 658 659# rt_resume is a helper that that be the first instruction accesing the 660# stack/scratch in a resume shader for a raytracing pipeline. It includes the 661# resume index (for nir_lower_shader_calls_internal reasons) and the stack size 662# of the variables spilled during the call. The stack size can be use to e.g. 663# adjust a stack pointer. 664intrinsic("rt_resume", indices=[CALL_IDX, STACK_SIZE]) 665 666# Lowered version of execute_callabe that includes the index of the resume 667# shader, and the amount of scratch space needed for this call (.ie. how much 668# to increase a stack pointer by). 669# src[] = { sbt_index, payload } 670intrinsic("rt_execute_callable", src_comp=[1, -1], indices=[CALL_IDX,STACK_SIZE]) 671 672# Lowered version of trace_ray in a similar vein to rt_execute_callable. 673# src same as trace_ray 674intrinsic("rt_trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1], 675 indices=[CALL_IDX, STACK_SIZE]) 676 677 678# Atomic counters 679# 680# The *_deref variants take an atomic_uint nir_variable, while the other, 681# lowered, variants take a buffer index and register offset. The buffer index 682# is always constant, as there's no way to declare an array of atomic counter 683# buffers. 684# 685# The register offset may be non-constant but must by dynamically uniform 686# ("Atomic counters aggregated into arrays within a shader can only be indexed 687# with dynamically uniform integral expressions, otherwise results are 688# undefined.") 689def atomic(name, flags=[]): 690 intrinsic(name + "_deref", src_comp=[-1], dest_comp=1, flags=flags) 691 intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE, RANGE_BASE], flags=flags) 692 693def atomic2(name): 694 intrinsic(name + "_deref", src_comp=[-1, 1], dest_comp=1) 695 intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE, RANGE_BASE]) 696 697def atomic3(name): 698 intrinsic(name + "_deref", src_comp=[-1, 1, 1], dest_comp=1) 699 intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, RANGE_BASE]) 700 701atomic("atomic_counter_inc") 702atomic("atomic_counter_pre_dec") 703atomic("atomic_counter_post_dec") 704atomic("atomic_counter_read", flags=[CAN_ELIMINATE]) 705atomic2("atomic_counter_add") 706atomic2("atomic_counter_min") 707atomic2("atomic_counter_max") 708atomic2("atomic_counter_and") 709atomic2("atomic_counter_or") 710atomic2("atomic_counter_xor") 711atomic2("atomic_counter_exchange") 712atomic3("atomic_counter_comp_swap") 713 714# Image load, store and atomic intrinsics. 715# 716# All image intrinsics come in three versions. One which take an image target 717# passed as a deref chain as the first source, one which takes an index as the 718# first source, and one which takes a bindless handle as the first source. 719# In the first version, the image variable contains the memory and layout 720# qualifiers that influence the semantics of the intrinsic. In the second and 721# third, the image format and access qualifiers are provided as constant 722# indices. Up through GLSL ES 3.10, the image index source may only be a 723# constant array access. GLSL ES 3.20 and GLSL 4.00 allow dynamically uniform 724# indexing. 725# 726# All image intrinsics take a four-coordinate vector and a sample index as 727# 2nd and 3rd sources, determining the location within the image that will be 728# accessed by the intrinsic. Components not applicable to the image target 729# in use are undefined. Image store takes an additional four-component 730# argument with the value to be written, and image atomic operations take 731# either one or two additional scalar arguments with the same meaning as in 732# the ARB_shader_image_load_store specification. 733# 734# The last source of many image intrinsics is the LOD. This source is zero 735# unless e.g. SPV_AMD_shader_image_load_store_lod is supported. 736def image(name, src_comp=[], extra_indices=[], **kwargs): 737 intrinsic("image_deref_" + name, src_comp=[-1] + src_comp, 738 indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs) 739 intrinsic("image_" + name, src_comp=[1] + src_comp, 740 indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS, RANGE_BASE] + extra_indices, **kwargs) 741 intrinsic("bindless_image_" + name, src_comp=[-1] + src_comp, 742 indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs) 743 744image("load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE]) 745image("sparse_load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE]) 746image("store", src_comp=[4, 1, 0, 1], extra_indices=[SRC_TYPE]) 747image("atomic", src_comp=[4, 1, 1], dest_comp=1, extra_indices=[ATOMIC_OP]) 748image("atomic_swap", src_comp=[4, 1, 1, 1], dest_comp=1, extra_indices=[ATOMIC_OP]) 749image("size", dest_comp=0, src_comp=[1], flags=[CAN_ELIMINATE, CAN_REORDER]) 750image("levels", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 751image("samples", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 752image("texel_address", dest_comp=1, src_comp=[4, 1], 753 flags=[CAN_ELIMINATE, CAN_REORDER]) 754# This returns true if all samples within the pixel have equal color values. 755image("samples_identical", dest_comp=1, src_comp=[4], flags=[CAN_ELIMINATE]) 756# Non-uniform access is not lowered for image_descriptor_amd. 757# dest_comp can be either 4 (buffer) or 8 (image). 758image("descriptor_amd", dest_comp=0, src_comp=[], flags=[CAN_ELIMINATE, CAN_REORDER]) 759# CL-specific format queries 760image("format", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 761image("order", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 762# Multisample fragment mask load 763# src_comp[0] is same as image load src_comp[0] 764image("fragment_mask_load_amd", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER]) 765 766# Vulkan descriptor set intrinsics 767# 768# The Vulkan API uses a different binding model from GL. In the Vulkan 769# API, all external resources are represented by a tuple: 770# 771# (descriptor set, binding, array index) 772# 773# where the array index is the only thing allowed to be indirect. The 774# vulkan_surface_index intrinsic takes the descriptor set and binding as 775# its first two indices and the array index as its source. The third 776# index is a nir_variable_mode in case that's useful to the backend. 777# 778# The intended usage is that the shader will call vulkan_surface_index to 779# get an index and then pass that as the buffer index ubo/ssbo calls. 780# 781# The vulkan_resource_reindex intrinsic takes a resource index in src0 782# (the result of a vulkan_resource_index or vulkan_resource_reindex) which 783# corresponds to the tuple (set, binding, index) and computes an index 784# corresponding to tuple (set, binding, idx + src1). 785intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=0, 786 indices=[DESC_SET, BINDING, DESC_TYPE], 787 flags=[CAN_ELIMINATE, CAN_REORDER]) 788intrinsic("vulkan_resource_reindex", src_comp=[0, 1], dest_comp=0, 789 indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER]) 790intrinsic("load_vulkan_descriptor", src_comp=[-1], dest_comp=0, 791 indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER]) 792 793# atomic intrinsics 794# 795# All of these atomic memory operations read a value from memory, compute a new 796# value using one of the operations below, write the new value to memory, and 797# return the original value read. 798# 799# All variable operations take 2 sources except CompSwap that takes 3. These 800# sources represent: 801# 802# 0: A deref to the memory on which to perform the atomic 803# 1: The data parameter to the atomic function (i.e. the value to add 804# in shared_atomic_add, etc). 805# 2: For CompSwap only: the second data parameter. 806# 807# All SSBO operations take 3 sources except CompSwap that takes 4. These 808# sources represent: 809# 810# 0: The SSBO buffer index (dynamically uniform in GLSL, possibly non-uniform 811# with VK_EXT_descriptor_indexing). 812# 1: The offset into the SSBO buffer of the variable that the atomic 813# operation will operate on. 814# 2: The data parameter to the atomic function (i.e. the value to add 815# in ssbo_atomic_add, etc). 816# 3: For CompSwap only: the second data parameter. 817# 818# All shared (and task payload) variable operations take 2 sources 819# except CompSwap that takes 3. 820# These sources represent: 821# 822# 0: The offset into the shared variable storage region that the atomic 823# operation will operate on. 824# 1: The data parameter to the atomic function (i.e. the value to add 825# in shared_atomic_add, etc). 826# 2: For CompSwap only: the second data parameter. 827# 828# All global operations take 2 sources except CompSwap that takes 3. These 829# sources represent: 830# 831# 0: The memory address that the atomic operation will operate on. 832# 1: The data parameter to the atomic function (i.e. the value to add 833# in shared_atomic_add, etc). 834# 2: For CompSwap only: the second data parameter. 835# 836# The 2x32 global variants use a vec2 for the memory address where component X 837# has the low 32-bit and component Y has the high 32-bit. 838# 839# IR3 global operations take 32b vec2 as memory address. IR3 doesn't support 840# float atomics. 841# 842# AGX global variants take a 64-bit base address plus a 32-bit offset in words. 843# The offset is sign-extended or zero-extended based on the SIGN_EXTEND index. 844 845intrinsic("deref_atomic", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP]) 846intrinsic("ssbo_atomic", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP]) 847intrinsic("shared_atomic", src_comp=[1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 848intrinsic("task_payload_atomic", src_comp=[1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 849intrinsic("global_atomic", src_comp=[1, 1], dest_comp=1, indices=[ATOMIC_OP]) 850intrinsic("global_atomic_2x32", src_comp=[2, 1], dest_comp=1, indices=[ATOMIC_OP]) 851intrinsic("global_atomic_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 852intrinsic("global_atomic_ir3", src_comp=[2, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 853intrinsic("global_atomic_agx", src_comp=[1, 1, 1], dest_comp=1, indices=[ATOMIC_OP, SIGN_EXTEND]) 854 855intrinsic("deref_atomic_swap", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP]) 856intrinsic("ssbo_atomic_swap", src_comp=[-1, 1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP]) 857intrinsic("shared_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 858intrinsic("task_payload_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 859intrinsic("global_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[ATOMIC_OP]) 860intrinsic("global_atomic_swap_2x32", src_comp=[2, 1, 1], dest_comp=1, indices=[ATOMIC_OP]) 861intrinsic("global_atomic_swap_amd", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 862intrinsic("global_atomic_swap_ir3", src_comp=[2, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP]) 863intrinsic("global_atomic_swap_agx", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ATOMIC_OP, SIGN_EXTEND]) 864 865def system_value(name, dest_comp, indices=[], bit_sizes=[32]): 866 intrinsic("load_" + name, [], dest_comp, indices, 867 flags=[CAN_ELIMINATE, CAN_REORDER], sysval=True, 868 bit_sizes=bit_sizes) 869 870system_value("frag_coord", 4) 871# 16-bit integer vec2 of the pixel X/Y in the framebuffer. 872system_value("pixel_coord", 2, bit_sizes=[16]) 873# Scalar load of frag_coord Z/W components (component=2 for Z, component=3 for 874# W). Backends can lower frag_coord to pixel_coord + frag_coord_zw, in case 875# X/Y is available as an integer but Z/W requires interpolation. 876system_value("frag_coord_zw", 1, indices=[COMPONENT]) 877system_value("point_coord", 2) 878system_value("line_coord", 1) 879system_value("front_face", 1, bit_sizes=[1, 32]) 880system_value("vertex_id", 1) 881system_value("vertex_id_zero_base", 1) 882system_value("first_vertex", 1) 883system_value("is_indexed_draw", 1) 884system_value("base_vertex", 1) 885system_value("instance_id", 1) 886system_value("base_instance", 1) 887system_value("draw_id", 1) 888system_value("sample_id", 1) 889# sample_id_no_per_sample is like sample_id but does not imply per- 890# sample shading. See the lower_helper_invocation option. 891system_value("sample_id_no_per_sample", 1) 892system_value("sample_pos", 2) 893# sample_pos_or_center is like sample_pos but does not imply per-sample 894# shading. When per-sample dispatch is not enabled, it returns (0.5, 0.5). 895system_value("sample_pos_or_center", 2) 896system_value("sample_mask_in", 1) 897system_value("primitive_id", 1) 898system_value("invocation_id", 1) 899system_value("tess_coord", 3) 900# First 2 components of tess_coord only 901system_value("tess_coord_xy", 2) 902system_value("tess_level_outer", 4) 903system_value("tess_level_inner", 2) 904system_value("tess_level_outer_default", 4) 905system_value("tess_level_inner_default", 2) 906system_value("patch_vertices_in", 1) 907system_value("local_invocation_id", 3) 908system_value("local_invocation_index", 1) 909# workgroup_id does not include the base_workgroup_id 910system_value("workgroup_id", 3) 911# The workgroup_index is intended for situations when a 3 dimensional 912# workgroup_id is not available on the HW, but a 1 dimensional index is. 913system_value("workgroup_index", 1) 914# API specific base added to the workgroup_id, e.g. baseGroup* of vkCmdDispatchBase 915system_value("base_workgroup_id", 3, bit_sizes=[32, 64]) 916system_value("user_clip_plane", 4, indices=[UCP_ID]) 917system_value("num_workgroups", 3) 918system_value("num_vertices", 1) 919system_value("helper_invocation", 1, bit_sizes=[1, 32]) 920system_value("layer_id", 1) 921system_value("view_index", 1) 922system_value("subgroup_size", 1) 923system_value("subgroup_invocation", 1) 924 925# These intrinsics provide a bitmask for all invocations, with one bit per 926# invocation starting with the least significant bit, according to the 927# following table, 928# 929# variable equation for bit values 930# ---------------- -------------------------------- 931# subgroup_eq_mask bit index == subgroup_invocation 932# subgroup_ge_mask bit index >= subgroup_invocation 933# subgroup_gt_mask bit index > subgroup_invocation 934# subgroup_le_mask bit index <= subgroup_invocation 935# subgroup_lt_mask bit index < subgroup_invocation 936# 937# These correspond to gl_SubGroupEqMaskARB, etc. from GL_ARB_shader_ballot, 938# and the above documentation is "borrowed" from that extension spec. 939system_value("subgroup_eq_mask", 0, bit_sizes=[32, 64]) 940system_value("subgroup_ge_mask", 0, bit_sizes=[32, 64]) 941system_value("subgroup_gt_mask", 0, bit_sizes=[32, 64]) 942system_value("subgroup_le_mask", 0, bit_sizes=[32, 64]) 943system_value("subgroup_lt_mask", 0, bit_sizes=[32, 64]) 944 945system_value("num_subgroups", 1) 946system_value("subgroup_id", 1) 947system_value("workgroup_size", 3) 948# note: the definition of global_invocation_id is based on 949# ((workgroup_id + base_workgroup_id) * workgroup_size) + local_invocation_id. 950system_value("global_invocation_id", 3, bit_sizes=[32, 64]) 951# API specific base added to the global_invocation_id 952# e.g. global_work_offset of clEnqueueNDRangeKernel 953system_value("base_global_invocation_id", 3, bit_sizes=[32, 64]) 954system_value("global_invocation_index", 1, bit_sizes=[32, 64]) 955# threads per dimension in an invocation 956system_value("global_size", 3, bit_sizes=[32, 64]) 957system_value("work_dim", 1) 958system_value("line_width", 1) 959system_value("aa_line_width", 1) 960# BASE=0 for global/shader, BASE=1 for local/function 961system_value("scratch_base_ptr", 0, bit_sizes=[32,64], indices=[BASE]) 962system_value("constant_base_ptr", 0, bit_sizes=[32,64]) 963system_value("shared_base_ptr", 0, bit_sizes=[32,64]) 964system_value("global_base_ptr", 0, bit_sizes=[32,64]) 965# Address and size of a transform feedback buffer, indexed by BASE 966system_value("xfb_address", 1, bit_sizes=[32,64], indices=[BASE]) 967system_value("xfb_size", 1, bit_sizes=[32], indices=[BASE]) 968 969# Address of the associated index buffer in a transform feedback program for an 970# indexed draw. This will be used so transform feedback can pull the gl_VertexID 971# from the index buffer. 972system_value("xfb_index_buffer", 1, bit_sizes=[32,64]) 973 974system_value("frag_size", 2) 975system_value("frag_invocation_count", 1) 976# Whether smooth lines or polygon smoothing is enabled 977system_value("poly_line_smooth_enabled", 1, bit_sizes=[1]) 978 979# System values for ray tracing. 980system_value("ray_launch_id", 3) 981system_value("ray_launch_size", 3) 982system_value("ray_world_origin", 3) 983system_value("ray_world_direction", 3) 984system_value("ray_object_origin", 3) 985system_value("ray_object_direction", 3) 986system_value("ray_t_min", 1) 987system_value("ray_t_max", 1) 988system_value("ray_object_to_world", 3, indices=[COLUMN]) 989system_value("ray_world_to_object", 3, indices=[COLUMN]) 990system_value("ray_hit_kind", 1) 991system_value("ray_flags", 1) 992system_value("ray_geometry_index", 1) 993system_value("ray_instance_custom_index", 1) 994system_value("shader_record_ptr", 1, bit_sizes=[64]) 995system_value("cull_mask", 1) 996system_value("ray_triangle_vertex_positions", 3, indices=[COLUMN]) 997 998# Driver-specific viewport scale/offset parameters. 999# 1000# VC4 and V3D need to emit a scaled version of the position in the vertex 1001# shaders for binning, and having system values lets us move the math for that 1002# into NIR. 1003# 1004# Panfrost needs to implement all coordinate transformation in the 1005# vertex shader; system values allow us to share this routine in NIR. 1006system_value("viewport_x_scale", 1) 1007system_value("viewport_y_scale", 1) 1008system_value("viewport_z_scale", 1) 1009system_value("viewport_x_offset", 1) 1010system_value("viewport_y_offset", 1) 1011system_value("viewport_z_offset", 1) 1012system_value("viewport_scale", 3) 1013system_value("viewport_offset", 3) 1014# Pack xy scale and offset into a vec4 load (used by AMD NGG primitive culling) 1015system_value("viewport_xy_scale_and_offset", 4) 1016 1017# Blend constant color values. Float values are clamped. Vectored versions are 1018# provided as well for driver convenience 1019 1020system_value("blend_const_color_r_float", 1) 1021system_value("blend_const_color_g_float", 1) 1022system_value("blend_const_color_b_float", 1) 1023system_value("blend_const_color_a_float", 1) 1024system_value("blend_const_color_rgba", 4) 1025system_value("blend_const_color_rgba8888_unorm", 1) 1026system_value("blend_const_color_aaaa8888_unorm", 1) 1027 1028# System values for gl_Color, for radeonsi which interpolates these in the 1029# shader prolog to handle two-sided color without recompiles and therefore 1030# doesn't handle these in the main shader part like normal varyings. 1031system_value("color0", 4) 1032system_value("color1", 4) 1033 1034# System value for internal compute shaders in radeonsi. 1035system_value("user_data_amd", 8) 1036 1037# In a fragment shader, the current sample mask. At the beginning of the shader, 1038# this is the same as load_sample_mask_in, but as the shader is executed, it may 1039# be affected by writes, discards, etc. 1040# 1041# No frontend generates this, but drivers may use it for internal lowerings. 1042intrinsic("load_sample_mask", [], 1, [], flags=[CAN_ELIMINATE], sysval=True, 1043 bit_sizes=[32]) 1044 1045# Barycentric coordinate intrinsics. 1046# 1047# These set up the barycentric coordinates for a particular interpolation. 1048# The first four are for the simple cases: pixel, centroid, per-sample 1049# (at gl_SampleID), or pull model (1/W, 1/I, 1/J) at the pixel center. The next 1050# two handle interpolating at a specified sample location, or interpolating 1051# with a vec2 offset, 1052# 1053# The interp_mode index should be either the INTERP_MODE_SMOOTH or 1054# INTERP_MODE_NOPERSPECTIVE enum values. 1055# 1056# The vec2 value produced by these intrinsics is intended for use as the 1057# barycoord source of a load_interpolated_input intrinsic. 1058# 1059# The vec3 variants are intended to be used for input barycentric coordinates 1060# which are system values on most hardware, compared to the vec2 variants which 1061# interpolates input varyings. 1062 1063def barycentric(name, dst_comp, src_comp=[]): 1064 intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=dst_comp, 1065 indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER]) 1066 1067# no sources. 1068barycentric("pixel", 2) 1069barycentric("coord_pixel", 3) 1070barycentric("centroid", 2) 1071barycentric("coord_centroid", 3) 1072barycentric("sample", 2) 1073barycentric("coord_sample", 3) 1074barycentric("model", 3) 1075# src[] = { sample_id }. 1076barycentric("at_sample", 2, [1]) 1077barycentric("coord_at_sample", 3, [1]) 1078# src[] = { offset.xy }. 1079barycentric("at_offset", 2, [2]) 1080barycentric("at_offset_nv", 2, [1]) 1081barycentric("coord_at_offset", 3, [2]) 1082 1083# Load sample position: 1084# 1085# Takes a sample # and returns a sample position. Used for lowering 1086# interpolateAtSample() to interpolateAtOffset() 1087intrinsic("load_sample_pos_from_id", src_comp=[1], dest_comp=2, 1088 flags=[CAN_ELIMINATE, CAN_REORDER]) 1089 1090intrinsic("load_persp_center_rhw_ir3", dest_comp=1, 1091 flags=[CAN_ELIMINATE, CAN_REORDER]) 1092 1093# Load texture scaling values: 1094# 1095# Takes a sampler # and returns 1/size values for multiplying to normalize 1096# texture coordinates. Used for lowering rect textures. 1097intrinsic("load_texture_scale", src_comp=[1], dest_comp=2, 1098 flags=[CAN_ELIMINATE, CAN_REORDER]) 1099 1100# Gets the texture src. This intrinsic will be lowered once functions have 1101# been inlined and we know if the src is bindless or not. 1102intrinsic("deref_texture_src", src_comp=[1], dest_comp=1, 1103 flags=[CAN_ELIMINATE, CAN_REORDER]) 1104 1105# Fragment shader input interpolation delta intrinsic. 1106# 1107# For hw where fragment shader input interpolation is handled in shader, the 1108# load_fs_input_interp deltas intrinsics can be used to load the input deltas 1109# used for interpolation as follows: 1110# 1111# vec3 iid = load_fs_input_interp_deltas(varying_slot) 1112# vec2 bary = load_barycentric_*(...) 1113# float result = iid.x + iid.y * bary.y + iid.z * bary.x 1114 1115intrinsic("load_fs_input_interp_deltas", src_comp=[1], dest_comp=3, 1116 indices=[BASE, COMPONENT, IO_SEMANTICS], flags=[CAN_ELIMINATE, CAN_REORDER]) 1117 1118# Load operations pull data from some piece of GPU memory. All load 1119# operations operate in terms of offsets into some piece of theoretical 1120# memory. Loads from externally visible memory (UBO and SSBO) simply take a 1121# byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.) 1122# take a base+offset pair where the nir_intrinsic_base() gives the location 1123# of the start of the variable being loaded and and the offset source is a 1124# offset into that variable. 1125# 1126# Uniform load operations have a nir_intrinsic_range() index that specifies the 1127# range (starting at base) of the data from which we are loading. If 1128# range == 0, then the range is unknown. 1129# 1130# UBO load operations have a nir_intrinsic_range_base() and 1131# nir_intrinsic_range() that specify the byte range [range_base, 1132# range_base+range] of the UBO that the src offset access must lie within. 1133# 1134# Some load operations such as UBO/SSBO load and per_vertex loads take an 1135# additional source to specify which UBO/SSBO/vertex to load from. 1136# 1137# The exact address type depends on the lowering pass that generates the 1138# load/store intrinsics. Typically, this is vec4 units for things such as 1139# varying slots and float units for fragment shader inputs. UBO and SSBO 1140# offsets are always in bytes. 1141 1142def load(name, src_comp, indices=[], flags=[]): 1143 intrinsic("load_" + name, src_comp, dest_comp=0, indices=indices, 1144 flags=flags) 1145 1146# src[] = { offset }. 1147load("uniform", [1], [BASE, RANGE, DEST_TYPE], [CAN_ELIMINATE, CAN_REORDER]) 1148# src[] = { buffer_index, offset }. 1149load("ubo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], flags=[CAN_ELIMINATE, CAN_REORDER]) 1150# src[] = { buffer_index, offset in vec4 units }. base is also in vec4 units. 1151load("ubo_vec4", [-1, 1], [ACCESS, BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER]) 1152# src[] = { offset }. 1153load("input", [1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1154# src[] = { vertex_id, offset }. 1155load("input_vertex", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1156# src[] = { vertex, offset }. 1157load("per_vertex_input", [1, 1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1158# src[] = { barycoord, offset }. 1159load("interpolated_input", [2, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1160# src[] = { offset }. 1161load("per_primitive_input", [1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1162 1163# src[] = { buffer_index, offset }. 1164load("ssbo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1165# src[] = { buffer_index, offset } 1166load("ssbo_address", [1, 1], [], [CAN_ELIMINATE, CAN_REORDER]) 1167# src[] = { offset }. 1168load("output", [1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE]) 1169# src[] = { vertex, offset }. 1170load("per_vertex_output", [1, 1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE]) 1171# src[] = { primitive, offset }. 1172load("per_primitive_output", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE]) 1173# src[] = { offset }. 1174load("shared", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1175# src[] = { offset }. 1176load("task_payload", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1177# src[] = { offset }. 1178load("push_constant", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER]) 1179# src[] = { offset }. 1180load("constant", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], 1181 [CAN_ELIMINATE, CAN_REORDER]) 1182# src[] = { address }. 1183load("global", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1184# src[] = { address }. 1185load("global_2x32", [2], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1186# src[] = { address }. 1187load("global_constant", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], 1188 [CAN_ELIMINATE, CAN_REORDER]) 1189# src[] = { base_address, offset }. 1190load("global_constant_offset", [1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], 1191 [CAN_ELIMINATE, CAN_REORDER]) 1192# src[] = { base_address, offset, bound }. 1193load("global_constant_bounded", [1, 1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], 1194 [CAN_ELIMINATE, CAN_REORDER]) 1195# src[] = { address }. 1196load("kernel_input", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER]) 1197# src[] = { offset }. 1198load("scratch", [1], [ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1199 1200# Stores work the same way as loads, except now the first source is the value 1201# to store and the second (and possibly third) source specify where to store 1202# the value. SSBO and shared memory stores also have a 1203# nir_intrinsic_write_mask() 1204 1205def store(name, srcs, indices=[], flags=[]): 1206 intrinsic("store_" + name, [0] + srcs, indices=indices, flags=flags) 1207 1208# src[] = { value, offset }. 1209store("output", [1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS, IO_XFB, IO_XFB2]) 1210# src[] = { value, vertex, offset }. 1211store("per_vertex_output", [1, 1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS]) 1212# src[] = { value, primitive, offset }. 1213store("per_primitive_output", [1, 1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS]) 1214# src[] = { value, block_index, offset } 1215store("ssbo", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1216# src[] = { value, offset }. 1217store("shared", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET]) 1218# src[] = { value, offset }. 1219store("task_payload", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET]) 1220# src[] = { value, address }. 1221store("global", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1222# src[] = { value, address }. 1223store("global_2x32", [2], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1224# src[] = { value, offset }. 1225store("scratch", [1], [ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK]) 1226 1227# Intrinsic to load/store from the call stack. 1228# BASE is the offset relative to the current position of the stack 1229# src[] = { }. 1230intrinsic("load_stack", [], dest_comp=0, 1231 indices=[BASE, ALIGN_MUL, ALIGN_OFFSET, CALL_IDX, VALUE_ID], 1232 flags=[CAN_ELIMINATE]) 1233# src[] = { value }. 1234intrinsic("store_stack", [0], 1235 indices=[BASE, ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK, CALL_IDX, VALUE_ID]) 1236 1237 1238# A bit field to implement SPIRV FragmentShadingRateKHR 1239# bit | name | description 1240# 0 | Vertical2Pixels | Fragment invocation covers 2 pixels vertically 1241# 1 | Vertical4Pixels | Fragment invocation covers 4 pixels vertically 1242# 2 | Horizontal2Pixels | Fragment invocation covers 2 pixels horizontally 1243# 3 | Horizontal4Pixels | Fragment invocation covers 4 pixels horizontally 1244intrinsic("load_frag_shading_rate", dest_comp=1, bit_sizes=[32], 1245 flags=[CAN_ELIMINATE, CAN_REORDER]) 1246 1247# Whether the rasterized fragment is fully covered by the generating primitive. 1248system_value("fully_covered", dest_comp=1, bit_sizes=[1]) 1249 1250# OpenCL printf instruction 1251# First source is an index to the format string (u_printf_info element of the shader) 1252# Second source is a deref to a struct containing the args 1253# Dest is success or failure 1254intrinsic("printf", src_comp=[1, 1], dest_comp=1, bit_sizes=[32]) 1255# Since most drivers will want to lower to just dumping args 1256# in a buffer, nir_lower_printf will do that, but requires 1257# the driver to at least provide a base location 1258system_value("printf_buffer_address", 1, bit_sizes=[32,64]) 1259# If driver wants to have all printfs from various shaders merged into a 1260# single output buffer, it needs each shader to have its own base identifier 1261# from which each printf is indexed. 1262system_value("printf_base_identifier", 1, bit_sizes=[32]) 1263 1264# Mesh shading MultiView intrinsics 1265system_value("mesh_view_count", 1) 1266load("mesh_view_indices", [1], [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER]) 1267 1268# Used to pass values from the preamble to the main shader. 1269# This should use something similar to Vulkan push constants and load_preamble 1270# should be relatively cheap. 1271# For now we only support accesses with a constant offset. 1272load("preamble", [], indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER]) 1273store("preamble", [], indices=[BASE]) 1274 1275# A 64-bit bitfield indexed by I/O location storing 1 in bits corresponding to 1276# varyings that have the flat interpolation specifier in the fragment shader and 1277# 0 otherwise 1278system_value("flat_mask", 1, bit_sizes=[64]) 1279 1280# Whether provoking vertex mode is last 1281system_value("provoking_last", 1) 1282 1283# SPV_KHR_cooperative_matrix. 1284# 1285# Cooperative matrices are referred through derefs to variables, 1286# the destination of the operations appears as the first source, 1287# ordering follows SPIR-V operation. 1288# 1289# Load/Store include an extra source for stride, since that 1290# can be a _dynamically_ uniform value. 1291# 1292# Length takes a type not a value, that's encoded as a MATRIX_DESC. 1293intrinsic("cmat_construct", src_comp=[-1, 1]) 1294intrinsic("cmat_load", src_comp=[-1, -1, 1], indices=[MATRIX_LAYOUT]) 1295intrinsic("cmat_store", src_comp=[-1, -1, 1], indices=[MATRIX_LAYOUT]) 1296intrinsic("cmat_length", src_comp=[], dest_comp=1, indices=[CMAT_DESC], bit_sizes=[32]) 1297intrinsic("cmat_muladd", src_comp=[-1, -1, -1, -1], indices=[SATURATE, CMAT_SIGNED_MASK]) 1298intrinsic("cmat_unary_op", src_comp=[-1, -1], indices=[ALU_OP]) 1299intrinsic("cmat_binary_op", src_comp=[-1, -1, -1], indices=[ALU_OP]) 1300intrinsic("cmat_scalar_op", src_comp=[-1, -1, -1], indices=[ALU_OP]) 1301intrinsic("cmat_bitcast", src_comp=[-1, -1]) 1302intrinsic("cmat_extract", src_comp=[-1, 1], dest_comp=1) 1303intrinsic("cmat_insert", src_comp=[-1, 1, -1, 1]) 1304intrinsic("cmat_copy", src_comp=[-1, -1]) 1305 1306# IR3-specific version of most SSBO intrinsics. The only different 1307# compare to the originals is that they add an extra source to hold 1308# the dword-offset, which is needed by the backend code apart from 1309# the byte-offset already provided by NIR in one of the sources. 1310# 1311# NIR lowering pass 'ir3_nir_lower_io_offset' will replace the 1312# original SSBO intrinsics by these, placing the computed 1313# dword-offset always in the last source. 1314# 1315# The float versions are not handled because those are not supported 1316# by the backend. 1317store("ssbo_ir3", [1, 1, 1], 1318 indices=[BASE, WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1319load("ssbo_ir3", [1, 1, 1], 1320 indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE]) 1321intrinsic("ssbo_atomic_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, 1322 indices=[ACCESS, ATOMIC_OP]) 1323intrinsic("ssbo_atomic_swap_ir3", src_comp=[1, 1, 1, 1, 1], dest_comp=1, 1324 indices=[ACCESS, ATOMIC_OP]) 1325 1326# System values for freedreno geometry shaders. 1327system_value("vs_primitive_stride_ir3", 1) 1328system_value("vs_vertex_stride_ir3", 1) 1329system_value("gs_header_ir3", 1) 1330system_value("primitive_location_ir3", 1, indices=[DRIVER_LOCATION]) 1331 1332# System values for freedreno tessellation shaders. 1333system_value("hs_patch_stride_ir3", 1) 1334system_value("tess_factor_base_ir3", 2) 1335system_value("tess_param_base_ir3", 2) 1336system_value("tcs_header_ir3", 1) 1337system_value("rel_patch_id_ir3", 1) 1338 1339# System values for freedreno compute shaders. 1340system_value("subgroup_id_shift_ir3", 1) 1341 1342# System values for freedreno fragment shaders. 1343intrinsic("load_frag_coord_unscaled_ir3", dest_comp=4, 1344 flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32]) 1345 1346# Per-view gl_FragSizeEXT and gl_FragCoord offset. 1347intrinsic("load_frag_size_ir3", src_comp=[1], dest_comp=2, indices=[RANGE], 1348 flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32]) 1349intrinsic("load_frag_offset_ir3", src_comp=[1], dest_comp=2, indices=[RANGE], 1350 flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32]) 1351 1352# IR3-specific load/store intrinsics. These access a buffer used to pass data 1353# between geometry stages - perhaps it's explicit access to the vertex cache. 1354 1355# src[] = { value, offset }. 1356store("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET]) 1357# src[] = { offset }. 1358load("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1359 1360# IR3-specific load/store global intrinsics. They take a 64-bit base address 1361# and a 32-bit offset. The hardware will add the base and the offset, which 1362# saves us from doing 64-bit math on the base address. 1363 1364# src[] = { value, address(vec2 of hi+lo uint32_t), offset }. 1365# const_index[] = { write_mask, align_mul, align_offset } 1366store("global_ir3", [2, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1367# src[] = { address(vec2 of hi+lo uint32_t), offset }. 1368# const_index[] = { access, align_mul, align_offset } 1369# the alignment applies to the base address 1370load("global_ir3", [2, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], flags=[CAN_ELIMINATE]) 1371 1372# Etnaviv-specific load/glboal intrinsics. They take a 32-bit base address and 1373# a 32-bit offset, which doesn't need to be an immediate. 1374# src[] = { value, address, 32-bit offset }. 1375store("global_etna", [1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 1376# src[] = { address, 32-bit offset }. 1377load("global_etna", [1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 1378 1379# IR3-specific bindless handle specifier. Similar to vulkan_resource_index, but 1380# without the binding because the hardware expects a single flattened index 1381# rather than a (binding, index) pair. We may also want to use this with GL. 1382# Note that this doesn't actually turn into a HW instruction. 1383intrinsic("bindless_resource_ir3", [1], dest_comp=1, indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER]) 1384 1385# IR3-specific intrinsics for shader preamble. These are meant to be used like 1386# this: 1387# 1388# if (preamble_start()) { 1389# if (subgroupElect()) { 1390# // preamble 1391# ... 1392# preamble_end(); 1393# } 1394# } 1395# // main shader 1396# ... 1397 1398intrinsic("preamble_start_ir3", [], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 1399 1400barrier("preamble_end_ir3") 1401 1402# IR3-specific intrinsic to choose any invocation. This is implemented the same 1403# as elect, except that it doesn't require helper invocations. Used by preambles. 1404intrinsic("elect_any_ir3", dest_comp=1, flags=[CAN_ELIMINATE]) 1405 1406# IR3-specific intrinsic for stc. Should be used in the shader preamble. 1407store("const_ir3", [], indices=[BASE]) 1408 1409# IR3-specific intrinsic for loading from a const reg. 1410load("const_ir3", [1], indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER]) 1411 1412# IR3-specific intrinsic for ldc.k. Copies UBO to constant file. 1413# base is the const file base in components, range is the amount to copy in 1414# vec4's. 1415intrinsic("copy_ubo_to_uniform_ir3", [1, 1], indices=[BASE, RANGE]) 1416 1417# IR3-specific intrinsic for ldg.k. 1418# base is an offset to apply to the address in bytes, range_base is the 1419# const file base in components, range is the amount to copy in vec4's. 1420intrinsic("copy_global_to_uniform_ir3", [2], indices=[BASE, RANGE_BASE, RANGE]) 1421 1422# IR3-specific intrinsic for stsc. Loads from push consts to constant file 1423# Should be used in the shader preamble. 1424intrinsic("copy_push_const_to_uniform_ir3", [1], indices=[BASE, RANGE]) 1425 1426intrinsic("brcst_active_ir3", dest_comp=1, src_comp=[1, 1], bit_sizes=src0, 1427 indices=[CLUSTER_SIZE]) 1428intrinsic("reduce_clusters_ir3", dest_comp=1, src_comp=[1], bit_sizes=src0, 1429 indices=[REDUCTION_OP]) 1430intrinsic("inclusive_scan_clusters_ir3", dest_comp=1, src_comp=[1], 1431 bit_sizes=src0, indices=[REDUCTION_OP]) 1432intrinsic("exclusive_scan_clusters_ir3", dest_comp=1, src_comp=[1, 1], 1433 bit_sizes=src0, indices=[REDUCTION_OP]) 1434 1435# IR3-specific intrinsics for prefetching descriptors in preambles. 1436intrinsic("prefetch_sam_ir3", [1, 1], flags=[CAN_REORDER]) 1437intrinsic("prefetch_tex_ir3", [1], flags=[CAN_REORDER]) 1438intrinsic("prefetch_ubo_ir3", [1], flags=[CAN_REORDER]) 1439 1440# Intrinsics used by the Midgard/Bifrost blend pipeline. These are defined 1441# within a blend shader to read/write the raw value from the tile buffer, 1442# without applying any format conversion in the process. If the shader needs 1443# usable pixel values, it must apply format conversions itself. 1444# 1445# These definitions are generic, but they are explicitly vendored to prevent 1446# other drivers from using them, as their semantics is defined in terms of the 1447# Midgard/Bifrost hardware tile buffer and may not line up with anything sane. 1448# One notable divergence is sRGB, which is asymmetric: raw_input_pan requires 1449# an sRGB->linear conversion, but linear values should be written to 1450# raw_output_pan and the hardware handles linear->sRGB. 1451# 1452# store_raw_output_pan is used only for blend shaders, and writes out only a 1453# single 128-bit chunk. To support multisampling, the BASE index specifies the 1454# bas sample index written out. 1455 1456# src[] = { value } 1457store("raw_output_pan", [], [IO_SEMANTICS, BASE]) 1458store("combined_output_pan", [1, 1, 1, 4], [IO_SEMANTICS, COMPONENT, SRC_TYPE, DEST_TYPE]) 1459load("raw_output_pan", [1], [IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER]) 1460 1461# Loads the sampler paramaters <min_lod, max_lod, lod_bias> 1462# src[] = { sampler_index } 1463load("sampler_lod_parameters_pan", [1], flags=[CAN_ELIMINATE, CAN_REORDER]) 1464 1465# Like load_output but using a specified render target conversion descriptor 1466load("converted_output_pan", [1], indices=[DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE]) 1467 1468# Load the render target conversion descriptor for a given render target given 1469# in the BASE index. Converts to a type with size given by the source type. 1470# Valid in fragment and blend stages. 1471system_value("rt_conversion_pan", 1, indices=[BASE, SRC_TYPE], bit_sizes=[32]) 1472 1473# Loads the sample position array on Bifrost, in a packed Arm-specific format 1474system_value("sample_positions_pan", 1, bit_sizes=[64]) 1475 1476# In a fragment shader, is the framebuffer single-sampled? 0/~0 bool 1477system_value("multisampled_pan", 1, bit_sizes=[32]) 1478 1479# R600 specific instrincs 1480# 1481# location where the tesselation data is stored in LDS 1482system_value("tcs_in_param_base_r600", 4) 1483system_value("tcs_out_param_base_r600", 4) 1484system_value("tcs_rel_patch_id_r600", 1) 1485system_value("tcs_tess_factor_base_r600", 1) 1486 1487# load as many components as needed giving per-component addresses 1488intrinsic("load_local_shared_r600", src_comp=[0], dest_comp=0, indices = [], flags = [CAN_ELIMINATE]) 1489 1490store("local_shared_r600", [1], [WRITE_MASK]) 1491store("tf_r600", []) 1492 1493# AMD GCN/RDNA specific intrinsics 1494 1495# This barrier is a hint that prevents moving the instruction that computes 1496# src after this barrier. It's a constraint for the instruction scheduler. 1497# Otherwise it's identical to a move instruction. 1498# The VGPR version forces the src value to be stored in a VGPR, while the SGPR 1499# version enforces an SGPR. 1500intrinsic("optimization_barrier_vgpr_amd", dest_comp=0, src_comp=[0], 1501 flags=[CAN_ELIMINATE]) 1502intrinsic("optimization_barrier_sgpr_amd", dest_comp=0, src_comp=[0], 1503 flags=[CAN_ELIMINATE]) 1504 1505# These are no-op intrinsics used as a simple source and user of SSA defs for testing. 1506intrinsic("unit_test_amd", src_comp=[0], indices=[BASE]) 1507intrinsic("unit_test_uniform_amd", dest_comp=0, indices=[BASE]) 1508intrinsic("unit_test_divergent_amd", dest_comp=0, indices=[BASE]) 1509 1510# Untyped buffer load/store instructions of arbitrary length. 1511# src[] = { descriptor, vector byte offset, scalar byte offset, index offset } 1512# The index offset is multiplied by the stride in the descriptor. 1513# The vector/scalar offsets are in bytes, BASE is a constant byte offset. 1514intrinsic("load_buffer_amd", src_comp=[4, 1, 1, 1], dest_comp=0, indices=[BASE, MEMORY_MODES, ACCESS], flags=[CAN_ELIMINATE]) 1515# src[] = { store value, descriptor, vector byte offset, scalar byte offset, index offset } 1516intrinsic("store_buffer_amd", src_comp=[0, 4, 1, 1, 1], indices=[BASE, WRITE_MASK, MEMORY_MODES, ACCESS]) 1517 1518# Typed buffer load of arbitrary length, using a specified format. 1519# src[] = { descriptor, vector byte offset, scalar byte offset, index offset } 1520# 1521# The compiler backend is responsible for emitting correct HW instructions according to alignment, range etc. 1522# Users of this intrinsic must ensure that the first component being loaded is really the first component 1523# of the specified format, because range analysis assumes this. 1524# The size of the specified format also determines the memory range that this instruction is allowed to access. 1525# 1526# The index offset is multiplied by the stride in the descriptor, if any. 1527# The vector/scalar offsets are in bytes, BASE is a constant byte offset. 1528intrinsic("load_typed_buffer_amd", src_comp=[4, 1, 1, 1], dest_comp=0, indices=[BASE, MEMORY_MODES, ACCESS, FORMAT, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE]) 1529 1530# src[] = { address, unsigned 32-bit offset }. 1531load("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE]) 1532# src[] = { value, address, unsigned 32-bit offset }. 1533store("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK]) 1534 1535# Same as shared_atomic_add, but with GDS. src[] = {store_val, gds_addr, m0} 1536intrinsic("gds_atomic_add_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE]) 1537 1538# Optimized shared_atomic_add (1/-1) with constant address 1539# returning the uniform pre-op value for all invocations. 1540intrinsic("shared_append_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[BASE]) 1541intrinsic("shared_consume_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[BASE]) 1542 1543# src[] = { sample_id, num_samples } 1544intrinsic("load_sample_positions_amd", src_comp=[1, 1], dest_comp=2, flags=[CAN_ELIMINATE, CAN_REORDER]) 1545 1546# Descriptor where TCS outputs are stored for TES 1547system_value("ring_tess_offchip_amd", 4) 1548system_value("ring_tess_offchip_offset_amd", 1) 1549# Descriptor where TCS outputs are stored for the HW tessellator 1550system_value("ring_tess_factors_amd", 4) 1551system_value("ring_tess_factors_offset_amd", 1) 1552# Descriptor where ES outputs are stored for GS to read on GFX6-8 1553system_value("ring_esgs_amd", 4) 1554system_value("ring_es2gs_offset_amd", 1) 1555# Address of the task shader draw ring (used for VARYING_SLOT_TASK_COUNT) 1556system_value("ring_task_draw_amd", 4) 1557# Address of the task shader payload ring (used for all other outputs) 1558system_value("ring_task_payload_amd", 4) 1559# Address of the mesh shader scratch ring (used for excess mesh shader outputs) 1560system_value("ring_mesh_scratch_amd", 4) 1561system_value("ring_mesh_scratch_offset_amd", 1) 1562# Pointer into the draw and payload rings 1563system_value("task_ring_entry_amd", 1) 1564# Descriptor where NGG attributes are stored on GFX11. 1565system_value("ring_attr_amd", 4) 1566system_value("ring_attr_offset_amd", 1) 1567 1568# Load provoking vertex info 1569system_value("provoking_vtx_amd", 1) 1570 1571# Load rasterization primitive 1572system_value("rasterization_primitive_amd", 1); 1573 1574# Number of patches processed by each TCS workgroup 1575system_value("tcs_num_patches_amd", 1) 1576# Whether TCS should store tessellation level outputs for TES to read 1577system_value("tcs_tess_levels_to_tes_amd", dest_comp=1, bit_sizes=[1]) 1578# Tessellation primitive mode for TCS 1579system_value("tcs_primitive_mode_amd", 1) 1580# Relative tessellation patch ID within the current workgroup 1581system_value("tess_rel_patch_id_amd", 1) 1582# Vertex offsets used for GS per-vertex inputs 1583system_value("gs_vertex_offset_amd", 1, [BASE]) 1584# Number of rasterization samples 1585system_value("rasterization_samples_amd", 1) 1586 1587# Descriptor where GS outputs are stored for GS copy shader to read on GFX6-9 1588system_value("ring_gsvs_amd", 4, indices=[STREAM_ID]) 1589# Write offset in gsvs ring for legacy GS shader 1590system_value("ring_gs2vs_offset_amd", 1) 1591 1592# Streamout configuration 1593system_value("streamout_config_amd", 1) 1594# Position to write within the streamout buffers 1595system_value("streamout_write_index_amd", 1) 1596# Offset to write within a streamout buffer 1597system_value("streamout_offset_amd", 1, indices=[BASE]) 1598 1599# AMD merged shader intrinsics 1600 1601# Whether the current invocation index in the subgroup is less than the source. The source must be 1602# subgroup uniform and bits 0-7 must be less than or equal to the wave size. 1603intrinsic("is_subgroup_invocation_lt_amd", src_comp=[1], dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1604 1605# AMD NGG intrinsics 1606 1607# Number of initial input vertices in the current workgroup. 1608system_value("workgroup_num_input_vertices_amd", 1) 1609# Number of initial input primitives in the current workgroup. 1610system_value("workgroup_num_input_primitives_amd", 1) 1611# For NGG passthrough mode only. Pre-packed argument for export_primitive_amd. 1612system_value("packed_passthrough_primitive_amd", 1) 1613# Whether NGG should execute shader query for pipeline statistics. 1614system_value("pipeline_stat_query_enabled_amd", dest_comp=1, bit_sizes=[1]) 1615# Whether NGG should execute shader query for primitive generated. 1616system_value("prim_gen_query_enabled_amd", dest_comp=1, bit_sizes=[1]) 1617# Whether NGG should execute shader query for primitive streamouted. 1618system_value("prim_xfb_query_enabled_amd", dest_comp=1, bit_sizes=[1]) 1619# 64-bit memory address to struct {uint32_t ordered_id; uint32_t dwords_written;}[4] 1620system_value("xfb_state_address_gfx12_amd", dest_comp=1, bit_sizes=[64]) 1621# Merged wave info. Bits 0-7 are the ES thread count, 8-15 are the GS thread count, 16-24 is the 1622# GS Wave ID, 24-27 is the wave index in the workgroup, and 28-31 is the workgroup size in waves. 1623system_value("merged_wave_info_amd", dest_comp=1) 1624# Global ID for GS waves on GCN/RDNA legacy GS. 1625system_value("gs_wave_id_amd", dest_comp=1) 1626# Whether the shader should clamp vertex color outputs to [0, 1]. 1627system_value("clamp_vertex_color_amd", dest_comp=1, bit_sizes=[1]) 1628# Whether the shader should cull front facing triangles. 1629intrinsic("load_cull_front_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1630# Whether the shader should cull back facing triangles. 1631intrinsic("load_cull_back_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1632# True if face culling should use CCW (false if CW). 1633intrinsic("load_cull_ccw_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1634# Whether the shader should cull small primitives that are not visible in a pixel. 1635intrinsic("load_cull_small_primitives_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1636# Whether any culling setting is enabled in the shader. 1637intrinsic("load_cull_any_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE]) 1638# Small primitive culling precision 1639intrinsic("load_cull_small_prim_precision_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER]) 1640# Initial edge flags in a Vertex Shader, packed into the format the HW needs for primitive export. 1641intrinsic("load_initial_edgeflags_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[]) 1642# Corresponds to s_sendmsg in the GCN/RDNA ISA, src[] = { m0_content }, BASE = imm 1643intrinsic("sendmsg_amd", src_comp=[1], indices=[BASE]) 1644# Overwrites VS input registers, for use with vertex compaction after culling. src = {vertex_id, instance_id}. 1645intrinsic("overwrite_vs_arguments_amd", src_comp=[1, 1], indices=[]) 1646# Overwrites TES input registers, for use with vertex compaction after culling. src = {tes_u, tes_v, rel_patch_id, patch_id}. 1647intrinsic("overwrite_tes_arguments_amd", src_comp=[1, 1, 1, 1], indices=[]) 1648 1649# The address of the sbt descriptors. 1650system_value("sbt_base_amd", 1, bit_sizes=[64]) 1651 1652# 1. HW descriptor 1653# 2. BVH node(64-bit pointer as 2x32 ...) 1654# 3. ray extent 1655# 4. ray origin 1656# 5. ray direction 1657# 6. inverse ray direction (componentwise 1.0/ray direction) 1658intrinsic("bvh64_intersect_ray_amd", [4, 2, 1, 3, 3, 3], 4, flags=[CAN_ELIMINATE, CAN_REORDER]) 1659 1660# Return of a callable in raytracing pipelines 1661intrinsic("rt_return_amd") 1662 1663# offset into scratch for the input callable data in a raytracing pipeline. 1664system_value("rt_arg_scratch_offset_amd", 1) 1665 1666# Whether to call the anyhit shader for an intersection in an intersection shader. 1667system_value("intersection_opaque_amd", 1, bit_sizes=[1]) 1668 1669# pointer to the next resume shader 1670system_value("resume_shader_address_amd", 1, bit_sizes=[64], indices=[CALL_IDX]) 1671 1672# Ray Tracing Traversal inputs 1673system_value("sbt_offset_amd", 1) 1674system_value("sbt_stride_amd", 1) 1675system_value("accel_struct_amd", 1, bit_sizes=[64]) 1676system_value("cull_mask_and_flags_amd", 1) 1677 1678# 0. SBT Index 1679# 1. Ray Tmax 1680# 2. Primitive Id 1681# 3. Instance Addr 1682# 4. Geometry Id and Flags 1683# 5. Hit Kind 1684intrinsic("execute_closest_hit_amd", src_comp=[1, 1, 1, 1, 1, 1]) 1685 1686# 0. Ray Tmax 1687intrinsic("execute_miss_amd", src_comp=[1]) 1688 1689# Used for saving and restoring hit attribute variables. 1690# BASE=dword index 1691intrinsic("load_hit_attrib_amd", dest_comp=1, bit_sizes=[32], indices=[BASE]) 1692intrinsic("store_hit_attrib_amd", src_comp=[1], indices=[BASE]) 1693 1694# Load forced VRS rates. 1695intrinsic("load_force_vrs_rates_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER]) 1696 1697intrinsic("load_scalar_arg_amd", dest_comp=0, bit_sizes=[32], 1698 indices=[BASE, ARG_UPPER_BOUND_U32_AMD], 1699 flags=[CAN_ELIMINATE, CAN_REORDER]) 1700intrinsic("load_vector_arg_amd", dest_comp=0, bit_sizes=[32], 1701 indices=[BASE, ARG_UPPER_BOUND_U32_AMD, FLAGS], 1702 flags=[CAN_ELIMINATE, CAN_REORDER]) 1703store("scalar_arg_amd", [], [BASE]) 1704store("vector_arg_amd", [], [BASE]) 1705 1706# src[] = { 32/64-bit base address, 32-bit offset }. 1707# 1708# Similar to load_global_constant, the memory accessed must be read-only. This 1709# restriction justifies the CAN_REORDER flag. Additionally, the base/offset must 1710# be subgroup uniform. 1711intrinsic("load_smem_amd", src_comp=[1, 1], dest_comp=0, bit_sizes=[32], 1712 indices=[ALIGN_MUL, ALIGN_OFFSET], 1713 flags=[CAN_ELIMINATE, CAN_REORDER]) 1714 1715# src[] = { offset }. 1716intrinsic("load_shared2_amd", [1], dest_comp=2, indices=[OFFSET0, OFFSET1, ST64], flags=[CAN_ELIMINATE]) 1717 1718# src[] = { value, offset }. 1719intrinsic("store_shared2_amd", [2, 1], indices=[OFFSET0, OFFSET1, ST64]) 1720 1721# Vertex stride in LS-HS buffer 1722system_value("lshs_vertex_stride_amd", 1) 1723 1724# Vertex stride in ES-GS buffer 1725system_value("esgs_vertex_stride_amd", 1) 1726 1727# Per patch data offset in HS VRAM output buffer 1728system_value("hs_out_patch_data_offset_amd", 1) 1729 1730# line_width * 0.5 / abs(viewport_scale[2]) 1731system_value("clip_half_line_width_amd", 2) 1732 1733# Number of vertices in a primitive 1734system_value("num_vertices_per_primitive_amd", 1) 1735 1736# Load streamout buffer desc 1737# BASE = buffer index 1738intrinsic("load_streamout_buffer_amd", dest_comp=4, indices=[BASE], bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER]) 1739 1740# An ID for each workgroup ordered by primitve sequence 1741system_value("ordered_id_amd", 1) 1742 1743# Add src1 to global streamout buffer offsets in the specified order. 1744# Only 1 lane must be active. 1745# src[] = { ordered_id, counter } 1746# WRITE_MASK = mask for counter channel to update 1747intrinsic("ordered_xfb_counter_add_gfx11_amd", dest_comp=0, src_comp=[1, 0], indices=[WRITE_MASK], bit_sizes=[32]) 1748 1749# Execute the atomic ordered add loop. This does what ds_ordered_count did in previous generations. 1750# This is implemented with inline assembly to get the most optimal code. 1751# 1752# Inputs: 1753# exec = one lane per counter (use nir_push_if, streamout should always enable 4 lanes) 1754# src[0] = 64-bit SGPR atomic base address (streamout should use nir_load_xfb_state_address_gfx12_amd) 1755# src[1] = 32-bit VGPR voffset (streamout should set local_invocation_index * 8) 1756# src[2] = 32-bit SGPR ordered_id (use nir_load_ordered_id_amd for streamout, compute shaders 1757# should generated it manually) 1758# src[3] = 64-bit VGPR atomic src, use pack_64_2x32_split(ordered_id, value), streamout should do: 1759# pack_64_2x32_split(ordered_id, "dwords written per workgroup" for each buffer) 1760# 1761# dst = 32-bit VGPR of the previous value of 32-bit value in memory, returned for all enabled lanes 1762 1763# Example - streamout: It's used to add dwords_written[] to global streamout offsets. 1764# * Exactly 4 lanes must be active, one for each buffer binding. 1765# * Disabled buffers must set dwords_written=0 for their lane, but the lane 1766# must be enabled. 1767# 1768intrinsic("ordered_add_loop_gfx12_amd", dest_comp=1, src_comp=[1, 1, 1, 1], bit_sizes=[32]) 1769 1770# Subtract from global streamout buffer offsets. Used to fix up the offsets 1771# when we overflow streamout buffers. 1772# src[] = { offsets } 1773# WRITE_MASK = mask of offsets to subtract 1774intrinsic("xfb_counter_sub_gfx11_amd", src_comp=[0], indices=[WRITE_MASK], bit_sizes=[32]) 1775 1776# Provoking vertex index in a primitive 1777system_value("provoking_vtx_in_prim_amd", 1) 1778 1779# Atomically add current wave's primitive count to query result 1780# * GS emitted primitive is primitive emitted by any GS stream 1781# * generated primitive is primitive that has been produced for that stream by VS/TES/GS 1782# * streamout primitve is primitve that has been written to xfb buffer, may be different 1783# than generated primitive when xfb buffer is too small to hold more primitives 1784# src[] = { primitive_count }. 1785intrinsic("atomic_add_gs_emit_prim_count_amd", [1]) 1786intrinsic("atomic_add_gen_prim_count_amd", [1], indices=[STREAM_ID]) 1787intrinsic("atomic_add_xfb_prim_count_amd", [1], indices=[STREAM_ID]) 1788 1789# Atomically add current shader's invocation count to query result 1790# src[] = { invocation_count }. 1791intrinsic("atomic_add_shader_invocation_count_amd", [1]) 1792 1793# LDS offset for scratch section in NGG shader 1794system_value("lds_ngg_scratch_base_amd", 1) 1795# LDS offset for NGG GS shader vertex emit 1796system_value("lds_ngg_gs_out_vertex_base_amd", 1) 1797 1798# AMD GPU shader output export instruction 1799# src[] = { export_value, row } 1800# BASE = export target 1801# FLAGS = AC_EXP_FLAG_* 1802intrinsic("export_amd", [0], indices=[BASE, WRITE_MASK, FLAGS]) 1803intrinsic("export_row_amd", [0, 1], indices=[BASE, WRITE_MASK, FLAGS]) 1804 1805# Export dual source blend outputs with swizzle operation 1806# src[] = { mrt0, mrt1 } 1807intrinsic("export_dual_src_blend_amd", [0, 0], indices=[WRITE_MASK]) 1808 1809# Alpha test reference value 1810system_value("alpha_reference_amd", 1) 1811 1812# Whether to enable barycentric optimization 1813system_value("barycentric_optimize_amd", dest_comp=1, bit_sizes=[1]) 1814 1815# Copy the input into a register which will remain valid for entire quads, even in control flow. 1816# This should only be used directly for texture sources. 1817intrinsic("strict_wqm_coord_amd", src_comp=[0], dest_comp=0, bit_sizes=[32], indices=[BASE], 1818 flags=[CAN_ELIMINATE]) 1819 1820intrinsic("cmat_muladd_amd", src_comp=[16, 16, 0], dest_comp=0, bit_sizes=src2, 1821 indices=[SATURATE, CMAT_SIGNED_MASK], flags=[CAN_ELIMINATE]) 1822 1823# Get the debug log buffer descriptor. 1824intrinsic("load_debug_log_desc_amd", bit_sizes=[32], dest_comp=4, flags=[CAN_ELIMINATE, CAN_REORDER]) 1825 1826# s_sleep BASE (sleep for 64*BASE cycles). BASE must be in [0, 0xffff]. 1827# BASE=0 is valid but isn't useful. 1828# GFX12+: If BASE & 0x8000, sleep forever (until wakeup, trap, or kill). 1829intrinsic("sleep_amd", indices=[BASE]) 1830 1831# s_nop BASE (sleep for BASE+1 cycles, BASE must be in [0, 15]). 1832intrinsic("nop_amd", indices=[BASE]) 1833 1834system_value("ray_tracing_stack_base_lvp", 1) 1835 1836system_value("shader_call_data_offset_lvp", 1) 1837 1838# Broadcom-specific instrinc for tile buffer color reads. 1839# 1840# The hardware requires that we read the samples and components of a pixel 1841# in order, so we cannot eliminate or remove any loads in a sequence. 1842# 1843# src[] = { render_target } 1844# BASE = sample index 1845load("tlb_color_brcm", [1], [BASE, COMPONENT], []) 1846 1847# V3D-specific instrinc for per-sample tile buffer color writes. 1848# 1849# The driver backend needs to identify per-sample color writes and emit 1850# specific code for them. 1851# 1852# src[] = { value, render_target } 1853# BASE = sample index 1854store("tlb_sample_color_v3d", [1], [BASE, COMPONENT, SRC_TYPE], []) 1855 1856# V3D-specific intrinsic to load the number of layers attached to 1857# the target framebuffer 1858intrinsic("load_fb_layers_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 1859 1860# V3D-specific intrinsic to load W coordinate from the fragment shader payload 1861intrinsic("load_fep_w_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER]) 1862 1863# Active invocation index within the subgroup. 1864# Equivalent to popcount(ballot(true) & ((1 << subgroup_invocation) - 1)) 1865intrinsic("load_active_subgroup_invocation_agx", dest_comp=1, flags=[CAN_ELIMINATE]) 1866 1867# Total active invocations within the subgroup. 1868# Equivalent to popcount(ballot(true)) 1869intrinsic("load_active_subgroup_count_agx", dest_comp=1, flags=[CAN_ELIMINATE]) 1870 1871# Like ballot() but only within a quad. 1872intrinsic("quad_ballot_agx", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE]) 1873 1874# With [0, 1] clipping, no transform is needed on the output z' = z. But with [-1, 1875# 1] clipping, we need to transform z' = (z + w) / 2. We express both cases as a 1876# lerp between z and w, where this is the lerp coefficient: 0 for [0, 1] and 0.5 1877# for [-1, 1]. 1878system_value("clip_z_coeff_agx", 1) 1879 1880# True if drawing triangle fans with first vertex provoking, false otherwise. 1881# This affects flatshading, which is defined weirdly for fans with first. 1882system_value("is_first_fan_agx", 1, bit_sizes=[1]) 1883 1884# mesa_prim for the input topology (in a geometry shader) 1885system_value("input_topology_agx", 1) 1886 1887# Load a bindless sampler handle mapping a binding table sampler. 1888intrinsic("load_sampler_handle_agx", [1], 1, [], 1889 flags=[CAN_ELIMINATE, CAN_REORDER], 1890 bit_sizes=[16]) 1891 1892# Load a bindless texture handle mapping a binding table texture. 1893intrinsic("load_texture_handle_agx", [1], 2, [], 1894 flags=[CAN_ELIMINATE, CAN_REORDER], 1895 bit_sizes=[32]) 1896 1897# Given a vec2 bindless texture handle, load the address of the texture 1898# descriptor described by that vec2. This allows inspecting the descriptor from 1899# the shader. This does not actually load the content of the descriptor, only 1900# the content of the handle (which is the address of the descriptor). 1901intrinsic("load_from_texture_handle_agx", [2], 1, [], 1902 flags=[CAN_ELIMINATE, CAN_REORDER], 1903 bit_sizes=[64]) 1904 1905# Load the coefficient register corresponding to a given fragment shader input. 1906# Coefficient registers are vec3s that are dotted with <x, y, 1> to interpolate 1907# the input, where x and y are relative to the 32x32 supertile. 1908intrinsic("load_coefficients_agx", [1], 1909 bit_sizes = [32], 1910 dest_comp = 3, 1911 indices=[COMPONENT, IO_SEMANTICS, INTERP_MODE], 1912 flags=[CAN_ELIMINATE, CAN_REORDER]) 1913 1914# src[] = { value, index } 1915# Store a vertex shader output to the Unified Vertex Store (UVS). Indexed by UVS 1916# index, which must be assigned by the driver based on the linked fragment 1917# shader's interpolation qualifiers. This corresponds to the native instruction. 1918store("uvs_agx", [1], [], [CAN_REORDER]) 1919 1920# Driver intrinsic to map a location to a UVS index. This is generated when 1921# lowering store_output to store_uvs_agx, and must be lowered by the driver. 1922intrinsic("load_uvs_index_agx", dest_comp = 1, bit_sizes=[16], 1923 indices=[IO_SEMANTICS], flags=[CAN_ELIMINATE, CAN_REORDER]) 1924 1925# Load/store a pixel in local memory. This operation is formatted, with 1926# conversion between the specified format and the implied register format of the 1927# source/destination (for store/loads respectively). This mostly matters for 1928# converting between floating-point registers and normalized memory formats. 1929# 1930# The format is the pipe_format of the local memory (the source), see 1931# ail for the supported list. 1932# 1933# Logically, this loads/stores a single sample. The sample to load is 1934# specified by the bitfield sample mask source. However, for stores multiple 1935# bits of the sample mask may be set, which will replicate the value. For 1936# pixel rate shading, use 0xFF as the mask to store to all samples regardless of 1937# the sample count. 1938# 1939# All calculations are relative to an immediate byte offset into local 1940# memory, which acts relative to the start of the sample. These instructions 1941# logically access: 1942# 1943# (((((y * tile_width) + x) * nr_samples) + sample) * sample_stride) + offset 1944# 1945# src[] = { sample mask } 1946# base = offset 1947load("local_pixel_agx", [1], [BASE, FORMAT], [CAN_REORDER, CAN_ELIMINATE]) 1948# src[] = { value, sample mask, coordinates } 1949# base = offset 1950store("local_pixel_agx", [1, -1], [BASE, WRITE_MASK, FORMAT, EXPLICIT_COORD], [CAN_REORDER]) 1951 1952# Combined depth/stencil emit, applying to a mask of samples. base indicates 1953# which to write (1 = depth, 2 = stencil, 3 = both). 1954# 1955# src[] = { sample mask, depth, stencil } 1956intrinsic("store_zs_agx", [1, 1, 1], indices=[BASE], flags=[]) 1957 1958# Store a block from local memory into a bound image. Used to write out render 1959# targets within the end-of-tile shader, although it is valid in general compute 1960# kernels. 1961# 1962# The format is the pipe_format of the local memory (the source), see 1963# ail for the supported list. The image format is 1964# specified in the PBE descriptor. 1965# 1966# The image dimension is used to distinguish multisampled images from 1967# non-multisampled images. It must be 2D or MS. 1968# 1969# extra src[] = { logical offset within shared memory, coordinates/layer } 1970image("store_block_agx", [1, -1], extra_indices=[EXPLICIT_COORD]) 1971 1972# Formatted load/store. The format is the pipe_format in memory (see ail for the 1973# supported list). This accesses: 1974# 1975# address + extend(index) << (format shift + shift) 1976# 1977# The nir_intrinsic_base() index encodes the shift. The sign_extend index 1978# determines whether sign- or zero-extension is used for the index. 1979# 1980# All loads and stores on AGX uses these hardware instructions, so while these are 1981# logically load_global_agx/load_global_constant_agx/store_global_agx, the 1982# _global is omitted as it adds nothing. 1983# 1984# src[] = { address, index }. 1985load("agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND], [CAN_ELIMINATE]) 1986load("constant_agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND], 1987 [CAN_ELIMINATE, CAN_REORDER]) 1988# src[] = { value, address, index }. 1989store("agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND]) 1990 1991# Logical complement of load_front_face, mapping to an AGX system value 1992system_value("back_face_agx", 1, bit_sizes=[1, 32]) 1993 1994# Load the base address of an indexed vertex attribute (for lowering). 1995intrinsic("load_vbo_base_agx", src_comp=[1], dest_comp=1, bit_sizes=[64], 1996 flags=[CAN_ELIMINATE, CAN_REORDER]) 1997 1998# When vertex robustness is enabled, loads the maximum valid attribute index for 1999# a given attribute. This is unsigned: the driver ensures that at least one 2000# vertex is always valid to load, directing loads to a zero sink if necessary. 2001intrinsic("load_attrib_clamp_agx", src_comp=[1], dest_comp=1, 2002 bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER]) 2003 2004# Load a driver-internal system value from a given system value set at a given 2005# binding within the set. This is used for correctness when lowering things like 2006# UBOs with merged shaders. 2007# 2008# The FLAGS are used internally for loading the index of the uniform itself, 2009# rather than the contents, used for lowering bindless handles (which encode 2010# uniform indices as immediates in the NIR for technical reasons). 2011load("sysval_agx", [], [DESC_SET, BINDING, FLAGS], [CAN_REORDER, CAN_ELIMINATE]) 2012 2013# Write out a sample mask for a targeted subset of samples, specified in the two 2014# masks. Maps to the corresponding AGX instruction, the actual workings are 2015# documented elsewhere as they are too complicated for this comment. 2016intrinsic("sample_mask_agx", src_comp=[1, 1]) 2017 2018# Discard a subset of samples given by a specified sample mask. This acts like a 2019# per-sample discard, or an inverted accumulating gl_SampleMask write. The 2020# compiler will lower to sample_mask_agx, but that lowering is nontrivial as 2021# sample_mask_agx also triggers depth/stencil testing. 2022intrinsic("discard_agx", src_comp=[1]) 2023 2024# For a given row of the polygon stipple given as an integer source in [0, 31], 2025# load the 32-bit stipple pattern for that row. 2026intrinsic("load_polygon_stipple_agx", src_comp=[1], dest_comp=1, bit_sizes=[32], 2027 flags=[CAN_ELIMINATE, CAN_ELIMINATE]) 2028 2029# The fixed-function sample mask specified in the API (e.g. glSampleMask) 2030system_value("api_sample_mask_agx", 1, bit_sizes=[16]) 2031 2032# Bit mask of samples currently being shaded. For API-level sample shading, this 2033# will usually equal (1 << sample_id). Multiple bits can be set when sample 2034# shading is only enabled due to framebuffer fetch, and the framebuffer has 2035# multiple samples with the same value. 2036# 2037# Used as a loop variable with dynamic sample shading. 2038system_value("active_samples_agx", 1, bit_sizes=[16]) 2039 2040# Loads the sample position array as fixed point packed into a 32-bit word 2041system_value("sample_positions_agx", 1, bit_sizes=[32]) 2042 2043# In a non-monolithic fragment shader part, returns whether this shader part is 2044# responsible for Z/S testing after its final discard. ~0/0 boolean. 2045system_value("shader_part_tests_zs_agx", 1, bit_sizes=[16]) 2046 2047# Returns whether the API depth test is NEVER. We emulate this in shader when 2048# fragment side effects are used to ensure the fragment shader executes. 2049system_value("depth_never_agx", 1, bit_sizes=[16]) 2050 2051# In a fragment shader, returns the log2 of the number of samples in the 2052# tilebuffer. This is the unprocessed value written in the corresponding USC 2053# word. Used to determine whether sample mask writes have any effect when sample 2054# count is dynamic. 2055system_value("samples_log2_agx", 1, bit_sizes=[16]) 2056 2057# Loads the fixed-function glPointSize() value, or zero if the 2058# shader-supplied value should be used. 2059system_value("fixed_point_size_agx", 1, bit_sizes=[32]) 2060 2061# Bit mask of TEX locations that are replaced with point sprites 2062system_value("tex_sprite_mask_agx", 1, bit_sizes=[16]) 2063 2064# Image loads go through the texture cache, which is not coherent with the PBE 2065# or memory access, so fencing is necessary for writes to become visible. 2066 2067# Make writes via main memory (image atomics) visible for texturing. 2068barrier("fence_pbe_to_tex_agx") 2069 2070# Make writes from global memory instructions (atomics) visible for texturing. 2071barrier("fence_mem_to_tex_agx") 2072 2073# Variant of fence_pbe_to_tex_agx specialized to stores in pixel shaders that 2074# act like render target writes, in conjunction with fragment interlock. 2075barrier("fence_pbe_to_tex_pixel_agx") 2076 2077# Unknown fence used in the helper program on exit. 2078barrier("fence_helper_exit_agx") 2079 2080# Pointer to the buffer passing outputs VS->TCS, VS->GS, or TES->GS linkage. 2081system_value("vs_output_buffer_agx", 1, bit_sizes=[64]) 2082 2083# Mask of VS->TCS, VS->GS, or TES->GS outputs. This is modelled as a sysval 2084# directly so it can be dynamic with shader objects or constant folded with 2085# pipelines (including GPL) 2086system_value("vs_outputs_agx", 1, bit_sizes=[64]) 2087 2088# Address of state for AGX input assembly lowering for geometry/tessellation 2089system_value("input_assembly_buffer_agx", 1, bit_sizes=[64]) 2090 2091# Address of the parameter buffer for AGX geometry shaders 2092system_value("geometry_param_buffer_agx", 1, bit_sizes=[64]) 2093 2094# Address of the parameter buffer for AGX tessellation shaders 2095system_value("tess_param_buffer_agx", 1, bit_sizes=[64]) 2096 2097# Address of the pipeline statistic query result indexed by BASE 2098system_value("stat_query_address_agx", 1, bit_sizes=[64], indices=[BASE]) 2099 2100# Helper shader intrinsics 2101# src[] = { value }. 2102intrinsic("doorbell_agx", src_comp=[1]) 2103 2104# src[] = { index, stack_address }. 2105intrinsic("stack_map_agx", src_comp=[1, 1]) 2106 2107# src[] = { index }. 2108# dst[] = { stack_address }. 2109intrinsic("stack_unmap_agx", src_comp=[1], dest_comp=1, bit_sizes=[32]) 2110 2111# dst[] = { GPU core ID }. 2112system_value("core_id_agx", 1, bit_sizes=[32]) 2113 2114# dst[] = { Helper operation type }. 2115load("helper_op_id_agx", [], [], [CAN_ELIMINATE]) 2116 2117# dst[] = { Helper argument low 32 bits }. 2118load("helper_arg_lo_agx", [], [], [CAN_ELIMINATE]) 2119 2120# dst[] = { Helper argument high 32 bits }. 2121load("helper_arg_hi_agx", [], [], [CAN_ELIMINATE]) 2122 2123# Export a vector. At the end of the shader part, the source is copied to the 2124# indexed GPRs starting at BASE. Exports must not overlap within a shader part. 2125# Must only appear in the last block of the shader part. 2126intrinsic("export_agx", [0], indices=[BASE]) 2127 2128# Load an exported vector at the beginning of the shader part from GPRs starting 2129# at BASE. Must only appear in the first block of the shader part. 2130load("exported_agx", [], [BASE], [CAN_ELIMINATE]) 2131 2132# Intel-specific query for loading from the isl_image_param struct passed 2133# into the shader as a uniform. The variable is a deref to the image 2134# variable. The const index specifies which of the six parameters to load. 2135intrinsic("image_deref_load_param_intel", src_comp=[1], dest_comp=0, 2136 indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER]) 2137image("load_raw_intel", src_comp=[1], dest_comp=0, 2138 flags=[CAN_ELIMINATE]) 2139image("store_raw_intel", src_comp=[1, 0]) 2140 2141# Number of data items being operated on for a SIMD program. 2142system_value("simd_width_intel", 1) 2143 2144# Load a relocatable 32-bit value 2145intrinsic("load_reloc_const_intel", dest_comp=1, bit_sizes=[32], 2146 indices=[PARAM_IDX, BASE], flags=[CAN_ELIMINATE, CAN_REORDER]) 2147 2148# 1 component 32bit surface index that can be used for bindless or BTI heaps 2149# 2150# This intrinsic is used to figure out what UBOs accesses could be promoted to 2151# push constants. To allow promoting a load_ubo to push constants, we need to 2152# know that the surface & offset are constants. If we want to use the bindless 2153# heap for this we have to build the surface index with a pushed constant for 2154# the descriptor set which prevents us from doing a nir_src_is_const() check. 2155# With this intrinsic, we can just check the surface_index src with 2156# nir_src_is_const() and ignore set_offset. 2157# 2158# src[] = { set_offset, surface_index, array_index, bindless_base_offset } 2159intrinsic("resource_intel", dest_comp=1, bit_sizes=[32], 2160 src_comp=[1, 1, 1, 1], 2161 indices=[DESC_SET, BINDING, RESOURCE_ACCESS_INTEL, RESOURCE_BLOCK_INTEL], 2162 flags=[CAN_ELIMINATE, CAN_REORDER]) 2163 2164# OpSubgroupBlockReadINTEL and OpSubgroupBlockWriteINTEL from SPV_INTEL_subgroups. 2165intrinsic("load_deref_block_intel", dest_comp=0, src_comp=[-1], 2166 indices=[ACCESS], flags=[CAN_ELIMINATE]) 2167intrinsic("store_deref_block_intel", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS]) 2168 2169# src[] = { address }. 2170load("global_block_intel", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 2171 2172# src[] = { buffer_index, offset }. 2173load("ssbo_block_intel", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 2174 2175# src[] = { offset }. 2176load("shared_block_intel", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 2177 2178# src[] = { value, address }. 2179store("global_block_intel", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 2180 2181# src[] = { value, block_index, offset } 2182store("ssbo_block_intel", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET]) 2183 2184# src[] = { value, offset }. 2185store("shared_block_intel", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET]) 2186 2187# src[] = { address }. 2188load("global_constant_uniform_block_intel", [1], 2189 [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER]) 2190 2191# Similar to load_global_const_block_intel but for UBOs 2192# offset should be uniform 2193# src[] = { buffer_index, offset }. 2194load("ubo_uniform_block_intel", [-1, 1], 2195 [ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER]) 2196 2197# Similar to load_global_const_block_intel but for SSBOs 2198# offset should be uniform 2199# src[] = { buffer_index, offset }. 2200load("ssbo_uniform_block_intel", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 2201 2202# Similar to load_global_const_block_intel but for shared memory 2203# src[] = { offset }. 2204load("shared_uniform_block_intel", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE]) 2205 2206# Intrinsics for Intel mesh shading 2207system_value("mesh_inline_data_intel", 1, [ALIGN_OFFSET], bit_sizes=[32, 64]) 2208 2209# Intrinsics for Intel bindless thread dispatch 2210# BASE=brw_topoloy_id 2211system_value("topology_id_intel", 1, indices=[BASE]) 2212system_value("btd_stack_id_intel", 1) 2213system_value("btd_global_arg_addr_intel", 1, bit_sizes=[64]) 2214system_value("btd_local_arg_addr_intel", 1, bit_sizes=[64]) 2215system_value("btd_resume_sbt_addr_intel", 1, bit_sizes=[64]) 2216# src[] = { global_arg_addr, btd_record } 2217intrinsic("btd_spawn_intel", src_comp=[1, 1]) 2218# RANGE=stack_size 2219intrinsic("btd_stack_push_intel", indices=[STACK_SIZE]) 2220# src[] = { } 2221intrinsic("btd_retire_intel") 2222 2223# Intel-specific ray-tracing intrinsic 2224# src[] = { globals, level, operation } SYNCHRONOUS=synchronous 2225intrinsic("trace_ray_intel", src_comp=[1, 1, 1], indices=[SYNCHRONOUS]) 2226 2227# System values used for ray-tracing on Intel 2228system_value("ray_base_mem_addr_intel", 1, bit_sizes=[64]) 2229system_value("ray_hw_stack_size_intel", 1) 2230system_value("ray_sw_stack_size_intel", 1) 2231system_value("ray_num_dss_rt_stacks_intel", 1) 2232system_value("ray_hit_sbt_addr_intel", 1, bit_sizes=[64]) 2233system_value("ray_hit_sbt_stride_intel", 1, bit_sizes=[16]) 2234system_value("ray_miss_sbt_addr_intel", 1, bit_sizes=[64]) 2235system_value("ray_miss_sbt_stride_intel", 1, bit_sizes=[16]) 2236system_value("callable_sbt_addr_intel", 1, bit_sizes=[64]) 2237system_value("callable_sbt_stride_intel", 1, bit_sizes=[16]) 2238system_value("leaf_opaque_intel", 1, bit_sizes=[1]) 2239system_value("leaf_procedural_intel", 1, bit_sizes=[1]) 2240# Values : 2241# 0: AnyHit 2242# 1: ClosestHit 2243# 2: Miss 2244# 3: Intersection 2245system_value("btd_shader_type_intel", 1) 2246system_value("ray_query_global_intel", 1, bit_sizes=[64]) 2247 2248# Source 0: Accumulator matrix (type specified by DEST_TYPE) 2249# Source 1: A matrix (type specified by SRC_TYPE) 2250# Source 2: B matrix (type specified by SRC_TYPE) 2251# 2252# The matrix parameters are the slices owned by the invocation. 2253# 2254# The accumulator is source 0 because that is the source the intrinsic 2255# infrastructure in NIR uses to determine the number of components in the 2256# result. 2257# 2258# The number of components for the second source is -1 to avoid validation of 2259# its value. Some supported configurations will have the component count of 2260# that matrix different than the others. 2261intrinsic("dpas_intel", dest_comp=0, src_comp=[0, -1, 0], 2262 indices=[DEST_TYPE, SRC_TYPE, SATURATE, SYSTOLIC_DEPTH, REPEAT_COUNT], 2263 flags=[CAN_ELIMINATE]) 2264 2265# NVIDIA-specific intrinsics 2266# src[] = { index, offset }. 2267intrinsic("ldc_nv", dest_comp=0, src_comp=[1, 1], 2268 indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], 2269 flags=[CAN_ELIMINATE, CAN_REORDER]) 2270# [Un]pins an LDCX handle around non-uniform control-flow sections 2271# src[] = { handle }. 2272intrinsic("pin_cx_handle_nv", src_comp=[1]) 2273intrinsic("unpin_cx_handle_nv", src_comp=[1]) 2274# src[] = { handle, offset }. 2275intrinsic("ldcx_nv", dest_comp=0, src_comp=[1, 1], 2276 indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], 2277 flags=[CAN_ELIMINATE, CAN_REORDER]) 2278intrinsic("load_sysval_nv", dest_comp=1, src_comp=[], bit_sizes=[32, 64], 2279 indices=[ACCESS, BASE], flags=[CAN_ELIMINATE]) 2280intrinsic("isberd_nv", dest_comp=1, src_comp=[1], bit_sizes=[32], 2281 flags=[CAN_ELIMINATE, CAN_REORDER]) 2282intrinsic("al2p_nv", dest_comp=1, src_comp=[1], bit_sizes=[32], 2283 indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER]) 2284# src[] = { vtx, offset }. 2285# FLAGS is struct nak_nir_attr_io_flags 2286intrinsic("ald_nv", dest_comp=0, src_comp=[1, 1], bit_sizes=[32], 2287 indices=[BASE, RANGE_BASE, RANGE, FLAGS, ACCESS], 2288 flags=[CAN_ELIMINATE]) 2289# src[] = { data, vtx, offset }. 2290# FLAGS is struct nak_nir_attr_io_flags 2291intrinsic("ast_nv", src_comp=[0, 1, 1], 2292 indices=[BASE, RANGE_BASE, RANGE, FLAGS], flags=[]) 2293# src[] = { inv_w, offset }. 2294intrinsic("ipa_nv", dest_comp=1, src_comp=[1, 1], bit_sizes=[32], 2295 indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER]) 2296# FLAGS indicate if we load vertex_id == 2 2297intrinsic("ldtram_nv", dest_comp=2, bit_sizes=[32], 2298 indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER]) 2299 2300# NVIDIA-specific Geometry Shader intrinsics. 2301# These contain an additional integer source and destination with the primitive handle input/output. 2302intrinsic("emit_vertex_nv", dest_comp=1, src_comp=[1], indices=[STREAM_ID]) 2303intrinsic("end_primitive_nv", dest_comp=1, src_comp=[1], indices=[STREAM_ID]) 2304# Contains the final primitive handle and indicate the end of emission. 2305intrinsic("final_primitive_nv", src_comp=[1]) 2306 2307# src[] = { data }. 2308intrinsic("fs_out_nv", src_comp=[1], indices=[BASE], flags=[]) 2309barrier("copy_fs_outputs_nv") 2310 2311intrinsic("bar_set_nv", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE]) 2312intrinsic("bar_break_nv", dest_comp=1, bit_sizes=[32], src_comp=[1, 1]) 2313# src[] = { bar, bar_set } 2314intrinsic("bar_sync_nv", src_comp=[1, 1]) 2315 2316# Stall until the given SSA value is available 2317intrinsic("ssa_bar_nv", src_comp=[1]) 2318 2319# NVIDIA-specific system values 2320system_value("warps_per_sm_nv", 1, bit_sizes=[32]) 2321system_value("sm_count_nv", 1, bit_sizes=[32]) 2322system_value("warp_id_nv", 1, bit_sizes=[32]) 2323system_value("sm_id_nv", 1, bit_sizes=[32]) 2324 2325# In order to deal with flipped render targets, gl_PointCoord may be flipped 2326# in the shader requiring a shader key or extra instructions or it may be 2327# flipped in hardware based on a state bit. This version of gl_PointCoord 2328# is defined to be whatever thing the hardware can easily give you, so long as 2329# it's in normalized coordinates in the range [0, 1] across the point. 2330intrinsic("load_point_coord_maybe_flipped", dest_comp=2, bit_sizes=[32]) 2331 2332 2333# Load texture size values: 2334# 2335# Takes a sampler # and returns width, height and depth. If texture is a array 2336# texture it returns width, height and array size. Used for txs lowering. 2337intrinsic("load_texture_size_etna", src_comp=[1], dest_comp=3, 2338 flags=[CAN_ELIMINATE, CAN_REORDER]) 2339 2340# Zink specific intrinsics 2341 2342# src[] = { field }. 2343load("push_constant_zink", [1], [COMPONENT], [CAN_ELIMINATE, CAN_REORDER]) 2344 2345system_value("shader_index", 1, bit_sizes=[32]) 2346 2347system_value("coalesced_input_count", 1, bit_sizes=[32]) 2348 2349# Initialize a payload array per scope 2350# 2351# 0. Payloads deref 2352# 1. Payload count 2353# 2. Node index 2354intrinsic("initialize_node_payloads", src_comp=[-1, 1, 1], indices=[EXECUTION_SCOPE]) 2355 2356# Optionally enqueue payloads after shader finished writing to them 2357intrinsic("enqueue_node_payloads", src_comp=[-1]) 2358 2359# Returns true if it has been called for every payload. 2360intrinsic("finalize_incoming_node_payload", src_comp=[-1], dest_comp=1) 2361