1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "optimizing_compiler.h"
18
19 #include <fstream>
20 #include <memory>
21 #include <sstream>
22
23 #include <stdint.h>
24
25 #include "art_method-inl.h"
26 #include "base/arena_allocator.h"
27 #include "base/arena_containers.h"
28 #include "base/dumpable.h"
29 #include "base/logging.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/systrace.h"
34 #include "base/timing_logger.h"
35 #include "builder.h"
36 #include "code_generator.h"
37 #include "compiler.h"
38 #include "debug/elf_debug_writer.h"
39 #include "debug/method_debug_info.h"
40 #include "dex/dex_file_types.h"
41 #include "driver/compiled_code_storage.h"
42 #include "driver/compiler_options.h"
43 #include "driver/dex_compilation_unit.h"
44 #include "graph_checker.h"
45 #include "graph_visualizer.h"
46 #include "inliner.h"
47 #include "jit/debugger_interface.h"
48 #include "jit/jit.h"
49 #include "jit/jit_code_cache.h"
50 #include "jit/jit_logger.h"
51 #include "jni/quick/jni_compiler.h"
52 #include "linker/linker_patch.h"
53 #include "nodes.h"
54 #include "oat/oat_quick_method_header.h"
55 #include "optimizing/write_barrier_elimination.h"
56 #include "prepare_for_register_allocation.h"
57 #include "profiling_info_builder.h"
58 #include "reference_type_propagation.h"
59 #include "register_allocator_linear_scan.h"
60 #include "select_generator.h"
61 #include "ssa_builder.h"
62 #include "ssa_liveness_analysis.h"
63 #include "ssa_phi_elimination.h"
64 #include "stack_map_stream.h"
65 #include "utils/assembler.h"
66
67 namespace art HIDDEN {
68
69 static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
70
71 static constexpr const char* kPassNameSeparator = "$";
72
73 /**
74 * Filter to apply to the visualizer. Methods whose name contain that filter will
75 * be dumped.
76 */
77 static constexpr const char kStringFilter[] = "";
78
79 class PassScope;
80
81 class PassObserver : public ValueObject {
82 public:
PassObserver(HGraph * graph,CodeGenerator * codegen,std::ostream * visualizer_output,const CompilerOptions & compiler_options)83 PassObserver(HGraph* graph,
84 CodeGenerator* codegen,
85 std::ostream* visualizer_output,
86 const CompilerOptions& compiler_options)
87 : graph_(graph),
88 last_seen_graph_size_(0),
89 cached_method_name_(),
90 timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
91 timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
92 disasm_info_(graph->GetAllocator()),
93 visualizer_oss_(),
94 visualizer_output_(visualizer_output),
95 visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
96 visualizer_(&visualizer_oss_, graph, codegen),
97 codegen_(codegen),
98 graph_in_bad_state_(false) {
99 if (timing_logger_enabled_ || visualizer_enabled_) {
100 if (!IsVerboseMethod(compiler_options, GetMethodName())) {
101 timing_logger_enabled_ = visualizer_enabled_ = false;
102 }
103 if (visualizer_enabled_) {
104 visualizer_.PrintHeader(GetMethodName());
105 codegen->SetDisassemblyInformation(&disasm_info_);
106 }
107 }
108 }
109
~PassObserver()110 ~PassObserver() {
111 if (timing_logger_enabled_) {
112 LOG(INFO) << "TIMINGS " << GetMethodName();
113 LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
114 }
115 if (visualizer_enabled_) {
116 FlushVisualizer();
117 }
118 DCHECK(visualizer_oss_.str().empty());
119 }
120
DumpDisassembly()121 void DumpDisassembly() {
122 if (visualizer_enabled_) {
123 visualizer_.DumpGraphWithDisassembly();
124 FlushVisualizer();
125 }
126 }
127
SetGraphInBadState()128 void SetGraphInBadState() { graph_in_bad_state_ = true; }
129
GetMethodName()130 const char* GetMethodName() {
131 // PrettyMethod() is expensive, so we delay calling it until we actually have to.
132 if (cached_method_name_.empty()) {
133 cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
134 }
135 return cached_method_name_.c_str();
136 }
137
138 private:
StartPass(const char * pass_name)139 void StartPass(const char* pass_name) {
140 VLOG(compiler) << "Starting pass: " << pass_name;
141 // Dump graph first, then start timer.
142 if (visualizer_enabled_) {
143 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
144 FlushVisualizer();
145 }
146 if (timing_logger_enabled_) {
147 timing_logger_.StartTiming(pass_name);
148 }
149 }
150
FlushVisualizer()151 void FlushVisualizer() {
152 *visualizer_output_ << visualizer_oss_.str();
153 visualizer_output_->flush();
154 visualizer_oss_.str("");
155 visualizer_oss_.clear();
156 }
157
EndPass(const char * pass_name,bool pass_change)158 void EndPass(const char* pass_name, bool pass_change) {
159 // Pause timer first, then dump graph.
160 if (timing_logger_enabled_) {
161 timing_logger_.EndTiming();
162 }
163 if (visualizer_enabled_) {
164 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
165 FlushVisualizer();
166 }
167
168 // Validate the HGraph if running in debug mode.
169 if (kIsDebugBuild) {
170 if (!graph_in_bad_state_) {
171 GraphChecker checker(graph_, codegen_);
172 last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
173 if (!checker.IsValid()) {
174 std::ostringstream stream;
175 graph_->Dump(stream, codegen_);
176 LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
177 << "): " << stream.str();
178 LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
179 }
180 }
181 }
182 }
183
IsVerboseMethod(const CompilerOptions & compiler_options,const char * method_name)184 static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
185 // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
186 // empty kStringFilter matching all methods.
187 if (compiler_options.HasVerboseMethods()) {
188 return compiler_options.IsVerboseMethod(method_name);
189 }
190
191 // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
192 // warning when the string is empty.
193 constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
194 if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
195 return true;
196 }
197
198 return false;
199 }
200
201 HGraph* const graph_;
202 size_t last_seen_graph_size_;
203
204 std::string cached_method_name_;
205
206 bool timing_logger_enabled_;
207 TimingLogger timing_logger_;
208
209 DisassemblyInformation disasm_info_;
210
211 std::ostringstream visualizer_oss_;
212 std::ostream* visualizer_output_;
213 bool visualizer_enabled_;
214 HGraphVisualizer visualizer_;
215 CodeGenerator* codegen_;
216
217 // Flag to be set by the compiler if the pass failed and the graph is not
218 // expected to validate.
219 bool graph_in_bad_state_;
220
221 friend PassScope;
222
223 DISALLOW_COPY_AND_ASSIGN(PassObserver);
224 };
225
226 class PassScope : public ValueObject {
227 public:
PassScope(const char * pass_name,PassObserver * pass_observer)228 PassScope(const char *pass_name, PassObserver* pass_observer)
229 : pass_name_(pass_name),
230 pass_change_(true), // assume change
231 pass_observer_(pass_observer) {
232 pass_observer_->StartPass(pass_name_);
233 }
234
SetPassNotChanged()235 void SetPassNotChanged() {
236 pass_change_ = false;
237 }
238
~PassScope()239 ~PassScope() {
240 pass_observer_->EndPass(pass_name_, pass_change_);
241 }
242
243 private:
244 const char* const pass_name_;
245 bool pass_change_;
246 PassObserver* const pass_observer_;
247 };
248
249 class OptimizingCompiler final : public Compiler {
250 public:
251 explicit OptimizingCompiler(const CompilerOptions& compiler_options,
252 CompiledCodeStorage* storage);
253 ~OptimizingCompiler() override;
254
255 bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
256
257 CompiledMethod* Compile(const dex::CodeItem* code_item,
258 uint32_t access_flags,
259 uint16_t class_def_idx,
260 uint32_t method_idx,
261 Handle<mirror::ClassLoader> class_loader,
262 const DexFile& dex_file,
263 Handle<mirror::DexCache> dex_cache) const override;
264
265 CompiledMethod* JniCompile(uint32_t access_flags,
266 uint32_t method_idx,
267 const DexFile& dex_file,
268 Handle<mirror::DexCache> dex_cache) const override;
269
GetEntryPointOf(ArtMethod * method) const270 uintptr_t GetEntryPointOf(ArtMethod* method) const override
271 REQUIRES_SHARED(Locks::mutator_lock_) {
272 return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
273 InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
274 }
275
276 bool JitCompile(Thread* self,
277 jit::JitCodeCache* code_cache,
278 jit::JitMemoryRegion* region,
279 ArtMethod* method,
280 CompilationKind compilation_kind,
281 jit::JitLogger* jit_logger)
282 override
283 REQUIRES_SHARED(Locks::mutator_lock_);
284
285 private:
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef definitions[],size_t length) const286 bool RunOptimizations(HGraph* graph,
287 CodeGenerator* codegen,
288 const DexCompilationUnit& dex_compilation_unit,
289 PassObserver* pass_observer,
290 const OptimizationDef definitions[],
291 size_t length) const {
292 // Convert definitions to optimization passes.
293 ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
294 definitions,
295 length,
296 graph->GetAllocator(),
297 graph,
298 compilation_stats_.get(),
299 codegen,
300 dex_compilation_unit);
301 DCHECK_EQ(length, optimizations.size());
302 // Run the optimization passes one by one. Any "depends_on" pass refers back to
303 // the most recent occurrence of that pass, skipped or executed.
304 std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
305 pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
306 bool change = false;
307 for (size_t i = 0; i < length; ++i) {
308 if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
309 // Execute the pass and record whether it changed anything.
310 PassScope scope(optimizations[i]->GetPassName(), pass_observer);
311 bool pass_change = optimizations[i]->Run();
312 pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
313 if (pass_change) {
314 change = true;
315 } else {
316 scope.SetPassNotChanged();
317 }
318 } else {
319 // Skip the pass and record that nothing changed.
320 pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
321 }
322 }
323 return change;
324 }
325
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef (& definitions)[length]) const326 template <size_t length> bool RunOptimizations(
327 HGraph* graph,
328 CodeGenerator* codegen,
329 const DexCompilationUnit& dex_compilation_unit,
330 PassObserver* pass_observer,
331 const OptimizationDef (&definitions)[length]) const {
332 return RunOptimizations(
333 graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
334 }
335
336 void RunOptimizations(HGraph* graph,
337 CodeGenerator* codegen,
338 const DexCompilationUnit& dex_compilation_unit,
339 PassObserver* pass_observer) const;
340
341 // Create a 'CompiledMethod' for an optimized graph.
342 CompiledMethod* Emit(ArenaAllocator* allocator,
343 CodeGenerator* codegen,
344 bool is_intrinsic,
345 const dex::CodeItem* item) const;
346
347 // Try compiling a method and return the code generator used for
348 // compiling it.
349 // This method:
350 // 1) Builds the graph. Returns null if it failed to build it.
351 // 2) Transforms the graph to SSA. Returns null if it failed.
352 // 3) Runs optimizations on the graph, including register allocator.
353 CodeGenerator* TryCompile(ArenaAllocator* allocator,
354 ArenaStack* arena_stack,
355 const DexCompilationUnit& dex_compilation_unit,
356 ArtMethod* method,
357 CompilationKind compilation_kind,
358 VariableSizedHandleScope* handles) const;
359
360 CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
361 ArenaStack* arena_stack,
362 const DexCompilationUnit& dex_compilation_unit,
363 ArtMethod* method,
364 VariableSizedHandleScope* handles) const;
365
366 bool RunArchOptimizations(HGraph* graph,
367 CodeGenerator* codegen,
368 const DexCompilationUnit& dex_compilation_unit,
369 PassObserver* pass_observer) const;
370
371 bool RunRequiredPasses(HGraph* graph,
372 CodeGenerator* codegen,
373 const DexCompilationUnit& dex_compilation_unit,
374 PassObserver* pass_observer) const;
375
376 std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
377
378 // This must be called before any other function that dumps data to the cfg
379 void DumpInstructionSetFeaturesToCfg() const;
380
381 std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
382
383 std::unique_ptr<std::ostream> visualizer_output_;
384
385 DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
386 };
387
388 static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
389
OptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)390 OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
391 CompiledCodeStorage* storage)
392 : Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning) {
393 // Enable C1visualizer output.
394 const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
395 if (!cfg_file_name.empty()) {
396 std::ios_base::openmode cfg_file_mode =
397 compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
398 visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
399 DumpInstructionSetFeaturesToCfg();
400 }
401 if (compiler_options.GetDumpStats()) {
402 compilation_stats_.reset(new OptimizingCompilerStats());
403 }
404 }
405
~OptimizingCompiler()406 OptimizingCompiler::~OptimizingCompiler() {
407 if (compilation_stats_.get() != nullptr) {
408 compilation_stats_->Log();
409 }
410 }
411
DumpInstructionSetFeaturesToCfg() const412 void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
413 const CompilerOptions& compiler_options = GetCompilerOptions();
414 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
415 std::string isa_string =
416 std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
417 std::string features_string = "isa_features:" + features->GetFeatureString();
418 std::string read_barrier_type = "none";
419 if (compiler_options.EmitReadBarrier()) {
420 if (art::kUseBakerReadBarrier)
421 read_barrier_type = "baker";
422 else if (art::kUseTableLookupReadBarrier)
423 read_barrier_type = "tablelookup";
424 }
425 std::string read_barrier_string = ART_FORMAT("read_barrier_type:{}", read_barrier_type);
426 // It is assumed that visualizer_output_ is empty when calling this function, hence the fake
427 // compilation block containing the ISA features will be printed at the beginning of the .cfg
428 // file.
429 *visualizer_output_ << HGraphVisualizer::InsertMetaDataAsCompilationBlock(
430 isa_string + ' ' + features_string + ' ' + read_barrier_string);
431 }
432
CanCompileMethod(uint32_t method_idx,const DexFile & dex_file) const433 bool OptimizingCompiler::CanCompileMethod([[maybe_unused]] uint32_t method_idx,
434 [[maybe_unused]] const DexFile& dex_file) const {
435 return true;
436 }
437
IsInstructionSetSupported(InstructionSet instruction_set)438 static bool IsInstructionSetSupported(InstructionSet instruction_set) {
439 return instruction_set == InstructionSet::kArm ||
440 instruction_set == InstructionSet::kArm64 ||
441 instruction_set == InstructionSet::kThumb2 ||
442 instruction_set == InstructionSet::kRiscv64 ||
443 instruction_set == InstructionSet::kX86 ||
444 instruction_set == InstructionSet::kX86_64;
445 }
446
RunRequiredPasses(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const447 bool OptimizingCompiler::RunRequiredPasses(HGraph* graph,
448 CodeGenerator* codegen,
449 const DexCompilationUnit& dex_compilation_unit,
450 PassObserver* pass_observer) const {
451 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
452 #if defined(ART_ENABLE_CODEGEN_arm)
453 case InstructionSet::kThumb2:
454 case InstructionSet::kArm: {
455 OptimizationDef arm_optimizations[] = {
456 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
457 };
458 return RunOptimizations(graph,
459 codegen,
460 dex_compilation_unit,
461 pass_observer,
462 arm_optimizations);
463 }
464 #endif
465 #if defined(ART_ENABLE_CODEGEN_riscv64)
466 case InstructionSet::kRiscv64: {
467 OptimizationDef riscv64_optimizations[] = {
468 OptDef(OptimizationPass::kCriticalNativeAbiFixupRiscv64),
469 };
470 return RunOptimizations(graph,
471 codegen,
472 dex_compilation_unit,
473 pass_observer,
474 riscv64_optimizations);
475 }
476 #endif
477 #ifdef ART_ENABLE_CODEGEN_x86
478 case InstructionSet::kX86: {
479 OptimizationDef x86_optimizations[] = {
480 OptDef(OptimizationPass::kPcRelativeFixupsX86),
481 };
482 return RunOptimizations(graph,
483 codegen,
484 dex_compilation_unit,
485 pass_observer,
486 x86_optimizations);
487 }
488 #endif
489 default:
490 UNUSED(graph);
491 UNUSED(codegen);
492 UNUSED(dex_compilation_unit);
493 UNUSED(pass_observer);
494 return false;
495 }
496 }
497
RunArchOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const498 bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
499 CodeGenerator* codegen,
500 const DexCompilationUnit& dex_compilation_unit,
501 PassObserver* pass_observer) const {
502 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
503 #if defined(ART_ENABLE_CODEGEN_arm)
504 case InstructionSet::kThumb2:
505 case InstructionSet::kArm: {
506 OptimizationDef arm_optimizations[] = {
507 OptDef(OptimizationPass::kInstructionSimplifierArm),
508 OptDef(OptimizationPass::kSideEffectsAnalysis),
509 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
510 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
511 OptDef(OptimizationPass::kScheduling)
512 };
513 return RunOptimizations(graph,
514 codegen,
515 dex_compilation_unit,
516 pass_observer,
517 arm_optimizations);
518 }
519 #endif
520 #ifdef ART_ENABLE_CODEGEN_arm64
521 case InstructionSet::kArm64: {
522 OptimizationDef arm64_optimizations[] = {
523 OptDef(OptimizationPass::kInstructionSimplifierArm64),
524 OptDef(OptimizationPass::kSideEffectsAnalysis),
525 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
526 OptDef(OptimizationPass::kScheduling)
527 };
528 return RunOptimizations(graph,
529 codegen,
530 dex_compilation_unit,
531 pass_observer,
532 arm64_optimizations);
533 }
534 #endif
535 #if defined(ART_ENABLE_CODEGEN_riscv64)
536 case InstructionSet::kRiscv64: {
537 OptimizationDef riscv64_optimizations[] = {
538 OptDef(OptimizationPass::kInstructionSimplifierRiscv64),
539 OptDef(OptimizationPass::kSideEffectsAnalysis),
540 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
541 OptDef(OptimizationPass::kCriticalNativeAbiFixupRiscv64)
542 };
543 return RunOptimizations(graph,
544 codegen,
545 dex_compilation_unit,
546 pass_observer,
547 riscv64_optimizations);
548 }
549 #endif
550 #ifdef ART_ENABLE_CODEGEN_x86
551 case InstructionSet::kX86: {
552 OptimizationDef x86_optimizations[] = {
553 OptDef(OptimizationPass::kInstructionSimplifierX86),
554 OptDef(OptimizationPass::kSideEffectsAnalysis),
555 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
556 OptDef(OptimizationPass::kPcRelativeFixupsX86),
557 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
558 };
559 return RunOptimizations(graph,
560 codegen,
561 dex_compilation_unit,
562 pass_observer,
563 x86_optimizations);
564 }
565 #endif
566 #ifdef ART_ENABLE_CODEGEN_x86_64
567 case InstructionSet::kX86_64: {
568 OptimizationDef x86_64_optimizations[] = {
569 OptDef(OptimizationPass::kInstructionSimplifierX86_64),
570 OptDef(OptimizationPass::kSideEffectsAnalysis),
571 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
572 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
573 };
574 return RunOptimizations(graph,
575 codegen,
576 dex_compilation_unit,
577 pass_observer,
578 x86_64_optimizations);
579 }
580 #endif
581 default:
582 UNUSED(graph);
583 UNUSED(dex_compilation_unit);
584 UNUSED(pass_observer);
585 return false;
586 }
587 }
588
589 NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
AllocateRegisters(HGraph * graph,CodeGenerator * codegen,PassObserver * pass_observer,OptimizingCompilerStats * stats)590 static void AllocateRegisters(HGraph* graph,
591 CodeGenerator* codegen,
592 PassObserver* pass_observer,
593 OptimizingCompilerStats* stats) {
594 {
595 PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
596 pass_observer);
597 PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
598 }
599 // Use local allocator shared by SSA liveness analysis and register allocator.
600 // (Register allocator creates new objects in the liveness data.)
601 ScopedArenaAllocator local_allocator(graph->GetArenaStack());
602 SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
603 {
604 PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
605 liveness.Analyze();
606 }
607 {
608 PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
609 std::unique_ptr<RegisterAllocator> register_allocator =
610 RegisterAllocator::Create(&local_allocator, codegen, liveness);
611 register_allocator->AllocateRegisters();
612 }
613 }
614
615 // Strip pass name suffix to get optimization name.
ConvertPassNameToOptimizationName(const std::string & pass_name)616 static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
617 size_t pos = pass_name.find(kPassNameSeparator);
618 return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
619 }
620
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const621 void OptimizingCompiler::RunOptimizations(HGraph* graph,
622 CodeGenerator* codegen,
623 const DexCompilationUnit& dex_compilation_unit,
624 PassObserver* pass_observer) const {
625 const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
626 if (pass_names != nullptr) {
627 // If passes were defined on command-line, build the optimization
628 // passes and run these instead of the built-in optimizations.
629 // TODO: a way to define depends_on via command-line?
630 const size_t length = pass_names->size();
631 std::vector<OptimizationDef> optimizations;
632 for (const std::string& pass_name : *pass_names) {
633 std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
634 optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
635 }
636 RunOptimizations(graph,
637 codegen,
638 dex_compilation_unit,
639 pass_observer,
640 optimizations.data(),
641 length);
642 return;
643 }
644
645 OptimizationDef optimizations[] = {
646 // Initial optimizations.
647 OptDef(OptimizationPass::kConstantFolding),
648 OptDef(OptimizationPass::kInstructionSimplifier),
649 OptDef(OptimizationPass::kDeadCodeElimination,
650 "dead_code_elimination$initial"),
651 // Inlining.
652 OptDef(OptimizationPass::kInliner),
653 // Simplification (if inlining occurred, or if we analyzed the invoke as "always throwing").
654 OptDef(OptimizationPass::kConstantFolding,
655 "constant_folding$after_inlining",
656 OptimizationPass::kInliner),
657 OptDef(OptimizationPass::kInstructionSimplifier,
658 "instruction_simplifier$after_inlining",
659 OptimizationPass::kInliner),
660 OptDef(OptimizationPass::kDeadCodeElimination,
661 "dead_code_elimination$after_inlining",
662 OptimizationPass::kInliner),
663 // GVN.
664 OptDef(OptimizationPass::kSideEffectsAnalysis,
665 "side_effects$before_gvn"),
666 OptDef(OptimizationPass::kGlobalValueNumbering),
667 OptDef(OptimizationPass::kReferenceTypePropagation,
668 "reference_type_propagation$after_gvn",
669 OptimizationPass::kGlobalValueNumbering),
670 // Simplification (TODO: only if GVN occurred).
671 OptDef(OptimizationPass::kSelectGenerator),
672 OptDef(OptimizationPass::kConstantFolding,
673 "constant_folding$after_gvn"),
674 OptDef(OptimizationPass::kInstructionSimplifier,
675 "instruction_simplifier$after_gvn"),
676 OptDef(OptimizationPass::kDeadCodeElimination,
677 "dead_code_elimination$after_gvn"),
678 // High-level optimizations.
679 OptDef(OptimizationPass::kSideEffectsAnalysis,
680 "side_effects$before_licm"),
681 OptDef(OptimizationPass::kInvariantCodeMotion),
682 OptDef(OptimizationPass::kInductionVarAnalysis),
683 OptDef(OptimizationPass::kBoundsCheckElimination),
684 OptDef(OptimizationPass::kLoopOptimization),
685 // Simplification.
686 OptDef(OptimizationPass::kConstantFolding,
687 "constant_folding$after_loop_opt"),
688 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
689 "instruction_simplifier$after_loop_opt"),
690 OptDef(OptimizationPass::kDeadCodeElimination,
691 "dead_code_elimination$after_loop_opt"),
692 // Other high-level optimizations.
693 OptDef(OptimizationPass::kLoadStoreElimination),
694 OptDef(OptimizationPass::kCHAGuardOptimization),
695 OptDef(OptimizationPass::kCodeSinking),
696 // Simplification.
697 OptDef(OptimizationPass::kConstantFolding,
698 "constant_folding$before_codegen"),
699 // The codegen has a few assumptions that only the instruction simplifier
700 // can satisfy. For example, the code generator does not expect to see a
701 // HTypeConversion from a type to the same type.
702 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
703 "instruction_simplifier$before_codegen"),
704 // Simplification may result in dead code that should be removed prior to
705 // code generation.
706 OptDef(OptimizationPass::kDeadCodeElimination,
707 "dead_code_elimination$before_codegen"),
708 // Eliminate constructor fences after code sinking to avoid
709 // complicated sinking logic to split a fence with many inputs.
710 OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
711 };
712 RunOptimizations(graph,
713 codegen,
714 dex_compilation_unit,
715 pass_observer,
716 optimizations);
717
718 RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
719 }
720
EmitAndSortLinkerPatches(CodeGenerator * codegen)721 static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
722 ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
723 codegen->EmitLinkerPatches(&linker_patches);
724
725 // Sort patches by literal offset. Required for .oat_patches encoding.
726 std::sort(linker_patches.begin(), linker_patches.end(),
727 [](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
728 return lhs.LiteralOffset() < rhs.LiteralOffset();
729 });
730
731 return linker_patches;
732 }
733
Emit(ArenaAllocator * allocator,CodeGenerator * codegen,bool is_intrinsic,const dex::CodeItem * code_item_for_osr_check) const734 CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
735 CodeGenerator* codegen,
736 bool is_intrinsic,
737 const dex::CodeItem* code_item_for_osr_check) const {
738 ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
739 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
740
741 CompiledCodeStorage* storage = GetCompiledCodeStorage();
742 CompiledMethod* compiled_method = storage->CreateCompiledMethod(
743 codegen->GetInstructionSet(),
744 codegen->GetCode(),
745 ArrayRef<const uint8_t>(stack_map),
746 ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
747 ArrayRef<const linker::LinkerPatch>(linker_patches),
748 is_intrinsic);
749
750 for (const linker::LinkerPatch& patch : linker_patches) {
751 if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
752 ArenaVector<uint8_t> code(allocator->Adapter());
753 std::string debug_name;
754 codegen->EmitThunkCode(patch, &code, &debug_name);
755 storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
756 }
757 }
758
759 return compiled_method;
760 }
761
TryCompile(ArenaAllocator * allocator,ArenaStack * arena_stack,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,CompilationKind compilation_kind,VariableSizedHandleScope * handles) const762 CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
763 ArenaStack* arena_stack,
764 const DexCompilationUnit& dex_compilation_unit,
765 ArtMethod* method,
766 CompilationKind compilation_kind,
767 VariableSizedHandleScope* handles) const {
768 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
769 const CompilerOptions& compiler_options = GetCompilerOptions();
770 InstructionSet instruction_set = compiler_options.GetInstructionSet();
771 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
772 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
773 const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
774
775 // Always use the Thumb-2 assembler: some runtime functionality
776 // (like implicit stack overflow checks) assume Thumb-2.
777 DCHECK_NE(instruction_set, InstructionSet::kArm);
778
779 // Do not attempt to compile on architectures we do not support.
780 if (!IsInstructionSetSupported(instruction_set)) {
781 MaybeRecordStat(compilation_stats_.get(),
782 MethodCompilationStat::kNotCompiledUnsupportedIsa);
783 return nullptr;
784 }
785
786 if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
787 SCOPED_TRACE << "Not compiling because of pathological case";
788 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
789 return nullptr;
790 }
791
792 // Implementation of the space filter: do not compile a code item whose size in
793 // code units is bigger than 128.
794 static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
795 if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
796 && (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
797 kSpaceFilterOptimizingThreshold)) {
798 SCOPED_TRACE << "Not compiling because of space filter";
799 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
800 return nullptr;
801 }
802
803 CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
804
805 bool dead_reference_safe;
806 // For AOT compilation, we may not get a method, for example if its class is erroneous,
807 // possibly due to an unavailable superclass. JIT should always have a method.
808 DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
809 if (method != nullptr) {
810 const dex::ClassDef* containing_class;
811 {
812 ScopedObjectAccess soa(Thread::Current());
813 containing_class = &method->GetClassDef();
814 }
815 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
816 // is currently rarely true.
817 dead_reference_safe =
818 annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
819 && !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
820 } else {
821 // If we could not resolve the class, conservatively assume it's dead-reference unsafe.
822 dead_reference_safe = false;
823 }
824
825 HGraph* graph = new (allocator) HGraph(
826 allocator,
827 arena_stack,
828 handles,
829 dex_file,
830 method_idx,
831 compiler_options.GetInstructionSet(),
832 kInvalidInvokeType,
833 dead_reference_safe,
834 compiler_options.GetDebuggable(),
835 compilation_kind);
836
837 if (method != nullptr) {
838 graph->SetArtMethod(method);
839 }
840
841 jit::Jit* jit = Runtime::Current()->GetJit();
842 if (jit != nullptr) {
843 ProfilingInfo* info = jit->GetCodeCache()->GetProfilingInfo(method, Thread::Current());
844 graph->SetProfilingInfo(info);
845 }
846
847 std::unique_ptr<CodeGenerator> codegen(
848 CodeGenerator::Create(graph,
849 compiler_options,
850 compilation_stats_.get()));
851 if (codegen.get() == nullptr) {
852 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
853 return nullptr;
854 }
855 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
856
857 PassObserver pass_observer(graph,
858 codegen.get(),
859 visualizer_output_.get(),
860 compiler_options);
861
862 {
863 VLOG(compiler) << "Building " << pass_observer.GetMethodName();
864 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
865 HGraphBuilder builder(graph,
866 code_item_accessor,
867 &dex_compilation_unit,
868 &dex_compilation_unit,
869 codegen.get(),
870 compilation_stats_.get());
871 GraphAnalysisResult result = builder.BuildGraph();
872 if (result != kAnalysisSuccess) {
873 // Don't try recompiling this method again.
874 if (method != nullptr) {
875 ScopedObjectAccess soa(Thread::Current());
876 method->SetDontCompile();
877 }
878 SCOPED_TRACE << "Not compiling because of " << result;
879 switch (result) {
880 case kAnalysisSkipped: {
881 MaybeRecordStat(compilation_stats_.get(),
882 MethodCompilationStat::kNotCompiledSkipped);
883 break;
884 }
885 case kAnalysisInvalidBytecode: {
886 MaybeRecordStat(compilation_stats_.get(),
887 MethodCompilationStat::kNotCompiledInvalidBytecode);
888 break;
889 }
890 case kAnalysisFailThrowCatchLoop: {
891 MaybeRecordStat(compilation_stats_.get(),
892 MethodCompilationStat::kNotCompiledThrowCatchLoop);
893 break;
894 }
895 case kAnalysisFailAmbiguousArrayOp: {
896 MaybeRecordStat(compilation_stats_.get(),
897 MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
898 break;
899 }
900 case kAnalysisFailIrreducibleLoopAndStringInit: {
901 MaybeRecordStat(compilation_stats_.get(),
902 MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
903 break;
904 }
905 case kAnalysisFailPhiEquivalentInOsr: {
906 MaybeRecordStat(compilation_stats_.get(),
907 MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
908 break;
909 }
910 case kAnalysisSuccess:
911 LOG(FATAL) << "Unreachable";
912 UNREACHABLE();
913 }
914 pass_observer.SetGraphInBadState();
915 return nullptr;
916 }
917 }
918
919 if (compilation_kind == CompilationKind::kBaseline && compiler_options.ProfileBranches()) {
920 graph->SetUsefulOptimizing();
921 // Branch profiling currently doesn't support running optimizations.
922 RunRequiredPasses(graph, codegen.get(), dex_compilation_unit, &pass_observer);
923 } else {
924 RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
925 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
926 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
927 }
928
929 // If we are compiling baseline and we haven't created a profiling info for
930 // this method already, do it now.
931 if (jit != nullptr &&
932 compilation_kind == CompilationKind::kBaseline &&
933 graph->IsUsefulOptimizing() &&
934 graph->GetProfilingInfo() == nullptr) {
935 ProfilingInfoBuilder(
936 graph, codegen->GetCompilerOptions(), codegen.get(), compilation_stats_.get()).Run();
937 // We expect a profiling info to be created and attached to the graph.
938 // However, we may have run out of memory trying to create it, so in this
939 // case just abort the compilation.
940 if (graph->GetProfilingInfo() == nullptr) {
941 SCOPED_TRACE << "Not compiling because of out of memory";
942 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
943 return nullptr;
944 }
945 }
946
947 AllocateRegisters(graph,
948 codegen.get(),
949 &pass_observer,
950 compilation_stats_.get());
951
952 if (UNLIKELY(codegen->GetFrameSize() > codegen->GetMaximumFrameSize())) {
953 SCOPED_TRACE << "Not compiling because of stack frame too large";
954 LOG(WARNING) << "Stack frame size is " << codegen->GetFrameSize()
955 << " which is larger than the maximum of " << codegen->GetMaximumFrameSize()
956 << " bytes. Method: " << graph->PrettyMethod();
957 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledFrameTooBig);
958 return nullptr;
959 }
960
961 codegen->Compile();
962 pass_observer.DumpDisassembly();
963
964 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
965 return codegen.release();
966 }
967
TryCompileIntrinsic(ArenaAllocator * allocator,ArenaStack * arena_stack,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,VariableSizedHandleScope * handles) const968 CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
969 ArenaAllocator* allocator,
970 ArenaStack* arena_stack,
971 const DexCompilationUnit& dex_compilation_unit,
972 ArtMethod* method,
973 VariableSizedHandleScope* handles) const {
974 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
975 const CompilerOptions& compiler_options = GetCompilerOptions();
976 InstructionSet instruction_set = compiler_options.GetInstructionSet();
977 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
978 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
979
980 // Always use the Thumb-2 assembler: some runtime functionality
981 // (like implicit stack overflow checks) assume Thumb-2.
982 DCHECK_NE(instruction_set, InstructionSet::kArm);
983
984 // Do not attempt to compile on architectures we do not support.
985 if (!IsInstructionSetSupported(instruction_set)) {
986 return nullptr;
987 }
988
989 HGraph* graph = new (allocator) HGraph(
990 allocator,
991 arena_stack,
992 handles,
993 dex_file,
994 method_idx,
995 compiler_options.GetInstructionSet(),
996 kInvalidInvokeType,
997 /* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
998 compiler_options.GetDebuggable(),
999 CompilationKind::kOptimized);
1000
1001 DCHECK(Runtime::Current()->IsAotCompiler());
1002 DCHECK(method != nullptr);
1003 graph->SetArtMethod(method);
1004
1005 std::unique_ptr<CodeGenerator> codegen(
1006 CodeGenerator::Create(graph,
1007 compiler_options,
1008 compilation_stats_.get()));
1009 if (codegen.get() == nullptr) {
1010 return nullptr;
1011 }
1012 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
1013
1014 PassObserver pass_observer(graph,
1015 codegen.get(),
1016 visualizer_output_.get(),
1017 compiler_options);
1018
1019 {
1020 VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
1021 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
1022 HGraphBuilder builder(graph,
1023 CodeItemDebugInfoAccessor(), // Null code item.
1024 &dex_compilation_unit,
1025 &dex_compilation_unit,
1026 codegen.get(),
1027 compilation_stats_.get());
1028 builder.BuildIntrinsicGraph(method);
1029 }
1030
1031 OptimizationDef optimizations[] = {
1032 // The codegen has a few assumptions that only the instruction simplifier
1033 // can satisfy.
1034 OptDef(OptimizationPass::kInstructionSimplifier),
1035 };
1036 RunOptimizations(graph,
1037 codegen.get(),
1038 dex_compilation_unit,
1039 &pass_observer,
1040 optimizations);
1041
1042 RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
1043 {
1044 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
1045 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
1046 }
1047
1048 AllocateRegisters(graph,
1049 codegen.get(),
1050 &pass_observer,
1051 compilation_stats_.get());
1052 if (!codegen->IsLeafMethod()) {
1053 VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
1054 << " " << graph->PrettyMethod();
1055 return nullptr;
1056 }
1057
1058 CHECK_LE(codegen->GetFrameSize(), codegen->GetMaximumFrameSize());
1059 codegen->Compile();
1060 pass_observer.DumpDisassembly();
1061
1062 VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
1063 << " " << graph->PrettyMethod();
1064 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
1065 return codegen.release();
1066 }
1067
Compile(const dex::CodeItem * code_item,uint32_t access_flags,uint16_t class_def_idx,uint32_t method_idx,Handle<mirror::ClassLoader> jclass_loader,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1068 CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
1069 uint32_t access_flags,
1070 uint16_t class_def_idx,
1071 uint32_t method_idx,
1072 Handle<mirror::ClassLoader> jclass_loader,
1073 const DexFile& dex_file,
1074 Handle<mirror::DexCache> dex_cache) const {
1075 const CompilerOptions& compiler_options = GetCompilerOptions();
1076 DCHECK(compiler_options.IsAotCompiler());
1077 CompiledMethod* compiled_method = nullptr;
1078 Runtime* runtime = Runtime::Current();
1079 DCHECK(runtime->IsAotCompiler());
1080 ArenaAllocator allocator(runtime->GetArenaPool());
1081 ArenaStack arena_stack(runtime->GetArenaPool());
1082 std::unique_ptr<CodeGenerator> codegen;
1083 bool compiled_intrinsic = false;
1084 {
1085 ScopedObjectAccess soa(Thread::Current());
1086 ArtMethod* method =
1087 runtime->GetClassLinker()->ResolveMethodId(method_idx, dex_cache, jclass_loader);
1088 soa.Self()->ClearException(); // Suppress exception if any.
1089 VariableSizedHandleScope handles(soa.Self());
1090 Handle<mirror::Class> compiling_class =
1091 handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
1092 DexCompilationUnit dex_compilation_unit(
1093 jclass_loader,
1094 runtime->GetClassLinker(),
1095 dex_file,
1096 code_item,
1097 class_def_idx,
1098 method_idx,
1099 access_flags,
1100 /*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
1101 dex_cache,
1102 compiling_class);
1103 // All signature polymorphic methods are native.
1104 DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
1105 // Go to native so that we don't block GC during compilation.
1106 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1107 // Try to compile a fully intrinsified implementation.
1108 if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
1109 DCHECK(compiler_options.IsBootImage());
1110 codegen.reset(
1111 TryCompileIntrinsic(&allocator,
1112 &arena_stack,
1113 dex_compilation_unit,
1114 method,
1115 &handles));
1116 if (codegen != nullptr) {
1117 compiled_intrinsic = true;
1118 }
1119 }
1120 if (codegen == nullptr) {
1121 codegen.reset(
1122 TryCompile(&allocator,
1123 &arena_stack,
1124 dex_compilation_unit,
1125 method,
1126 compiler_options.IsBaseline()
1127 ? CompilationKind::kBaseline
1128 : CompilationKind::kOptimized,
1129 &handles));
1130 }
1131 }
1132 if (codegen.get() != nullptr) {
1133 compiled_method = Emit(&allocator,
1134 codegen.get(),
1135 compiled_intrinsic,
1136 compiled_intrinsic ? nullptr : code_item);
1137
1138 if (kArenaAllocatorCountAllocations) {
1139 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1140 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1141 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1142 MemStats mem_stats(allocator.GetMemStats());
1143 MemStats peak_stats(arena_stack.GetPeakStats());
1144 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1145 << dex_file.PrettyMethod(method_idx)
1146 << "\n" << Dumpable<MemStats>(mem_stats)
1147 << "\n" << Dumpable<MemStats>(peak_stats);
1148 }
1149 }
1150 }
1151
1152 if (kIsDebugBuild &&
1153 compiler_options.CompileArtTest() &&
1154 IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
1155 // For testing purposes, we put a special marker on method names
1156 // that should be compiled with this compiler (when the
1157 // instruction set is supported). This makes sure we're not
1158 // regressing.
1159 std::string method_name = dex_file.PrettyMethod(method_idx);
1160 bool shouldCompile = method_name.find("$opt$") != std::string::npos;
1161 DCHECK_IMPLIES(compiled_method == nullptr, !shouldCompile) << "Didn't compile " << method_name;
1162 }
1163
1164 return compiled_method;
1165 }
1166
CreateJniStackMap(ScopedArenaAllocator * allocator,const JniCompiledMethod & jni_compiled_method,size_t code_size,bool debuggable)1167 static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
1168 const JniCompiledMethod& jni_compiled_method,
1169 size_t code_size,
1170 bool debuggable) {
1171 // StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
1172 // to stay clear of the frame size limit.
1173 std::unique_ptr<StackMapStream> stack_map_stream(
1174 new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
1175 stack_map_stream->BeginMethod(jni_compiled_method.GetFrameSize(),
1176 jni_compiled_method.GetCoreSpillMask(),
1177 jni_compiled_method.GetFpSpillMask(),
1178 /* num_dex_registers= */ 0,
1179 /* baseline= */ false,
1180 debuggable);
1181 stack_map_stream->EndMethod(code_size);
1182 return stack_map_stream->Encode();
1183 }
1184
JniCompile(uint32_t access_flags,uint32_t method_idx,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1185 CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
1186 uint32_t method_idx,
1187 const DexFile& dex_file,
1188 Handle<mirror::DexCache> dex_cache) const {
1189 Runtime* runtime = Runtime::Current();
1190 ArenaAllocator allocator(runtime->GetArenaPool());
1191 ArenaStack arena_stack(runtime->GetArenaPool());
1192
1193 const CompilerOptions& compiler_options = GetCompilerOptions();
1194 if (compiler_options.IsBootImage()) {
1195 ScopedObjectAccess soa(Thread::Current());
1196 ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
1197 method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
1198 // Try to compile a fully intrinsified implementation. Do not try to do this for
1199 // signature polymorphic methods as the InstructionBuilder cannot handle them;
1200 // and it would be useless as they always have a slow path for type conversions.
1201 if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
1202 VariableSizedHandleScope handles(soa.Self());
1203 ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
1204 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1205 DexCompilationUnit dex_compilation_unit(
1206 class_loader,
1207 runtime->GetClassLinker(),
1208 dex_file,
1209 /*code_item=*/ nullptr,
1210 /*class_def_idx=*/ DexFile::kDexNoIndex16,
1211 method_idx,
1212 access_flags,
1213 /*verified_method=*/ nullptr,
1214 dex_cache,
1215 compiling_class);
1216 // Go to native so that we don't block GC during compilation.
1217 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1218 std::unique_ptr<CodeGenerator> codegen(
1219 TryCompileIntrinsic(&allocator,
1220 &arena_stack,
1221 dex_compilation_unit,
1222 method,
1223 &handles));
1224 if (codegen != nullptr) {
1225 return Emit(&allocator,
1226 codegen.get(),
1227 /*is_intrinsic=*/ true,
1228 /*item=*/ nullptr);
1229 }
1230 }
1231 }
1232
1233 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1234 compiler_options, dex_file.GetMethodShortyView(method_idx), access_flags, &allocator);
1235 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
1236
1237 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1238 ScopedArenaVector<uint8_t> stack_map =
1239 CreateJniStackMap(&stack_map_allocator,
1240 jni_compiled_method,
1241 jni_compiled_method.GetCode().size(),
1242 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1243 return GetCompiledCodeStorage()->CreateCompiledMethod(
1244 jni_compiled_method.GetInstructionSet(),
1245 jni_compiled_method.GetCode(),
1246 ArrayRef<const uint8_t>(stack_map),
1247 jni_compiled_method.GetCfi(),
1248 /*patches=*/ ArrayRef<const linker::LinkerPatch>(),
1249 /*is_intrinsic=*/ false);
1250 }
1251
CreateOptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)1252 Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
1253 CompiledCodeStorage* storage) {
1254 return new OptimizingCompiler(compiler_options, storage);
1255 }
1256
EncodeArtMethodInInlineInfo(ArtMethod * method)1257 bool EncodeArtMethodInInlineInfo([[maybe_unused]] ArtMethod* method) {
1258 // Note: the runtime is null only for unit testing.
1259 return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
1260 }
1261
JitCompile(Thread * self,jit::JitCodeCache * code_cache,jit::JitMemoryRegion * region,ArtMethod * method,CompilationKind compilation_kind,jit::JitLogger * jit_logger)1262 bool OptimizingCompiler::JitCompile(Thread* self,
1263 jit::JitCodeCache* code_cache,
1264 jit::JitMemoryRegion* region,
1265 ArtMethod* method,
1266 CompilationKind compilation_kind,
1267 jit::JitLogger* jit_logger) {
1268 const CompilerOptions& compiler_options = GetCompilerOptions();
1269 DCHECK(compiler_options.IsJitCompiler());
1270 DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
1271 StackHandleScope<3> hs(self);
1272 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1273 method->GetDeclaringClass()->GetClassLoader()));
1274 Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
1275 DCHECK(method->IsCompilable());
1276
1277 const DexFile* dex_file = method->GetDexFile();
1278 const uint16_t class_def_idx = method->GetClassDefIndex();
1279 const dex::CodeItem* code_item = method->GetCodeItem();
1280 const uint32_t method_idx = method->GetDexMethodIndex();
1281 const uint32_t access_flags = method->GetAccessFlags();
1282
1283 Runtime* runtime = Runtime::Current();
1284 ArenaAllocator allocator(runtime->GetJitArenaPool());
1285
1286 if (UNLIKELY(method->IsNative())) {
1287 // Use GenericJniTrampoline for critical native methods in debuggable runtimes. We don't
1288 // support calling method entry / exit hooks for critical native methods yet.
1289 // TODO(mythria): Add support for calling method entry / exit hooks in JITed stubs for critical
1290 // native methods too.
1291 if (compiler_options.GetDebuggable() && method->IsCriticalNative()) {
1292 DCHECK(compiler_options.IsJitCompiler());
1293 return false;
1294 }
1295 // Java debuggable runtimes should set compiler options to debuggable, so that we either
1296 // generate method entry / exit hooks or skip JITing. For critical native methods we don't
1297 // generate method entry / exit hooks so we shouldn't JIT them in debuggable runtimes.
1298 DCHECK_IMPLIES(method->IsCriticalNative(), !runtime->IsJavaDebuggable());
1299
1300 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1301 compiler_options, dex_file->GetMethodShortyView(method_idx), access_flags, &allocator);
1302 std::vector<Handle<mirror::Object>> roots;
1303 ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
1304 allocator.Adapter(kArenaAllocCHA));
1305 ArenaStack arena_stack(runtime->GetJitArenaPool());
1306 // StackMapStream is large and it does not fit into this frame, so we need helper method.
1307 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1308 ScopedArenaVector<uint8_t> stack_map =
1309 CreateJniStackMap(&stack_map_allocator,
1310 jni_compiled_method,
1311 jni_compiled_method.GetCode().size(),
1312 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1313
1314 ArrayRef<const uint8_t> reserved_code;
1315 ArrayRef<const uint8_t> reserved_data;
1316 if (!code_cache->Reserve(self,
1317 region,
1318 jni_compiled_method.GetCode().size(),
1319 stack_map.size(),
1320 /* number_of_roots= */ 0,
1321 method,
1322 /*out*/ &reserved_code,
1323 /*out*/ &reserved_data)) {
1324 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1325 return false;
1326 }
1327 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1328
1329 // Add debug info after we know the code location but before we update entry-point.
1330 std::vector<uint8_t> debug_info;
1331 if (compiler_options.GenerateAnyDebugInfo()) {
1332 debug::MethodDebugInfo info = {};
1333 // Simpleperf relies on art_jni_trampoline to detect jni methods.
1334 info.custom_name = "art_jni_trampoline";
1335 info.dex_file = dex_file;
1336 info.class_def_index = class_def_idx;
1337 info.dex_method_index = method_idx;
1338 info.access_flags = access_flags;
1339 info.code_item = code_item;
1340 info.isa = jni_compiled_method.GetInstructionSet();
1341 info.deduped = false;
1342 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1343 info.is_optimized = true;
1344 info.is_code_address_text_relative = false;
1345 info.code_address = reinterpret_cast<uintptr_t>(code);
1346 info.code_size = jni_compiled_method.GetCode().size();
1347 info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
1348 info.code_info = nullptr;
1349 info.cfi = jni_compiled_method.GetCfi();
1350 debug_info = GenerateJitDebugInfo(info);
1351 }
1352
1353 if (!code_cache->Commit(self,
1354 region,
1355 method,
1356 reserved_code,
1357 jni_compiled_method.GetCode(),
1358 reserved_data,
1359 roots,
1360 ArrayRef<const uint8_t>(stack_map),
1361 debug_info,
1362 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1363 compilation_kind,
1364 cha_single_implementation_list)) {
1365 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1366 return false;
1367 }
1368
1369 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1370 if (jit_logger != nullptr) {
1371 jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
1372 }
1373 return true;
1374 }
1375
1376 ArenaStack arena_stack(runtime->GetJitArenaPool());
1377 VariableSizedHandleScope handles(self);
1378
1379 std::unique_ptr<CodeGenerator> codegen;
1380 {
1381 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1382 DexCompilationUnit dex_compilation_unit(
1383 class_loader,
1384 runtime->GetClassLinker(),
1385 *dex_file,
1386 code_item,
1387 class_def_idx,
1388 method_idx,
1389 access_flags,
1390 /*verified_method=*/ nullptr,
1391 dex_cache,
1392 compiling_class);
1393
1394 // Go to native so that we don't block GC during compilation.
1395 ScopedThreadSuspension sts(self, ThreadState::kNative);
1396 codegen.reset(
1397 TryCompile(&allocator,
1398 &arena_stack,
1399 dex_compilation_unit,
1400 method,
1401 compilation_kind,
1402 &handles));
1403 if (codegen.get() == nullptr) {
1404 return false;
1405 }
1406 }
1407
1408 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
1409
1410 ArrayRef<const uint8_t> reserved_code;
1411 ArrayRef<const uint8_t> reserved_data;
1412 if (!code_cache->Reserve(self,
1413 region,
1414 codegen->GetAssembler()->CodeSize(),
1415 stack_map.size(),
1416 /*number_of_roots=*/codegen->GetNumberOfJitRoots(),
1417 method,
1418 /*out*/ &reserved_code,
1419 /*out*/ &reserved_data)) {
1420 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1421 return false;
1422 }
1423 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1424 const uint8_t* roots_data = reserved_data.data();
1425
1426 std::vector<Handle<mirror::Object>> roots;
1427 codegen->EmitJitRoots(const_cast<uint8_t*>(codegen->GetAssembler()->CodeBufferBaseAddress()),
1428 roots_data,
1429 &roots);
1430 // The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
1431 DCHECK(std::all_of(roots.begin(),
1432 roots.end(),
1433 [&handles](Handle<mirror::Object> root){
1434 return handles.Contains(root.GetReference());
1435 }));
1436
1437 // Add debug info after we know the code location but before we update entry-point.
1438 std::vector<uint8_t> debug_info;
1439 if (compiler_options.GenerateAnyDebugInfo()) {
1440 debug::MethodDebugInfo info = {};
1441 DCHECK(info.custom_name.empty());
1442 info.dex_file = dex_file;
1443 info.class_def_index = class_def_idx;
1444 info.dex_method_index = method_idx;
1445 info.access_flags = access_flags;
1446 info.code_item = code_item;
1447 info.isa = codegen->GetInstructionSet();
1448 info.deduped = false;
1449 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1450 info.is_optimized = true;
1451 info.is_code_address_text_relative = false;
1452 info.code_address = reinterpret_cast<uintptr_t>(code);
1453 info.code_size = codegen->GetAssembler()->CodeSize(),
1454 info.frame_size_in_bytes = codegen->GetFrameSize();
1455 info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
1456 info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
1457 debug_info = GenerateJitDebugInfo(info);
1458 }
1459
1460 if (compilation_kind == CompilationKind::kBaseline &&
1461 !codegen->GetGraph()->IsUsefulOptimizing()) {
1462 compilation_kind = CompilationKind::kOptimized;
1463 }
1464
1465 if (!code_cache->Commit(self,
1466 region,
1467 method,
1468 reserved_code,
1469 codegen->GetCode(),
1470 reserved_data,
1471 roots,
1472 ArrayRef<const uint8_t>(stack_map),
1473 debug_info,
1474 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1475 compilation_kind,
1476 codegen->GetGraph()->GetCHASingleImplementationList())) {
1477 CHECK_EQ(CodeInfo::HasShouldDeoptimizeFlag(stack_map.data()),
1478 codegen->GetGraph()->HasShouldDeoptimizeFlag());
1479 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1480 return false;
1481 }
1482
1483 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1484 if (jit_logger != nullptr) {
1485 jit_logger->WriteLog(code, codegen->GetAssembler()->CodeSize(), method);
1486 }
1487
1488 if (kArenaAllocatorCountAllocations) {
1489 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1490 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1491 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1492 MemStats mem_stats(allocator.GetMemStats());
1493 MemStats peak_stats(arena_stack.GetPeakStats());
1494 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1495 << dex_file->PrettyMethod(method_idx)
1496 << "\n" << Dumpable<MemStats>(mem_stats)
1497 << "\n" << Dumpable<MemStats>(peak_stats);
1498 }
1499 }
1500
1501 return true;
1502 }
1503
GenerateJitDebugInfo(const debug::MethodDebugInfo & info)1504 std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
1505 const CompilerOptions& compiler_options = GetCompilerOptions();
1506 if (compiler_options.GenerateAnyDebugInfo()) {
1507 // If both flags are passed, generate full debug info.
1508 const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
1509
1510 // Create entry for the single method that we just compiled.
1511 InstructionSet isa = compiler_options.GetInstructionSet();
1512 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
1513 return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
1514 }
1515 return std::vector<uint8_t>();
1516 }
1517
1518 } // namespace art
1519