1 /*
2 * Copyright © 2023 Collabora, Ltd.
3 * Copyright © 2017 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include "util/u_math.h"
26 #include "nir.h"
27 #include "nir_builder.h"
28
29 /**
30 * \file nir_opt_intrinsics.c
31 */
32
33 static nir_intrinsic_instr *
lower_subgroups_64bit_split_intrinsic(nir_builder * b,nir_intrinsic_instr * intrin,unsigned int component)34 lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
35 unsigned int component)
36 {
37 nir_def *comp;
38 if (component == 0)
39 comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa);
40 else
41 comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa);
42
43 nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
44 nir_def_init(&intr->instr, &intr->def, 1, 32);
45 intr->const_index[0] = intrin->const_index[0];
46 intr->const_index[1] = intrin->const_index[1];
47 intr->src[0] = nir_src_for_ssa(comp);
48 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2)
49 intr->src[1] = nir_src_for_ssa(intrin->src[1].ssa);
50
51 intr->num_components = 1;
52 nir_builder_instr_insert(b, &intr->instr);
53 return intr;
54 }
55
56 static nir_def *
lower_subgroup_op_to_32bit(nir_builder * b,nir_intrinsic_instr * intrin)57 lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin)
58 {
59 assert(intrin->src[0].ssa->bit_size == 64);
60 nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0);
61 nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1);
62 return nir_pack_64_2x32_split(b, &intr_x->def, &intr_y->def);
63 }
64
65 static nir_def *
ballot_type_to_uint(nir_builder * b,nir_def * value,const nir_lower_subgroups_options * options)66 ballot_type_to_uint(nir_builder *b, nir_def *value,
67 const nir_lower_subgroups_options *options)
68 {
69 /* Allow internal generated ballots to pass through */
70 if (value->num_components == options->ballot_components &&
71 value->bit_size == options->ballot_bit_size)
72 return value;
73
74 /* Only the new-style SPIR-V subgroup instructions take a ballot result as
75 * an argument, so we only use this on uvec4 types.
76 */
77 assert(value->num_components == 4 && value->bit_size == 32);
78
79 return nir_extract_bits(b, &value, 1, 0, options->ballot_components,
80 options->ballot_bit_size);
81 }
82
83 static nir_def *
uint_to_ballot_type(nir_builder * b,nir_def * value,unsigned num_components,unsigned bit_size)84 uint_to_ballot_type(nir_builder *b, nir_def *value,
85 unsigned num_components, unsigned bit_size)
86 {
87 assert(util_is_power_of_two_nonzero(num_components));
88 assert(util_is_power_of_two_nonzero(value->num_components));
89
90 unsigned total_bits = bit_size * num_components;
91
92 /* If the source doesn't have enough bits, zero-pad */
93 if (total_bits > value->bit_size * value->num_components)
94 value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size);
95
96 value = nir_bitcast_vector(b, value, bit_size);
97
98 /* If the source has too many components, truncate. This can happen if,
99 * for instance, we're implementing GL_ARB_shader_ballot or
100 * VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an
101 * architecture with a native 128-bit uvec4 ballot. This comes up in Zink
102 * for OpenGL on Vulkan. It's the job of the driver calling this lowering
103 * pass to ensure that it's restricted subgroup sizes sufficiently that we
104 * have enough ballot bits.
105 */
106 if (value->num_components > num_components)
107 value = nir_trim_vector(b, value, num_components);
108
109 return value;
110 }
111
112 static nir_def *
lower_subgroup_op_to_scalar(nir_builder * b,nir_intrinsic_instr * intrin)113 lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
114 {
115 /* This is safe to call on scalar things but it would be silly */
116 assert(intrin->def.num_components > 1);
117
118 nir_def *value = intrin->src[0].ssa;
119 nir_def *reads[NIR_MAX_VEC_COMPONENTS];
120
121 for (unsigned i = 0; i < intrin->num_components; i++) {
122 nir_intrinsic_instr *chan_intrin =
123 nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
124 nir_def_init(&chan_intrin->instr, &chan_intrin->def, 1,
125 intrin->def.bit_size);
126 chan_intrin->num_components = 1;
127
128 /* value */
129 chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
130 /* invocation */
131 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) {
132 assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2);
133 chan_intrin->src[1] = nir_src_for_ssa(intrin->src[1].ssa);
134 }
135
136 chan_intrin->const_index[0] = intrin->const_index[0];
137 chan_intrin->const_index[1] = intrin->const_index[1];
138
139 nir_builder_instr_insert(b, &chan_intrin->instr);
140 reads[i] = &chan_intrin->def;
141 }
142
143 return nir_vec(b, reads, intrin->num_components);
144 }
145
146 static nir_def *
lower_vote_eq_to_scalar(nir_builder * b,nir_intrinsic_instr * intrin)147 lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
148 {
149 nir_def *value = intrin->src[0].ssa;
150
151 nir_def *result = NULL;
152 for (unsigned i = 0; i < intrin->num_components; i++) {
153 nir_def* chan = nir_channel(b, value, i);
154
155 if (intrin->intrinsic == nir_intrinsic_vote_feq) {
156 chan = nir_vote_feq(b, intrin->def.bit_size, chan);
157 } else {
158 chan = nir_vote_ieq(b, intrin->def.bit_size, chan);
159 }
160
161 if (result) {
162 result = nir_iand(b, result, chan);
163 } else {
164 result = chan;
165 }
166 }
167
168 return result;
169 }
170
171 static nir_def *
lower_vote_eq(nir_builder * b,nir_intrinsic_instr * intrin)172 lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin)
173 {
174 nir_def *value = intrin->src[0].ssa;
175
176 /* We have to implicitly lower to scalar */
177 nir_def *all_eq = NULL;
178 for (unsigned i = 0; i < intrin->num_components; i++) {
179 nir_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i));
180
181 nir_def *is_eq;
182 if (intrin->intrinsic == nir_intrinsic_vote_feq) {
183 is_eq = nir_feq(b, rfi, nir_channel(b, value, i));
184 } else {
185 is_eq = nir_ieq(b, rfi, nir_channel(b, value, i));
186 }
187
188 if (all_eq == NULL) {
189 all_eq = is_eq;
190 } else {
191 all_eq = nir_iand(b, all_eq, is_eq);
192 }
193 }
194
195 return nir_vote_all(b, 1, all_eq);
196 }
197
198 static nir_def *
lower_shuffle_to_swizzle(nir_builder * b,nir_intrinsic_instr * intrin)199 lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin)
200 {
201 unsigned mask = nir_src_as_uint(intrin->src[1]);
202
203 if (mask >= 32)
204 return NULL;
205
206 return nir_masked_swizzle_amd(b, intrin->src[0].ssa,
207 .swizzle_mask = (mask << 10) | 0x1f,
208 .fetch_inactive = true);
209 }
210
211 /* Lowers "specialized" shuffles to a generic nir_intrinsic_shuffle. */
212
213 static nir_def *
lower_to_shuffle(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)214 lower_to_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
215 const nir_lower_subgroups_options *options)
216 {
217 if (intrin->intrinsic == nir_intrinsic_shuffle_xor &&
218 options->lower_shuffle_to_swizzle_amd &&
219 nir_src_is_const(intrin->src[1])) {
220
221 nir_def *result = lower_shuffle_to_swizzle(b, intrin);
222 if (result)
223 return result;
224 }
225
226 nir_def *index = nir_load_subgroup_invocation(b);
227 switch (intrin->intrinsic) {
228 case nir_intrinsic_shuffle_xor:
229 index = nir_ixor(b, index, intrin->src[1].ssa);
230 break;
231 case nir_intrinsic_shuffle_up:
232 index = nir_isub(b, index, intrin->src[1].ssa);
233 break;
234 case nir_intrinsic_shuffle_down:
235 index = nir_iadd(b, index, intrin->src[1].ssa);
236 break;
237 case nir_intrinsic_quad_broadcast:
238 index = nir_ior(b, nir_iand_imm(b, index, ~0x3),
239 intrin->src[1].ssa);
240 break;
241 case nir_intrinsic_quad_swap_horizontal:
242 /* For Quad operations, subgroups are divided into quads where
243 * (invocation % 4) is the index to a square arranged as follows:
244 *
245 * +---+---+
246 * | 0 | 1 |
247 * +---+---+
248 * | 2 | 3 |
249 * +---+---+
250 */
251 index = nir_ixor(b, index, nir_imm_int(b, 0x1));
252 break;
253 case nir_intrinsic_quad_swap_vertical:
254 index = nir_ixor(b, index, nir_imm_int(b, 0x2));
255 break;
256 case nir_intrinsic_quad_swap_diagonal:
257 index = nir_ixor(b, index, nir_imm_int(b, 0x3));
258 break;
259 case nir_intrinsic_rotate: {
260 nir_def *delta = intrin->src[1].ssa;
261 nir_def *local_id = nir_load_subgroup_invocation(b);
262 const unsigned cluster_size = nir_intrinsic_cluster_size(intrin);
263
264 nir_def *rotation_group_mask =
265 cluster_size > 0 ? nir_imm_int(b, (int)(cluster_size - 1)) : nir_iadd_imm(b, nir_load_subgroup_size(b), -1);
266
267 index = nir_iand(b, nir_iadd(b, local_id, delta),
268 rotation_group_mask);
269 if (cluster_size > 0) {
270 index = nir_iadd(b, index,
271 nir_iand(b, local_id, nir_inot(b, rotation_group_mask)));
272 }
273 break;
274 }
275 default:
276 unreachable("Invalid intrinsic");
277 }
278
279 return nir_shuffle(b, intrin->src[0].ssa, index);
280 }
281
282 static const struct glsl_type *
glsl_type_for_ssa(nir_def * def)283 glsl_type_for_ssa(nir_def *def)
284 {
285 const struct glsl_type *comp_type = def->bit_size == 1 ? glsl_bool_type() : glsl_uintN_t_type(def->bit_size);
286 return glsl_replace_vector_type(comp_type, def->num_components);
287 }
288
289 /* Lower nir_intrinsic_shuffle to a waterfall loop + nir_read_invocation.
290 */
291 static nir_def *
lower_shuffle(nir_builder * b,nir_intrinsic_instr * intrin)292 lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin)
293 {
294 nir_def *val = intrin->src[0].ssa;
295 nir_def *id = intrin->src[1].ssa;
296
297 /* The loop is something like:
298 *
299 * while (true) {
300 * first_id = readFirstInvocation(gl_SubgroupInvocationID);
301 * first_val = readFirstInvocation(val);
302 * first_result = readInvocation(val, readFirstInvocation(id));
303 * if (id == first_id)
304 * result = first_val;
305 * if (elect()) {
306 * if (id > gl_SubgroupInvocationID) {
307 * result = first_result;
308 * }
309 * break;
310 * }
311 * }
312 *
313 * The idea is to guarantee, on each iteration of the loop, that anything
314 * reading from first_id gets the correct value, so that we can then kill
315 * it off by breaking out of the loop. Before doing that we also have to
316 * ensure that first_id invocation gets the correct value. It only won't be
317 * assigned the correct value already if the invocation it's reading from
318 * isn't already killed off, that is, if it's later than its own ID.
319 * Invocations where id <= gl_SubgroupInvocationID will be assigned their
320 * result in the first if, and invocations where id >
321 * gl_SubgroupInvocationID will be assigned their result in the second if.
322 *
323 * We do this more complicated loop rather than looping over all id's
324 * explicitly because at this point we don't know the "actual" subgroup
325 * size and at the moment there's no way to get at it, which means we may
326 * loop over always-inactive invocations.
327 */
328
329 nir_def *subgroup_id = nir_load_subgroup_invocation(b);
330
331 nir_variable *result =
332 nir_local_variable_create(b->impl, glsl_type_for_ssa(val), "result");
333
334 nir_loop *loop = nir_push_loop(b);
335 {
336 nir_def *first_id = nir_read_first_invocation(b, subgroup_id);
337 nir_def *first_val = nir_read_first_invocation(b, val);
338 nir_def *first_result =
339 nir_read_invocation(b, val, nir_read_first_invocation(b, id));
340
341 nir_if *nif = nir_push_if(b, nir_ieq(b, id, first_id));
342 {
343 nir_store_var(b, result, first_val, BITFIELD_MASK(val->num_components));
344 }
345 nir_pop_if(b, nif);
346
347 nir_if *nif2 = nir_push_if(b, nir_elect(b, 1));
348 {
349 nir_if *nif3 = nir_push_if(b, nir_ult(b, subgroup_id, id));
350 {
351 nir_store_var(b, result, first_result, BITFIELD_MASK(val->num_components));
352 }
353 nir_pop_if(b, nif3);
354
355 nir_jump(b, nir_jump_break);
356 }
357 nir_pop_if(b, nif2);
358 }
359 nir_pop_loop(b, loop);
360
361 return nir_load_var(b, result);
362 }
363
364 static nir_def *
lower_boolean_shuffle(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)365 lower_boolean_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
366 const nir_lower_subgroups_options *options)
367 {
368 assert(options->ballot_components == 1 && options->subgroup_size);
369 nir_def *ballot = nir_ballot_relaxed(b, 1, options->ballot_bit_size, intrin->src[0].ssa);
370
371 nir_def *index = NULL;
372
373 /* If the shuffle amount isn't constant, it might be divergent but
374 * inverse_ballot requires a uniform source, so take a different path.
375 * rotate allows us to assume the delta is uniform unlike shuffle_up/down.
376 */
377 switch (intrin->intrinsic) {
378 case nir_intrinsic_shuffle_up:
379 if (nir_src_is_const(intrin->src[1]))
380 ballot = nir_ishl(b, ballot, intrin->src[1].ssa);
381 else
382 index = nir_isub(b, nir_load_subgroup_invocation(b), intrin->src[1].ssa);
383 break;
384 case nir_intrinsic_shuffle_down:
385 if (nir_src_is_const(intrin->src[1]))
386 ballot = nir_ushr(b, ballot, intrin->src[1].ssa);
387 else
388 index = nir_iadd(b, nir_load_subgroup_invocation(b), intrin->src[1].ssa);
389 break;
390 case nir_intrinsic_shuffle_xor:
391 index = nir_ixor(b, nir_load_subgroup_invocation(b), intrin->src[1].ssa);
392 break;
393 case nir_intrinsic_rotate: {
394 nir_def *delta = nir_as_uniform(b, intrin->src[1].ssa);
395 uint32_t cluster_size = nir_intrinsic_cluster_size(intrin);
396 cluster_size = cluster_size ? cluster_size : options->subgroup_size;
397 cluster_size = MIN2(cluster_size, options->subgroup_size);
398 if (cluster_size == 1) {
399 return intrin->src[0].ssa;
400 } else if (cluster_size == 2) {
401 delta = nir_iand_imm(b, delta, cluster_size - 1);
402 nir_def *lo = nir_iand_imm(b, nir_ushr_imm(b, ballot, 1), 0x5555555555555555ull);
403 nir_def *hi = nir_iand_imm(b, nir_ishl_imm(b, ballot, 1), 0xaaaaaaaaaaaaaaaaull);
404 ballot = nir_bcsel(b, nir_ine_imm(b, delta, 0), nir_ior(b, hi, lo), ballot);
405 } else if (cluster_size == ballot->bit_size) {
406 ballot = nir_uror(b, ballot, delta);
407 } else if (cluster_size == 32) {
408 nir_def *unpacked = nir_unpack_64_2x32(b, ballot);
409 unpacked = nir_uror(b, unpacked, delta);
410 ballot = nir_pack_64_2x32(b, unpacked);
411 } else {
412 delta = nir_iand_imm(b, delta, cluster_size - 1);
413 nir_def *delta_rev = nir_isub_imm(b, cluster_size, delta);
414 nir_def *mask = nir_mask(b, delta_rev, ballot->bit_size);
415 for (uint32_t i = cluster_size; i < ballot->bit_size; i *= 2) {
416 mask = nir_ior(b, nir_ishl_imm(b, mask, i), mask);
417 }
418 nir_def *lo = nir_iand(b, nir_ushr(b, ballot, delta), mask);
419 nir_def *hi = nir_iand(b, nir_ishl(b, ballot, delta_rev), nir_inot(b, mask));
420 ballot = nir_ior(b, lo, hi);
421 }
422 break;
423 }
424 case nir_intrinsic_shuffle:
425 index = intrin->src[1].ssa;
426 break;
427 case nir_intrinsic_read_invocation:
428 index = nir_as_uniform(b, intrin->src[1].ssa);
429 break;
430 default:
431 unreachable("not a boolean shuffle");
432 }
433
434 if (index) {
435 nir_def *mask = nir_ishl(b, nir_imm_intN_t(b, 1, ballot->bit_size), index);
436 return nir_ine_imm(b, nir_iand(b, ballot, mask), 0);
437 } else {
438 return nir_inverse_ballot(b, 1, ballot);
439 }
440 }
441
442 static nir_def *
vec_bit_count(nir_builder * b,nir_def * value)443 vec_bit_count(nir_builder *b, nir_def *value)
444 {
445 nir_def *vec_result = nir_bit_count(b, value);
446 nir_def *result = nir_channel(b, vec_result, 0);
447 for (unsigned i = 1; i < value->num_components; i++)
448 result = nir_iadd(b, result, nir_channel(b, vec_result, i));
449 return result;
450 }
451
452 /* produce a bitmask of 111...000...111... alternating between "size"
453 * 1's and "size" 0's (the LSB is 1).
454 */
455 static uint64_t
reduce_mask(unsigned size,unsigned ballot_bit_size)456 reduce_mask(unsigned size, unsigned ballot_bit_size)
457 {
458 uint64_t mask = 0;
459 for (unsigned i = 0; i < ballot_bit_size; i += 2 * size) {
460 mask |= ((1ull << size) - 1) << i;
461 }
462
463 return mask;
464 }
465
466 /* operate on a uniform per-thread bitmask provided by ballot() to perform the
467 * desired Boolean reduction. Assumes that the identity of the operation is
468 * false (so, no iand).
469 */
470 static nir_def *
lower_boolean_reduce_internal(nir_builder * b,nir_def * src,unsigned cluster_size,nir_op op,const nir_lower_subgroups_options * options)471 lower_boolean_reduce_internal(nir_builder *b, nir_def *src,
472 unsigned cluster_size, nir_op op,
473 const nir_lower_subgroups_options *options)
474 {
475 for (unsigned size = 1; size < cluster_size; size *= 2) {
476 nir_def *shifted = nir_ushr_imm(b, src, size);
477 src = nir_build_alu2(b, op, shifted, src);
478 uint64_t mask = reduce_mask(size, options->ballot_bit_size);
479 src = nir_iand_imm(b, src, mask);
480 shifted = nir_ishl_imm(b, src, size);
481 src = nir_ior(b, src, shifted);
482 }
483
484 return src;
485 }
486
487 /* operate on a uniform per-thread bitmask provided by ballot() to perform the
488 * desired Boolean inclusive scan. Assumes that the identity of the operation is
489 * false (so, no iand).
490 */
491 static nir_def *
lower_boolean_scan_internal(nir_builder * b,nir_def * src,nir_op op,const nir_lower_subgroups_options * options)492 lower_boolean_scan_internal(nir_builder *b, nir_def *src,
493 nir_op op,
494 const nir_lower_subgroups_options *options)
495 {
496 if (op == nir_op_ior) {
497 /* We want to return a bitmask with all 1's starting at the first 1 in
498 * src. -src is equivalent to ~src + 1. While src | ~src returns all
499 * 1's, src | (~src + 1) returns all 1's except for the bits changed by
500 * the increment. Any 1's before the least significant 0 of ~src are
501 * turned into 0 (zeroing those bits after or'ing) and the least
502 * signficant 0 of ~src is turned into 1 (not doing anything). So the
503 * final output is what we want.
504 */
505 return nir_ior(b, src, nir_ineg(b, src));
506 } else {
507 assert(op == nir_op_ixor);
508 for (unsigned shift = 1; shift < options->ballot_bit_size; shift *= 2) {
509 src = nir_ixor(b, src, nir_ishl_imm(b, src, shift));
510 }
511 return src;
512 }
513 }
514
515 static nir_def *
lower_boolean_reduce(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)516 lower_boolean_reduce(nir_builder *b, nir_intrinsic_instr *intrin,
517 const nir_lower_subgroups_options *options)
518 {
519 assert(intrin->num_components == 1);
520 assert(options->ballot_components == 1);
521
522 unsigned cluster_size =
523 intrin->intrinsic == nir_intrinsic_reduce ? nir_intrinsic_cluster_size(intrin) : 0;
524 nir_op op = nir_intrinsic_reduction_op(intrin);
525
526 /* For certain cluster sizes, reductions of iand and ior can be implemented
527 * more efficiently.
528 */
529 if (intrin->intrinsic == nir_intrinsic_reduce) {
530 if (cluster_size == 0) {
531 if (op == nir_op_iand)
532 return nir_vote_all(b, 1, intrin->src[0].ssa);
533 else if (op == nir_op_ior)
534 return nir_vote_any(b, 1, intrin->src[0].ssa);
535 else if (op == nir_op_ixor)
536 return nir_i2b(b, nir_iand_imm(b, vec_bit_count(b, nir_ballot(b,
537 options->ballot_components,
538 options->ballot_bit_size,
539 intrin->src[0].ssa)),
540 1));
541 else
542 unreachable("bad boolean reduction op");
543 }
544
545 if (cluster_size == 4) {
546 if (op == nir_op_iand)
547 return nir_quad_vote_all(b, 1, intrin->src[0].ssa);
548 else if (op == nir_op_ior)
549 return nir_quad_vote_any(b, 1, intrin->src[0].ssa);
550 }
551 }
552
553 nir_def *src = intrin->src[0].ssa;
554
555 /* Apply DeMorgan's law to implement "and" reductions, since all the
556 * lower_boolean_*_internal() functions assume an identity of 0 to make the
557 * generated code shorter.
558 */
559 nir_op new_op = (op == nir_op_iand) ? nir_op_ior : op;
560 if (op == nir_op_iand) {
561 src = nir_inot(b, src);
562 }
563
564 nir_def *val = nir_ballot(b, options->ballot_components, options->ballot_bit_size, src);
565
566 switch (intrin->intrinsic) {
567 case nir_intrinsic_reduce:
568 val = lower_boolean_reduce_internal(b, val, cluster_size, new_op, options);
569 break;
570 case nir_intrinsic_inclusive_scan:
571 val = lower_boolean_scan_internal(b, val, new_op, options);
572 break;
573 case nir_intrinsic_exclusive_scan:
574 val = lower_boolean_scan_internal(b, val, new_op, options);
575 val = nir_ishl_imm(b, val, 1);
576 break;
577 default:
578 unreachable("bad intrinsic");
579 }
580
581 if (op == nir_op_iand) {
582 val = nir_inot(b, val);
583 }
584
585 return nir_inverse_ballot(b, 1, val);
586 }
587
588 static nir_def *
build_identity(nir_builder * b,unsigned bit_size,nir_op op)589 build_identity(nir_builder *b, unsigned bit_size, nir_op op)
590 {
591 nir_const_value ident_const = nir_alu_binop_identity(op, bit_size);
592 return nir_build_imm(b, 1, bit_size, &ident_const);
593 }
594
595 /* Implementation of scan/reduce that assumes a full subgroup */
596 static nir_def *
build_scan_full(nir_builder * b,nir_intrinsic_op op,nir_op red_op,nir_def * data,unsigned cluster_size)597 build_scan_full(nir_builder *b, nir_intrinsic_op op, nir_op red_op,
598 nir_def *data, unsigned cluster_size)
599 {
600 switch (op) {
601 case nir_intrinsic_exclusive_scan:
602 case nir_intrinsic_inclusive_scan: {
603 for (unsigned i = 1; i < cluster_size; i *= 2) {
604 nir_def *idx = nir_load_subgroup_invocation(b);
605 nir_def *has_buddy = nir_ige_imm(b, idx, i);
606
607 nir_def *buddy_data = nir_shuffle_up(b, data, nir_imm_int(b, i));
608 nir_def *accum = nir_build_alu2(b, red_op, data, buddy_data);
609 data = nir_bcsel(b, has_buddy, accum, data);
610 }
611
612 if (op == nir_intrinsic_exclusive_scan) {
613 /* For exclusive scans, we need to shift one more time and fill in the
614 * bottom channel with identity.
615 */
616 nir_def *idx = nir_load_subgroup_invocation(b);
617 nir_def *has_buddy = nir_ige_imm(b, idx, 1);
618
619 nir_def *buddy_data = nir_shuffle_up(b, data, nir_imm_int(b, 1));
620 nir_def *identity = build_identity(b, data->bit_size, red_op);
621 data = nir_bcsel(b, has_buddy, buddy_data, identity);
622 }
623
624 return data;
625 }
626
627 case nir_intrinsic_reduce: {
628 for (unsigned i = 1; i < cluster_size; i *= 2) {
629 nir_def *buddy_data = nir_shuffle_xor(b, data, nir_imm_int(b, i));
630 data = nir_build_alu2(b, red_op, data, buddy_data);
631 }
632 return data;
633 }
634
635 default:
636 unreachable("Unsupported scan/reduce op");
637 }
638 }
639
640 /* Fully generic implementation of scan/reduce that takes a mask */
641 static nir_def *
build_scan_reduce(nir_builder * b,nir_intrinsic_op op,nir_op red_op,nir_def * data,nir_def * mask,unsigned max_mask_bits,unsigned subgroup_size)642 build_scan_reduce(nir_builder *b, nir_intrinsic_op op, nir_op red_op,
643 nir_def *data, nir_def *mask, unsigned max_mask_bits,
644 unsigned subgroup_size)
645 {
646 nir_def *lt_mask = nir_load_subgroup_lt_mask(b, 1, subgroup_size);
647
648 /* Mask of all channels whose values we need to accumulate. Our own value
649 * is already in accum, if inclusive, thanks to the initialization above.
650 * We only need to consider lower indexed invocations.
651 */
652 nir_def *remaining = nir_iand(b, mask, lt_mask);
653
654 for (unsigned i = 1; i < max_mask_bits; i *= 2) {
655 /* At each step, our buddy channel is the first channel we have yet to
656 * take into account in the accumulator.
657 */
658 nir_def *has_buddy = nir_ine_imm(b, remaining, 0);
659 nir_def *buddy = nir_ufind_msb(b, remaining);
660
661 /* Accumulate with our buddy channel, if any */
662 nir_def *buddy_data = nir_shuffle(b, data, buddy);
663 nir_def *accum = nir_build_alu2(b, red_op, data, buddy_data);
664 data = nir_bcsel(b, has_buddy, accum, data);
665
666 /* We just took into account everything in our buddy's accumulator from
667 * the previous step. The only things remaining are whatever channels
668 * were remaining for our buddy.
669 */
670 nir_def *buddy_remaining = nir_shuffle(b, remaining, buddy);
671 remaining = nir_bcsel(b, has_buddy, buddy_remaining, nir_imm_int(b, 0));
672 }
673
674 switch (op) {
675 case nir_intrinsic_exclusive_scan: {
676 /* For exclusive scans, we need to shift one more time and fill in the
677 * bottom channel with identity.
678 *
679 * Some of this will get CSE'd with the first step but that's okay. The
680 * code is cleaner this way.
681 */
682 nir_def *lower = nir_iand(b, mask, lt_mask);
683 nir_def *has_buddy = nir_ine_imm(b, lower, 0);
684 nir_def *buddy = nir_ufind_msb(b, lower);
685
686 nir_def *buddy_data = nir_shuffle(b, data, buddy);
687 nir_def *identity = build_identity(b, data->bit_size, red_op);
688 return nir_bcsel(b, has_buddy, buddy_data, identity);
689 }
690
691 case nir_intrinsic_inclusive_scan:
692 return data;
693
694 case nir_intrinsic_reduce: {
695 /* For reductions, we need to take the top value of the scan */
696 nir_def *idx = nir_ufind_msb(b, mask);
697 return nir_shuffle(b, data, idx);
698 }
699
700 default:
701 unreachable("Unsupported scan/reduce op");
702 }
703 }
704
705 static nir_def *
lower_scan_reduce(nir_builder * b,nir_intrinsic_instr * intrin,unsigned subgroup_size)706 lower_scan_reduce(nir_builder *b, nir_intrinsic_instr *intrin,
707 unsigned subgroup_size)
708 {
709 const nir_op red_op = nir_intrinsic_reduction_op(intrin);
710
711 /* Grab the cluster size */
712 unsigned cluster_size = subgroup_size;
713 if (nir_intrinsic_has_cluster_size(intrin)) {
714 cluster_size = nir_intrinsic_cluster_size(intrin);
715 if (cluster_size == 0 || cluster_size > subgroup_size)
716 cluster_size = subgroup_size;
717 }
718
719 /* Check if all invocations are active. If so, we use the fast path. */
720 nir_def *mask = nir_ballot(b, 1, subgroup_size, nir_imm_true(b));
721
722 nir_def *full, *partial;
723 nir_push_if(b, nir_ieq_imm(b, mask, -1));
724 {
725 full = build_scan_full(b, intrin->intrinsic, red_op,
726 intrin->src[0].ssa, cluster_size);
727 }
728 nir_push_else(b, NULL);
729 {
730 /* Mask according to the cluster size */
731 if (cluster_size < subgroup_size) {
732 nir_def *idx = nir_load_subgroup_invocation(b);
733 nir_def *cluster = nir_iand_imm(b, idx, ~(uint64_t)(cluster_size - 1));
734
735 nir_def *cluster_mask = nir_imm_int(b, BITFIELD_MASK(cluster_size));
736 cluster_mask = nir_ishl(b, cluster_mask, cluster);
737
738 mask = nir_iand(b, mask, cluster_mask);
739 }
740
741 partial = build_scan_reduce(b, intrin->intrinsic, red_op,
742 intrin->src[0].ssa, mask, cluster_size,
743 subgroup_size);
744 }
745 nir_pop_if(b, NULL);
746 return nir_if_phi(b, full, partial);
747 }
748
749 static bool
lower_subgroups_filter(const nir_instr * instr,const void * _options)750 lower_subgroups_filter(const nir_instr *instr, const void *_options)
751 {
752 return instr->type == nir_instr_type_intrinsic;
753 }
754
755 /* Return a ballot-mask-sized value which represents "val" sign-extended and
756 * then shifted left by "shift". Only particular values for "val" are
757 * supported, see below.
758 */
759 static nir_def *
build_ballot_imm_ishl(nir_builder * b,int64_t val,nir_def * shift,const nir_lower_subgroups_options * options)760 build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_def *shift,
761 const nir_lower_subgroups_options *options)
762 {
763 /* This only works if all the high bits are the same as bit 1. */
764 assert((val >> 2) == (val & 0x2 ? -1 : 0));
765
766 /* First compute the result assuming one ballot component. */
767 nir_def *result =
768 nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift);
769
770 if (options->ballot_components == 1)
771 return result;
772
773 /* Fix up the result when there is > 1 component. The idea is that nir_ishl
774 * masks out the high bits of the shift value already, so in case there's
775 * more than one component the component which 1 would be shifted into
776 * already has the right value and all we have to do is fixup the other
777 * components. Components below it should always be 0, and components above
778 * it must be either 0 or ~0 because of the assert above. For example, if
779 * the target ballot size is 2 x uint32, and we're shifting 1 by 33, then
780 * we'll feed 33 into ishl, which will mask it off to get 1, so we'll
781 * compute a single-component result of 2, which is correct for the second
782 * component, but the first component needs to be 0, which we get by
783 * comparing the high bits of the shift with 0 and selecting the original
784 * answer or 0 for the first component (and something similar with the
785 * second component). This idea is generalized here for any component count
786 */
787 nir_const_value min_shift[4];
788 for (unsigned i = 0; i < options->ballot_components; i++)
789 min_shift[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
790 nir_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift);
791
792 nir_const_value max_shift[4];
793 for (unsigned i = 0; i < options->ballot_components; i++)
794 max_shift[i] = nir_const_value_for_int((i + 1) * options->ballot_bit_size, 32);
795 nir_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift);
796
797 return nir_bcsel(b, nir_ult(b, shift, max_shift_val),
798 nir_bcsel(b, nir_ult(b, shift, min_shift_val),
799 nir_imm_intN_t(b, val >> 63, result->bit_size),
800 result),
801 nir_imm_intN_t(b, 0, result->bit_size));
802 }
803
804 static nir_def *
build_subgroup_eq_mask(nir_builder * b,const nir_lower_subgroups_options * options)805 build_subgroup_eq_mask(nir_builder *b,
806 const nir_lower_subgroups_options *options)
807 {
808 nir_def *subgroup_idx = nir_load_subgroup_invocation(b);
809
810 return build_ballot_imm_ishl(b, 1, subgroup_idx, options);
811 }
812
813 static nir_def *
build_subgroup_ge_mask(nir_builder * b,const nir_lower_subgroups_options * options)814 build_subgroup_ge_mask(nir_builder *b,
815 const nir_lower_subgroups_options *options)
816 {
817 nir_def *subgroup_idx = nir_load_subgroup_invocation(b);
818
819 return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options);
820 }
821
822 static nir_def *
build_subgroup_gt_mask(nir_builder * b,const nir_lower_subgroups_options * options)823 build_subgroup_gt_mask(nir_builder *b,
824 const nir_lower_subgroups_options *options)
825 {
826 nir_def *subgroup_idx = nir_load_subgroup_invocation(b);
827
828 return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options);
829 }
830
831 /* Return a mask which is 1 for threads up to the run-time subgroup size, i.e.
832 * 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or
833 * above the subgroup size for the masks, but gt_mask and ge_mask make them 1
834 * so we have to "and" with this mask.
835 */
836 static nir_def *
build_subgroup_mask(nir_builder * b,const nir_lower_subgroups_options * options)837 build_subgroup_mask(nir_builder *b,
838 const nir_lower_subgroups_options *options)
839 {
840 nir_def *subgroup_size = nir_load_subgroup_size(b);
841
842 /* First compute the result assuming one ballot component. */
843 nir_def *result =
844 nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size),
845 nir_isub_imm(b, options->ballot_bit_size,
846 subgroup_size));
847
848 /* Since the subgroup size and ballot bitsize are both powers of two, there
849 * are two possible cases to consider:
850 *
851 * (1) The subgroup size is less than the ballot bitsize. We need to return
852 * "result" in the first component and 0 in every other component.
853 * (2) The subgroup size is a multiple of the ballot bitsize. We need to
854 * return ~0 if the subgroup size divided by the ballot bitsize is less
855 * than or equal to the index in the vector and 0 otherwise. For example,
856 * with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need
857 * to return { ~0, ~0, 0, 0 }.
858 *
859 * In case (2) it turns out that "result" will be ~0, because
860 * "ballot_bit_size - subgroup_size" is also a multiple of
861 * "ballot_bit_size" and since nir_ushr masks the shift value it will
862 * shifted by 0. This means that the first component can just be "result"
863 * in all cases. The other components will also get the correct value in
864 * case (1) if we just use the rule in case (2), so we'll get the correct
865 * result if we just follow (2) and then replace the first component with
866 * "result".
867 */
868 nir_const_value min_idx[4];
869 for (unsigned i = 0; i < options->ballot_components; i++)
870 min_idx[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
871 nir_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx);
872
873 nir_def *result_extended =
874 nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components);
875
876 return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size),
877 result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size));
878 }
879
880 static nir_def *
vec_find_lsb(nir_builder * b,nir_def * value)881 vec_find_lsb(nir_builder *b, nir_def *value)
882 {
883 nir_def *vec_result = nir_find_lsb(b, value);
884 nir_def *result = nir_imm_int(b, -1);
885 for (int i = value->num_components - 1; i >= 0; i--) {
886 nir_def *channel = nir_channel(b, vec_result, i);
887 /* result = channel >= 0 ? (i * bitsize + channel) : result */
888 result = nir_bcsel(b, nir_ige_imm(b, channel, 0),
889 nir_iadd_imm(b, channel, i * value->bit_size),
890 result);
891 }
892 return result;
893 }
894
895 static nir_def *
vec_find_msb(nir_builder * b,nir_def * value)896 vec_find_msb(nir_builder *b, nir_def *value)
897 {
898 nir_def *vec_result = nir_ufind_msb(b, value);
899 nir_def *result = nir_imm_int(b, -1);
900 for (unsigned i = 0; i < value->num_components; i++) {
901 nir_def *channel = nir_channel(b, vec_result, i);
902 /* result = channel >= 0 ? (i * bitsize + channel) : result */
903 result = nir_bcsel(b, nir_ige_imm(b, channel, 0),
904 nir_iadd_imm(b, channel, i * value->bit_size),
905 result);
906 }
907 return result;
908 }
909
910 static nir_def *
lower_dynamic_quad_broadcast(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)911 lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin,
912 const nir_lower_subgroups_options *options)
913 {
914 if (!options->lower_quad_broadcast_dynamic_to_const)
915 return lower_to_shuffle(b, intrin, options);
916
917 nir_def *dst = NULL;
918
919 for (unsigned i = 0; i < 4; ++i) {
920 nir_def *qbcst = nir_quad_broadcast(b, intrin->src[0].ssa,
921 nir_imm_int(b, i));
922
923 if (i)
924 dst = nir_bcsel(b, nir_ieq_imm(b, intrin->src[1].ssa, i),
925 qbcst, dst);
926 else
927 dst = qbcst;
928 }
929
930 return dst;
931 }
932
933 static nir_def *
lower_first_invocation_to_ballot(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)934 lower_first_invocation_to_ballot(nir_builder *b, nir_intrinsic_instr *intrin,
935 const nir_lower_subgroups_options *options)
936 {
937 return nir_ballot_find_lsb(b, 32, nir_ballot(b, 4, 32, nir_imm_true(b)));
938 }
939
940 static nir_def *
lower_read_first_invocation(nir_builder * b,nir_intrinsic_instr * intrin)941 lower_read_first_invocation(nir_builder *b, nir_intrinsic_instr *intrin)
942 {
943 return nir_read_invocation(b, intrin->src[0].ssa, nir_first_invocation(b));
944 }
945
946 static nir_def *
lower_read_invocation_to_cond(nir_builder * b,nir_intrinsic_instr * intrin)947 lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin)
948 {
949 return nir_read_invocation_cond_ir3(b, intrin->def.bit_size,
950 intrin->src[0].ssa,
951 nir_ieq(b, intrin->src[1].ssa,
952 nir_load_subgroup_invocation(b)));
953 }
954
955 static nir_def *
lower_subgroups_instr(nir_builder * b,nir_instr * instr,void * _options)956 lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options)
957 {
958 const nir_lower_subgroups_options *options = _options;
959
960 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
961 switch (intrin->intrinsic) {
962 case nir_intrinsic_vote_any:
963 case nir_intrinsic_vote_all:
964 if (options->lower_vote_trivial)
965 return intrin->src[0].ssa;
966 break;
967
968 case nir_intrinsic_vote_feq:
969 case nir_intrinsic_vote_ieq:
970 if (options->lower_vote_trivial)
971 return nir_imm_true(b);
972
973 if (nir_src_bit_size(intrin->src[0]) == 1) {
974 if (options->lower_vote_bool_eq)
975 return lower_vote_eq(b, intrin);
976 } else {
977 if (options->lower_vote_eq)
978 return lower_vote_eq(b, intrin);
979 }
980
981 if (options->lower_to_scalar && intrin->num_components > 1)
982 return lower_vote_eq_to_scalar(b, intrin);
983 break;
984
985 case nir_intrinsic_load_subgroup_size:
986 if (options->subgroup_size)
987 return nir_imm_int(b, options->subgroup_size);
988 break;
989
990 case nir_intrinsic_first_invocation:
991 if (options->subgroup_size == 1)
992 return nir_imm_int(b, 0);
993
994 if (options->lower_first_invocation_to_ballot)
995 return lower_first_invocation_to_ballot(b, intrin, options);
996
997 break;
998
999 case nir_intrinsic_read_invocation:
1000 if (options->lower_to_scalar && intrin->num_components > 1)
1001 return lower_subgroup_op_to_scalar(b, intrin);
1002
1003 if (options->lower_boolean_shuffle && intrin->src[0].ssa->bit_size == 1)
1004 return lower_boolean_shuffle(b, intrin, options);
1005
1006 if (options->lower_read_invocation_to_cond)
1007 return lower_read_invocation_to_cond(b, intrin);
1008
1009 break;
1010
1011 case nir_intrinsic_read_first_invocation:
1012 if (options->lower_to_scalar && intrin->num_components > 1)
1013 return lower_subgroup_op_to_scalar(b, intrin);
1014
1015 if (options->lower_read_first_invocation)
1016 return lower_read_first_invocation(b, intrin);
1017 break;
1018
1019 case nir_intrinsic_load_subgroup_eq_mask:
1020 case nir_intrinsic_load_subgroup_ge_mask:
1021 case nir_intrinsic_load_subgroup_gt_mask:
1022 case nir_intrinsic_load_subgroup_le_mask:
1023 case nir_intrinsic_load_subgroup_lt_mask: {
1024 if (!options->lower_subgroup_masks)
1025 return NULL;
1026
1027 nir_def *val;
1028 switch (intrin->intrinsic) {
1029 case nir_intrinsic_load_subgroup_eq_mask:
1030 val = build_subgroup_eq_mask(b, options);
1031 break;
1032 case nir_intrinsic_load_subgroup_ge_mask:
1033 val = nir_iand(b, build_subgroup_ge_mask(b, options),
1034 build_subgroup_mask(b, options));
1035 break;
1036 case nir_intrinsic_load_subgroup_gt_mask:
1037 val = nir_iand(b, build_subgroup_gt_mask(b, options),
1038 build_subgroup_mask(b, options));
1039 break;
1040 case nir_intrinsic_load_subgroup_le_mask:
1041 val = nir_inot(b, build_subgroup_gt_mask(b, options));
1042 break;
1043 case nir_intrinsic_load_subgroup_lt_mask:
1044 val = nir_inot(b, build_subgroup_ge_mask(b, options));
1045 break;
1046 default:
1047 unreachable("you seriously can't tell this is unreachable?");
1048 }
1049
1050 return uint_to_ballot_type(b, val,
1051 intrin->def.num_components,
1052 intrin->def.bit_size);
1053 }
1054
1055 case nir_intrinsic_ballot: {
1056 if (intrin->def.num_components == options->ballot_components &&
1057 intrin->def.bit_size == options->ballot_bit_size)
1058 return NULL;
1059
1060 nir_def *ballot =
1061 nir_ballot(b, options->ballot_components, options->ballot_bit_size,
1062 intrin->src[0].ssa);
1063
1064 return uint_to_ballot_type(b, ballot,
1065 intrin->def.num_components,
1066 intrin->def.bit_size);
1067 }
1068
1069 case nir_intrinsic_inverse_ballot:
1070 if (options->lower_inverse_ballot) {
1071 return nir_ballot_bitfield_extract(b, 1, intrin->src[0].ssa,
1072 nir_load_subgroup_invocation(b));
1073 } else if (intrin->src[0].ssa->num_components != options->ballot_components ||
1074 intrin->src[0].ssa->bit_size != options->ballot_bit_size) {
1075 return nir_inverse_ballot(b, 1, ballot_type_to_uint(b, intrin->src[0].ssa, options));
1076 }
1077 break;
1078
1079 case nir_intrinsic_ballot_bitfield_extract:
1080 case nir_intrinsic_ballot_bit_count_reduce:
1081 case nir_intrinsic_ballot_find_lsb:
1082 case nir_intrinsic_ballot_find_msb: {
1083 nir_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
1084 options);
1085
1086 if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract &&
1087 intrin->intrinsic != nir_intrinsic_ballot_find_lsb) {
1088 /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says:
1089 *
1090 * "Find the most significant bit set to 1 in Value, considering
1091 * only the bits in Value required to represent all bits of the
1092 * group’s invocations. If none of the considered bits is set to
1093 * 1, the result is undefined."
1094 *
1095 * It has similar text for the other three. This means that, in case
1096 * the subgroup size is less than 32, we have to mask off the unused
1097 * bits. If the subgroup size is fixed and greater than or equal to
1098 * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete
1099 * the iand.
1100 *
1101 * We only have to worry about this for BitCount and FindMSB because
1102 * FindLSB counts from the bottom and BitfieldExtract selects
1103 * individual bits. In either case, if run outside the range of
1104 * valid bits, we hit the undefined results case and we can return
1105 * anything we want.
1106 */
1107 int_val = nir_iand(b, int_val, build_subgroup_mask(b, options));
1108 }
1109
1110 switch (intrin->intrinsic) {
1111 case nir_intrinsic_ballot_bitfield_extract: {
1112 nir_def *idx = intrin->src[1].ssa;
1113 if (int_val->num_components > 1) {
1114 /* idx will be truncated by nir_ushr, so we just need to select
1115 * the right component using the bits of idx that are truncated in
1116 * the shift.
1117 */
1118 int_val =
1119 nir_vector_extract(b, int_val,
1120 nir_udiv_imm(b, idx, int_val->bit_size));
1121 }
1122
1123 return nir_test_mask(b, nir_ushr(b, int_val, idx), 1);
1124 }
1125 case nir_intrinsic_ballot_bit_count_reduce:
1126 return vec_bit_count(b, int_val);
1127 case nir_intrinsic_ballot_find_lsb:
1128 return vec_find_lsb(b, int_val);
1129 case nir_intrinsic_ballot_find_msb:
1130 return vec_find_msb(b, int_val);
1131 default:
1132 unreachable("you seriously can't tell this is unreachable?");
1133 }
1134 }
1135
1136 case nir_intrinsic_ballot_bit_count_exclusive:
1137 case nir_intrinsic_ballot_bit_count_inclusive: {
1138 nir_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
1139 options);
1140 if (options->lower_ballot_bit_count_to_mbcnt_amd) {
1141 nir_def *acc;
1142 if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_exclusive) {
1143 acc = nir_imm_int(b, 0);
1144 } else {
1145 acc = nir_iand_imm(b, nir_u2u32(b, int_val), 0x1);
1146 int_val = nir_ushr_imm(b, int_val, 1);
1147 }
1148 return nir_mbcnt_amd(b, int_val, acc);
1149 }
1150
1151 nir_def *mask;
1152 if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) {
1153 mask = nir_inot(b, build_subgroup_gt_mask(b, options));
1154 } else {
1155 mask = nir_inot(b, build_subgroup_ge_mask(b, options));
1156 }
1157
1158 return vec_bit_count(b, nir_iand(b, int_val, mask));
1159 }
1160
1161 case nir_intrinsic_elect: {
1162 if (!options->lower_elect)
1163 return NULL;
1164
1165 return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b));
1166 }
1167
1168 case nir_intrinsic_shuffle:
1169 if (options->lower_shuffle &&
1170 (!options->lower_boolean_shuffle || intrin->src[0].ssa->bit_size != 1))
1171 return lower_shuffle(b, intrin);
1172 else if (options->lower_to_scalar && intrin->num_components > 1)
1173 return lower_subgroup_op_to_scalar(b, intrin);
1174 else if (options->lower_boolean_shuffle && intrin->src[0].ssa->bit_size == 1)
1175 return lower_boolean_shuffle(b, intrin, options);
1176 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
1177 return lower_subgroup_op_to_32bit(b, intrin);
1178 break;
1179 case nir_intrinsic_shuffle_xor:
1180 case nir_intrinsic_shuffle_up:
1181 case nir_intrinsic_shuffle_down:
1182 if (options->lower_relative_shuffle &&
1183 (!options->lower_boolean_shuffle || intrin->src[0].ssa->bit_size != 1))
1184 return lower_to_shuffle(b, intrin, options);
1185 else if (options->lower_to_scalar && intrin->num_components > 1)
1186 return lower_subgroup_op_to_scalar(b, intrin);
1187 else if (options->lower_boolean_shuffle && intrin->src[0].ssa->bit_size == 1)
1188 return lower_boolean_shuffle(b, intrin, options);
1189 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
1190 return lower_subgroup_op_to_32bit(b, intrin);
1191 break;
1192
1193 case nir_intrinsic_quad_broadcast:
1194 case nir_intrinsic_quad_swap_horizontal:
1195 case nir_intrinsic_quad_swap_vertical:
1196 case nir_intrinsic_quad_swap_diagonal:
1197 if (options->lower_quad ||
1198 (options->lower_quad_broadcast_dynamic &&
1199 intrin->intrinsic == nir_intrinsic_quad_broadcast &&
1200 !nir_src_is_const(intrin->src[1])))
1201 return lower_dynamic_quad_broadcast(b, intrin, options);
1202 else if (options->lower_to_scalar && intrin->num_components > 1)
1203 return lower_subgroup_op_to_scalar(b, intrin);
1204 break;
1205
1206 case nir_intrinsic_reduce: {
1207 nir_def *ret = NULL;
1208 /* A cluster size greater than the subgroup size is implemention defined */
1209 if (options->subgroup_size &&
1210 nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) {
1211 nir_intrinsic_set_cluster_size(intrin, 0);
1212 ret = NIR_LOWER_INSTR_PROGRESS;
1213 }
1214 if (nir_intrinsic_cluster_size(intrin) == 1)
1215 return intrin->src[0].ssa;
1216 if (options->lower_to_scalar && intrin->num_components > 1)
1217 return lower_subgroup_op_to_scalar(b, intrin);
1218 if (intrin->def.bit_size == 1 &&
1219 (options->lower_boolean_reduce || options->lower_reduce))
1220 return lower_boolean_reduce(b, intrin, options);
1221 if (options->lower_reduce)
1222 return lower_scan_reduce(b, intrin, options->subgroup_size);
1223 return ret;
1224 }
1225 case nir_intrinsic_inclusive_scan:
1226 case nir_intrinsic_exclusive_scan:
1227 if (options->lower_to_scalar && intrin->num_components > 1)
1228 return lower_subgroup_op_to_scalar(b, intrin);
1229 if (intrin->def.bit_size == 1 &&
1230 (options->lower_boolean_reduce || options->lower_reduce))
1231 return lower_boolean_reduce(b, intrin, options);
1232 if (options->lower_reduce)
1233 return lower_scan_reduce(b, intrin, options->subgroup_size);
1234 break;
1235
1236 case nir_intrinsic_rotate:
1237 if (options->lower_rotate_to_shuffle &&
1238 (!options->lower_boolean_shuffle || intrin->src[0].ssa->bit_size != 1))
1239 return lower_to_shuffle(b, intrin, options);
1240 else if (options->lower_to_scalar && intrin->num_components > 1)
1241 return lower_subgroup_op_to_scalar(b, intrin);
1242 else if (options->lower_boolean_shuffle && intrin->src[0].ssa->bit_size == 1)
1243 return lower_boolean_shuffle(b, intrin, options);
1244 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
1245 return lower_subgroup_op_to_32bit(b, intrin);
1246 break;
1247 case nir_intrinsic_masked_swizzle_amd:
1248 if (options->lower_to_scalar && intrin->num_components > 1) {
1249 return lower_subgroup_op_to_scalar(b, intrin);
1250 } else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) {
1251 return lower_subgroup_op_to_32bit(b, intrin);
1252 }
1253 break;
1254
1255 default:
1256 break;
1257 }
1258
1259 return NULL;
1260 }
1261
1262 bool
nir_lower_subgroups(nir_shader * shader,const nir_lower_subgroups_options * options)1263 nir_lower_subgroups(nir_shader *shader,
1264 const nir_lower_subgroups_options *options)
1265 {
1266 void *filter = options->filter ? options->filter : lower_subgroups_filter;
1267 return nir_shader_lower_instructions(shader, filter,
1268 lower_subgroups_instr,
1269 (void *)options);
1270 }
1271