1 // Copyright 2018 The Chromium Authors 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef PARTITION_ALLOC_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 6 #define PARTITION_ALLOC_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 7 8 #include <new> 9 #include <type_traits> 10 #include <utility> 11 12 namespace partition_alloc::internal::base { 13 14 // Helper type to create a function-local static variable of type `T` when `T` 15 // has a non-trivial destructor. Storing a `T` in a `base::NoDestructor<T>` will 16 // prevent `~T()` from running, even when the variable goes out of scope. 17 // 18 // Useful when a variable has static storage duration but its type has a 19 // non-trivial destructor. Chromium bans global constructors and destructors: 20 // using a function-local static variable prevents the former, while using 21 // `base::NoDestructor<T>` prevents the latter. 22 // 23 // ## Caveats 24 // 25 // - Must only be used as a function-local static variable. Declaring a global 26 // variable of type `base::NoDestructor<T>` will still generate a global 27 // constructor; declaring a local or member variable will lead to memory leaks 28 // or other surprising and undesirable behaviour. 29 // 30 // - If the data is rarely used, consider creating it on demand rather than 31 // caching it for the lifetime of the program. Though `base::NoDestructor<T>` 32 // does not heap allocate, the compiler still reserves space in bss for 33 // storing `T`, which costs memory at runtime. 34 // 35 // - If `T` is trivially destructible, do not use `base::NoDestructor<T>`: 36 // 37 // const uint64_t GetUnstableSessionSeed() { 38 // // No need to use `base::NoDestructor<T>` as `uint64_t` is trivially 39 // // destructible and does not require a global destructor. 40 // static const uint64_t kSessionSeed = base::RandUint64(); 41 // return kSessionSeed; 42 // } 43 // 44 // ## Example Usage 45 // 46 // const std::string& GetDefaultText() { 47 // // Required since `static const std::string` requires a global destructor. 48 // static const base::NoDestructor<std::string> s("Hello world!"); 49 // return *s; 50 // } 51 // 52 // More complex initialization using a lambda: 53 // 54 // const std::string& GetRandomNonce() { 55 // // `nonce` is initialized with random data the first time this function is 56 // // called, but its value is fixed thereafter. 57 // static const base::NoDestructor<std::string> nonce([] { 58 // std::string s(16); 59 // crypto::RandString(s.data(), s.size()); 60 // return s; 61 // }()); 62 // return *nonce; 63 // } 64 // 65 // ## Thread safety 66 // 67 // Initialisation of function-local static variables is thread-safe since C++11. 68 // The standard guarantees that: 69 // 70 // - function-local static variables will be initialised the first time 71 // execution passes through the declaration. 72 // 73 // - if another thread's execution concurrently passes through the declaration 74 // in the middle of initialisation, that thread will wait for the in-progress 75 // initialisation to complete. 76 template <typename T> 77 class NoDestructor { 78 public: 79 template <typename... Args> NoDestructor(Args &&...args)80 constexpr explicit NoDestructor(Args&&... args) 81 : storage_(std::forward<Args>(args)...) {} 82 83 // Allows copy and move construction of the contained type, to allow 84 // construction from an initializer list, e.g. for std::vector. NoDestructor(const T & x)85 explicit NoDestructor(const T& x) : storage_(x) {} NoDestructor(T && x)86 explicit NoDestructor(T&& x) : storage_(std::move(x)) {} 87 88 NoDestructor(const NoDestructor&) = delete; 89 NoDestructor& operator=(const NoDestructor&) = delete; 90 91 ~NoDestructor() = default; 92 93 const T& operator*() const { return *storage_.get()(); } 94 T& operator*() { return *storage_.get(); } 95 96 const T* operator->() const { return storage_.get()(); } 97 T* operator->() { return storage_.get(); } 98 get()99 const T* get() const { return storage_.get(); } get()100 T* get() { return storage_.get(); } 101 102 private: 103 // Do not friend this. This is an implementation detail. 104 class DirectStorage { 105 public: 106 template <typename... Args> DirectStorage(Args &&...args)107 constexpr explicit DirectStorage(Args&&... args) 108 : storage_(std::forward<Args>(args)...) {} 109 get()110 const T* get() const { return &storage_; } get()111 T* get() { return &storage_; } 112 113 private: 114 T storage_; 115 }; 116 117 // Do not friend this. This is an implementation detail. 118 class PlacementStorage { 119 public: 120 template <typename... Args> PlacementStorage(Args &&...args)121 explicit PlacementStorage(Args&&... args) { 122 new (storage_) T(std::forward<Args>(args)...); 123 } 124 get()125 const T* get() const { return const_cast<PlacementStorage*>(this)->get(); } get()126 T* get() { return reinterpret_cast<T*>(storage_); } 127 128 private: 129 alignas(T) char storage_[sizeof(T)]; 130 }; 131 132 // C++20 provides a constexpr `std::construct_at`, so in theory, both branches 133 // could use PlacementStorage. There are some advantages to providing 134 // `DirectStorage` though; it can avoid the need to have runtime once-init 135 // tracking at all. 136 std::conditional_t<std::is_trivially_destructible_v<T>, 137 DirectStorage, 138 PlacementStorage> 139 storage_; 140 }; 141 142 } // namespace partition_alloc::internal::base 143 144 #endif // PARTITION_ALLOC_PARTITION_ALLOC_BASE_NO_DESTRUCTOR_H_ 145