1#!/usr/bin/env python3 2# Copyright © 2020 NXP and Contributors. All rights reserved. 3# SPDX-License-Identifier: MIT 4 5import pyarmnn as ann 6import numpy as np 7import os 8from PIL import Image 9import example_utils as eu 10 11 12def preprocess_onnx(img: Image, width: int, height: int, data_type, scale: float, mean: list, 13 stddev: list): 14 """Preprocessing function for ONNX imagenet models based on: 15 https://github.com/onnx/models/blob/master/vision/classification/imagenet_inference.ipynb 16 17 Args: 18 img (PIL.Image): Loaded PIL.Image 19 width (int): Target image width 20 height (int): Target image height 21 data_type: Image datatype (np.uint8 or np.float32) 22 scale (float): Scaling factor 23 mean: RGB mean values 24 stddev: RGB standard deviation 25 26 Returns: 27 np.array: Preprocess image as Numpy array 28 """ 29 img = img.resize((256, 256), Image.BILINEAR) 30 # first rescale to 256,256 and then center crop 31 left = (256 - width) / 2 32 top = (256 - height) / 2 33 right = (256 + width) / 2 34 bottom = (256 + height) / 2 35 img = img.crop((left, top, right, bottom)) 36 img = img.convert('RGB') 37 img = np.array(img) 38 img = np.reshape(img, (-1, 3)) # reshape to [RGB][RGB]... 39 img = ((img / scale) - mean) / stddev 40 # NHWC to NCHW conversion, by default NHWC is expected 41 # image is loaded as [RGB][RGB][RGB]... transposing it makes it [RRR...][GGG...][BBB...] 42 img = np.transpose(img) 43 img = img.flatten().astype(data_type) # flatten into a 1D tensor and convert to float32 44 return img 45 46 47if __name__ == "__main__": 48 args = eu.parse_command_line() 49 50 model_filename = 'mobilenetv2-1.0.onnx' 51 labels_filename = 'synset.txt' 52 archive_filename = 'mobilenetv2-1.0.zip' 53 labels_url = 'https://s3.amazonaws.com/onnx-model-zoo/' + labels_filename 54 model_url = 'https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/' + model_filename 55 56 # Download resources 57 image_filenames = eu.get_images(args.data_dir) 58 59 model_filename, labels_filename = eu.get_model_and_labels(args.model_dir, model_filename, labels_filename, 60 archive_filename, 61 [model_url, labels_url]) 62 63 # all 3 resources must exist to proceed further 64 assert os.path.exists(labels_filename) 65 assert os.path.exists(model_filename) 66 assert image_filenames 67 for im in image_filenames: 68 assert (os.path.exists(im)) 69 70 # Create a network from a model file 71 net_id, parser, runtime = eu.create_onnx_network(model_filename) 72 73 # Load input information from the model and create input tensors 74 input_binding_info = parser.GetNetworkInputBindingInfo("data") 75 76 # Load output information from the model and create output tensors 77 output_binding_info = parser.GetNetworkOutputBindingInfo("mobilenetv20_output_flatten0_reshape0") 78 output_tensors = ann.make_output_tensors([output_binding_info]) 79 80 # Load labels 81 labels = eu.load_labels(labels_filename) 82 83 # Load images and resize to expected size 84 images = eu.load_images(image_filenames, 85 224, 224, 86 np.float32, 87 255.0, 88 [0.485, 0.456, 0.406], 89 [0.229, 0.224, 0.225], 90 preprocess_onnx) 91 92 eu.run_inference(runtime, net_id, images, labels, input_binding_info, output_binding_info) 93