xref: /aosp_15_r20/external/libopus/dnn/nnet.h (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1 /* Copyright (c) 2018 Mozilla
2    Copyright (c) 2017 Jean-Marc Valin */
3 /*
4    Redistribution and use in source and binary forms, with or without
5    modification, are permitted provided that the following conditions
6    are met:
7 
8    - Redistributions of source code must retain the above copyright
9    notice, this list of conditions and the following disclaimer.
10 
11    - Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in the
13    documentation and/or other materials provided with the distribution.
14 
15    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
19    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27 
28 #ifndef NNET_H_
29 #define NNET_H_
30 
31 #include <stddef.h>
32 #include "opus_types.h"
33 
34 #define ACTIVATION_LINEAR  0
35 #define ACTIVATION_SIGMOID 1
36 #define ACTIVATION_TANH    2
37 #define ACTIVATION_RELU    3
38 #define ACTIVATION_SOFTMAX 4
39 #define ACTIVATION_SWISH   5
40 
41 #define WEIGHT_BLOB_VERSION 0
42 #define WEIGHT_BLOCK_SIZE 64
43 typedef struct {
44   const char *name;
45   int type;
46   int size;
47   const void *data;
48 } WeightArray;
49 
50 #define WEIGHT_TYPE_float 0
51 #define WEIGHT_TYPE_int 1
52 #define WEIGHT_TYPE_qweight 2
53 #define WEIGHT_TYPE_int8 3
54 
55 typedef struct {
56   char head[4];
57   int version;
58   int type;
59   int size;
60   int block_size;
61   char name[44];
62 } WeightHead;
63 
64 /* Generic sparse affine transformation. */
65 typedef struct {
66   const float *bias;
67   const float *subias;
68   const opus_int8 *weights;
69   const float *float_weights;
70   const int *weights_idx;
71   const float *diag;
72   const float *scale;
73   int nb_inputs;
74   int nb_outputs;
75 } LinearLayer;
76 
77 /* Generic sparse affine transformation. */
78 typedef struct {
79   const float *bias;
80   const float *float_weights;
81   int in_channels;
82   int out_channels;
83   int ktime;
84   int kheight;
85 } Conv2dLayer;
86 
87 
88 void compute_generic_dense(const LinearLayer *layer, float *output, const float *input, int activation, int arch);
89 void compute_generic_gru(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in, int arch);
90 void compute_generic_conv1d(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int activation, int arch);
91 void compute_generic_conv1d_dilation(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int dilation, int activation, int arch);
92 void compute_glu(const LinearLayer *layer, float *output, const float *input, int arch);
93 void compute_gated_activation(const LinearLayer *layer, float *output, const float *input, int activation, int arch);
94 
95 
96 int parse_weights(WeightArray **list, const void *data, int len);
97 
98 
99 extern const WeightArray lpcnet_arrays[];
100 extern const WeightArray plcmodel_arrays[];
101 extern const WeightArray rdovaeenc_arrays[];
102 extern const WeightArray rdovaedec_arrays[];
103 extern const WeightArray fwgan_arrays[];
104 extern const WeightArray fargan_arrays[];
105 extern const WeightArray pitchdnn_arrays[];
106 extern const WeightArray lossgen_arrays[];
107 
108 int linear_init(LinearLayer *layer, const WeightArray *arrays,
109   const char *bias,
110   const char *subias,
111   const char *weights,
112   const char *float_weights,
113   const char *weights_idx,
114   const char *diag,
115   const char *scale,
116   int nb_inputs,
117   int nb_outputs);
118 
119 int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
120   const char *bias,
121   const char *float_weights,
122   int in_channels,
123   int out_channels,
124   int ktime,
125   int kheight);
126 
127 
128 void compute_linear_c(const LinearLayer *linear, float *out, const float *in);
129 void compute_activation_c(float *output, const float *input, int N, int activation);
130 void compute_conv2d_c(const Conv2dLayer *conv, float *out, float *mem, const float *in, int height, int hstride, int activation);
131 
132 
133 #if defined(OPUS_ARM_MAY_HAVE_DOTPROD) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
134 #include "arm/dnn_arm.h"
135 #endif
136 
137 #if defined(OPUS_X86_MAY_HAVE_SSE2)
138 #include "x86/dnn_x86.h"
139 #endif
140 
141 #ifndef OVERRIDE_COMPUTE_LINEAR
142 #define compute_linear(linear, out, in, arch) ((void)(arch),compute_linear_c(linear, out, in))
143 #endif
144 
145 #ifndef OVERRIDE_COMPUTE_ACTIVATION
146 #define compute_activation(output, input, N, activation, arch) ((void)(arch),compute_activation_c(output, input, N, activation))
147 #endif
148 
149 #ifndef OVERRIDE_COMPUTE_CONV2D
150 #define compute_conv2d(conv, out, mem, in, height, hstride, activation, arch) ((void)(arch),compute_conv2d_c(conv, out, mem, in, height, hstride, activation))
151 #endif
152 
153 #if defined(__x86_64__) && !defined(OPUS_X86_MAY_HAVE_SSE4_1) && !defined(OPUS_X86_MAY_HAVE_AVX2)
154 #if defined(_MSC_VER)
155 #pragma message ("Only SSE and SSE2 are available. On newer machines, enable SSSE3/AVX/AVX2 to get better performance")
156 #else
157 #warning "Only SSE and SSE2 are available. On newer machines, enable SSSE3/AVX/AVX2 using -march= to get better performance"
158 #endif
159 #endif
160 
161 
162 
163 #endif /* NNET_H_ */
164