1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package bytes
6
7// Simple byte buffer for marshaling data.
8
9import (
10	"errors"
11	"io"
12	"unicode/utf8"
13)
14
15// smallBufferSize is an initial allocation minimal capacity.
16const smallBufferSize = 64
17
18// A Buffer is a variable-sized buffer of bytes with [Buffer.Read] and [Buffer.Write] methods.
19// The zero value for Buffer is an empty buffer ready to use.
20type Buffer struct {
21	buf      []byte // contents are the bytes buf[off : len(buf)]
22	off      int    // read at &buf[off], write at &buf[len(buf)]
23	lastRead readOp // last read operation, so that Unread* can work correctly.
24}
25
26// The readOp constants describe the last action performed on
27// the buffer, so that UnreadRune and UnreadByte can check for
28// invalid usage. opReadRuneX constants are chosen such that
29// converted to int they correspond to the rune size that was read.
30type readOp int8
31
32// Don't use iota for these, as the values need to correspond with the
33// names and comments, which is easier to see when being explicit.
34const (
35	opRead      readOp = -1 // Any other read operation.
36	opInvalid   readOp = 0  // Non-read operation.
37	opReadRune1 readOp = 1  // Read rune of size 1.
38	opReadRune2 readOp = 2  // Read rune of size 2.
39	opReadRune3 readOp = 3  // Read rune of size 3.
40	opReadRune4 readOp = 4  // Read rune of size 4.
41)
42
43// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer.
44var ErrTooLarge = errors.New("bytes.Buffer: too large")
45var errNegativeRead = errors.New("bytes.Buffer: reader returned negative count from Read")
46
47const maxInt = int(^uint(0) >> 1)
48
49// Bytes returns a slice of length b.Len() holding the unread portion of the buffer.
50// The slice is valid for use only until the next buffer modification (that is,
51// only until the next call to a method like [Buffer.Read], [Buffer.Write], [Buffer.Reset], or [Buffer.Truncate]).
52// The slice aliases the buffer content at least until the next buffer modification,
53// so immediate changes to the slice will affect the result of future reads.
54func (b *Buffer) Bytes() []byte { return b.buf[b.off:] }
55
56// AvailableBuffer returns an empty buffer with b.Available() capacity.
57// This buffer is intended to be appended to and
58// passed to an immediately succeeding [Buffer.Write] call.
59// The buffer is only valid until the next write operation on b.
60func (b *Buffer) AvailableBuffer() []byte { return b.buf[len(b.buf):] }
61
62// String returns the contents of the unread portion of the buffer
63// as a string. If the [Buffer] is a nil pointer, it returns "<nil>".
64//
65// To build strings more efficiently, see the [strings.Builder] type.
66func (b *Buffer) String() string {
67	if b == nil {
68		// Special case, useful in debugging.
69		return "<nil>"
70	}
71	return string(b.buf[b.off:])
72}
73
74// empty reports whether the unread portion of the buffer is empty.
75func (b *Buffer) empty() bool { return len(b.buf) <= b.off }
76
77// Len returns the number of bytes of the unread portion of the buffer;
78// b.Len() == len(b.Bytes()).
79func (b *Buffer) Len() int { return len(b.buf) - b.off }
80
81// Cap returns the capacity of the buffer's underlying byte slice, that is, the
82// total space allocated for the buffer's data.
83func (b *Buffer) Cap() int { return cap(b.buf) }
84
85// Available returns how many bytes are unused in the buffer.
86func (b *Buffer) Available() int { return cap(b.buf) - len(b.buf) }
87
88// Truncate discards all but the first n unread bytes from the buffer
89// but continues to use the same allocated storage.
90// It panics if n is negative or greater than the length of the buffer.
91func (b *Buffer) Truncate(n int) {
92	if n == 0 {
93		b.Reset()
94		return
95	}
96	b.lastRead = opInvalid
97	if n < 0 || n > b.Len() {
98		panic("bytes.Buffer: truncation out of range")
99	}
100	b.buf = b.buf[:b.off+n]
101}
102
103// Reset resets the buffer to be empty,
104// but it retains the underlying storage for use by future writes.
105// Reset is the same as [Buffer.Truncate](0).
106func (b *Buffer) Reset() {
107	b.buf = b.buf[:0]
108	b.off = 0
109	b.lastRead = opInvalid
110}
111
112// tryGrowByReslice is an inlineable version of grow for the fast-case where the
113// internal buffer only needs to be resliced.
114// It returns the index where bytes should be written and whether it succeeded.
115func (b *Buffer) tryGrowByReslice(n int) (int, bool) {
116	if l := len(b.buf); n <= cap(b.buf)-l {
117		b.buf = b.buf[:l+n]
118		return l, true
119	}
120	return 0, false
121}
122
123// grow grows the buffer to guarantee space for n more bytes.
124// It returns the index where bytes should be written.
125// If the buffer can't grow it will panic with ErrTooLarge.
126func (b *Buffer) grow(n int) int {
127	m := b.Len()
128	// If buffer is empty, reset to recover space.
129	if m == 0 && b.off != 0 {
130		b.Reset()
131	}
132	// Try to grow by means of a reslice.
133	if i, ok := b.tryGrowByReslice(n); ok {
134		return i
135	}
136	if b.buf == nil && n <= smallBufferSize {
137		b.buf = make([]byte, n, smallBufferSize)
138		return 0
139	}
140	c := cap(b.buf)
141	if n <= c/2-m {
142		// We can slide things down instead of allocating a new
143		// slice. We only need m+n <= c to slide, but
144		// we instead let capacity get twice as large so we
145		// don't spend all our time copying.
146		copy(b.buf, b.buf[b.off:])
147	} else if c > maxInt-c-n {
148		panic(ErrTooLarge)
149	} else {
150		// Add b.off to account for b.buf[:b.off] being sliced off the front.
151		b.buf = growSlice(b.buf[b.off:], b.off+n)
152	}
153	// Restore b.off and len(b.buf).
154	b.off = 0
155	b.buf = b.buf[:m+n]
156	return m
157}
158
159// Grow grows the buffer's capacity, if necessary, to guarantee space for
160// another n bytes. After Grow(n), at least n bytes can be written to the
161// buffer without another allocation.
162// If n is negative, Grow will panic.
163// If the buffer can't grow it will panic with [ErrTooLarge].
164func (b *Buffer) Grow(n int) {
165	if n < 0 {
166		panic("bytes.Buffer.Grow: negative count")
167	}
168	m := b.grow(n)
169	b.buf = b.buf[:m]
170}
171
172// Write appends the contents of p to the buffer, growing the buffer as
173// needed. The return value n is the length of p; err is always nil. If the
174// buffer becomes too large, Write will panic with [ErrTooLarge].
175func (b *Buffer) Write(p []byte) (n int, err error) {
176	b.lastRead = opInvalid
177	m, ok := b.tryGrowByReslice(len(p))
178	if !ok {
179		m = b.grow(len(p))
180	}
181	return copy(b.buf[m:], p), nil
182}
183
184// WriteString appends the contents of s to the buffer, growing the buffer as
185// needed. The return value n is the length of s; err is always nil. If the
186// buffer becomes too large, WriteString will panic with [ErrTooLarge].
187func (b *Buffer) WriteString(s string) (n int, err error) {
188	b.lastRead = opInvalid
189	m, ok := b.tryGrowByReslice(len(s))
190	if !ok {
191		m = b.grow(len(s))
192	}
193	return copy(b.buf[m:], s), nil
194}
195
196// MinRead is the minimum slice size passed to a [Buffer.Read] call by
197// [Buffer.ReadFrom]. As long as the [Buffer] has at least MinRead bytes beyond
198// what is required to hold the contents of r, [Buffer.ReadFrom] will not grow the
199// underlying buffer.
200const MinRead = 512
201
202// ReadFrom reads data from r until EOF and appends it to the buffer, growing
203// the buffer as needed. The return value n is the number of bytes read. Any
204// error except io.EOF encountered during the read is also returned. If the
205// buffer becomes too large, ReadFrom will panic with [ErrTooLarge].
206func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {
207	b.lastRead = opInvalid
208	for {
209		i := b.grow(MinRead)
210		b.buf = b.buf[:i]
211		m, e := r.Read(b.buf[i:cap(b.buf)])
212		if m < 0 {
213			panic(errNegativeRead)
214		}
215
216		b.buf = b.buf[:i+m]
217		n += int64(m)
218		if e == io.EOF {
219			return n, nil // e is EOF, so return nil explicitly
220		}
221		if e != nil {
222			return n, e
223		}
224	}
225}
226
227// growSlice grows b by n, preserving the original content of b.
228// If the allocation fails, it panics with ErrTooLarge.
229func growSlice(b []byte, n int) []byte {
230	defer func() {
231		if recover() != nil {
232			panic(ErrTooLarge)
233		}
234	}()
235	// TODO(http://golang.org/issue/51462): We should rely on the append-make
236	// pattern so that the compiler can call runtime.growslice. For example:
237	//	return append(b, make([]byte, n)...)
238	// This avoids unnecessary zero-ing of the first len(b) bytes of the
239	// allocated slice, but this pattern causes b to escape onto the heap.
240	//
241	// Instead use the append-make pattern with a nil slice to ensure that
242	// we allocate buffers rounded up to the closest size class.
243	c := len(b) + n // ensure enough space for n elements
244	if c < 2*cap(b) {
245		// The growth rate has historically always been 2x. In the future,
246		// we could rely purely on append to determine the growth rate.
247		c = 2 * cap(b)
248	}
249	b2 := append([]byte(nil), make([]byte, c)...)
250	copy(b2, b)
251	return b2[:len(b)]
252}
253
254// WriteTo writes data to w until the buffer is drained or an error occurs.
255// The return value n is the number of bytes written; it always fits into an
256// int, but it is int64 to match the [io.WriterTo] interface. Any error
257// encountered during the write is also returned.
258func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) {
259	b.lastRead = opInvalid
260	if nBytes := b.Len(); nBytes > 0 {
261		m, e := w.Write(b.buf[b.off:])
262		if m > nBytes {
263			panic("bytes.Buffer.WriteTo: invalid Write count")
264		}
265		b.off += m
266		n = int64(m)
267		if e != nil {
268			return n, e
269		}
270		// all bytes should have been written, by definition of
271		// Write method in io.Writer
272		if m != nBytes {
273			return n, io.ErrShortWrite
274		}
275	}
276	// Buffer is now empty; reset.
277	b.Reset()
278	return n, nil
279}
280
281// WriteByte appends the byte c to the buffer, growing the buffer as needed.
282// The returned error is always nil, but is included to match [bufio.Writer]'s
283// WriteByte. If the buffer becomes too large, WriteByte will panic with
284// [ErrTooLarge].
285func (b *Buffer) WriteByte(c byte) error {
286	b.lastRead = opInvalid
287	m, ok := b.tryGrowByReslice(1)
288	if !ok {
289		m = b.grow(1)
290	}
291	b.buf[m] = c
292	return nil
293}
294
295// WriteRune appends the UTF-8 encoding of Unicode code point r to the
296// buffer, returning its length and an error, which is always nil but is
297// included to match [bufio.Writer]'s WriteRune. The buffer is grown as needed;
298// if it becomes too large, WriteRune will panic with [ErrTooLarge].
299func (b *Buffer) WriteRune(r rune) (n int, err error) {
300	// Compare as uint32 to correctly handle negative runes.
301	if uint32(r) < utf8.RuneSelf {
302		b.WriteByte(byte(r))
303		return 1, nil
304	}
305	b.lastRead = opInvalid
306	m, ok := b.tryGrowByReslice(utf8.UTFMax)
307	if !ok {
308		m = b.grow(utf8.UTFMax)
309	}
310	b.buf = utf8.AppendRune(b.buf[:m], r)
311	return len(b.buf) - m, nil
312}
313
314// Read reads the next len(p) bytes from the buffer or until the buffer
315// is drained. The return value n is the number of bytes read. If the
316// buffer has no data to return, err is [io.EOF] (unless len(p) is zero);
317// otherwise it is nil.
318func (b *Buffer) Read(p []byte) (n int, err error) {
319	b.lastRead = opInvalid
320	if b.empty() {
321		// Buffer is empty, reset to recover space.
322		b.Reset()
323		if len(p) == 0 {
324			return 0, nil
325		}
326		return 0, io.EOF
327	}
328	n = copy(p, b.buf[b.off:])
329	b.off += n
330	if n > 0 {
331		b.lastRead = opRead
332	}
333	return n, nil
334}
335
336// Next returns a slice containing the next n bytes from the buffer,
337// advancing the buffer as if the bytes had been returned by [Buffer.Read].
338// If there are fewer than n bytes in the buffer, Next returns the entire buffer.
339// The slice is only valid until the next call to a read or write method.
340func (b *Buffer) Next(n int) []byte {
341	b.lastRead = opInvalid
342	m := b.Len()
343	if n > m {
344		n = m
345	}
346	data := b.buf[b.off : b.off+n]
347	b.off += n
348	if n > 0 {
349		b.lastRead = opRead
350	}
351	return data
352}
353
354// ReadByte reads and returns the next byte from the buffer.
355// If no byte is available, it returns error [io.EOF].
356func (b *Buffer) ReadByte() (byte, error) {
357	if b.empty() {
358		// Buffer is empty, reset to recover space.
359		b.Reset()
360		return 0, io.EOF
361	}
362	c := b.buf[b.off]
363	b.off++
364	b.lastRead = opRead
365	return c, nil
366}
367
368// ReadRune reads and returns the next UTF-8-encoded
369// Unicode code point from the buffer.
370// If no bytes are available, the error returned is io.EOF.
371// If the bytes are an erroneous UTF-8 encoding, it
372// consumes one byte and returns U+FFFD, 1.
373func (b *Buffer) ReadRune() (r rune, size int, err error) {
374	if b.empty() {
375		// Buffer is empty, reset to recover space.
376		b.Reset()
377		return 0, 0, io.EOF
378	}
379	c := b.buf[b.off]
380	if c < utf8.RuneSelf {
381		b.off++
382		b.lastRead = opReadRune1
383		return rune(c), 1, nil
384	}
385	r, n := utf8.DecodeRune(b.buf[b.off:])
386	b.off += n
387	b.lastRead = readOp(n)
388	return r, n, nil
389}
390
391// UnreadRune unreads the last rune returned by [Buffer.ReadRune].
392// If the most recent read or write operation on the buffer was
393// not a successful [Buffer.ReadRune], UnreadRune returns an error.  (In this regard
394// it is stricter than [Buffer.UnreadByte], which will unread the last byte
395// from any read operation.)
396func (b *Buffer) UnreadRune() error {
397	if b.lastRead <= opInvalid {
398		return errors.New("bytes.Buffer: UnreadRune: previous operation was not a successful ReadRune")
399	}
400	if b.off >= int(b.lastRead) {
401		b.off -= int(b.lastRead)
402	}
403	b.lastRead = opInvalid
404	return nil
405}
406
407var errUnreadByte = errors.New("bytes.Buffer: UnreadByte: previous operation was not a successful read")
408
409// UnreadByte unreads the last byte returned by the most recent successful
410// read operation that read at least one byte. If a write has happened since
411// the last read, if the last read returned an error, or if the read read zero
412// bytes, UnreadByte returns an error.
413func (b *Buffer) UnreadByte() error {
414	if b.lastRead == opInvalid {
415		return errUnreadByte
416	}
417	b.lastRead = opInvalid
418	if b.off > 0 {
419		b.off--
420	}
421	return nil
422}
423
424// ReadBytes reads until the first occurrence of delim in the input,
425// returning a slice containing the data up to and including the delimiter.
426// If ReadBytes encounters an error before finding a delimiter,
427// it returns the data read before the error and the error itself (often [io.EOF]).
428// ReadBytes returns err != nil if and only if the returned data does not end in
429// delim.
430func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) {
431	slice, err := b.readSlice(delim)
432	// return a copy of slice. The buffer's backing array may
433	// be overwritten by later calls.
434	line = append(line, slice...)
435	return line, err
436}
437
438// readSlice is like ReadBytes but returns a reference to internal buffer data.
439func (b *Buffer) readSlice(delim byte) (line []byte, err error) {
440	i := IndexByte(b.buf[b.off:], delim)
441	end := b.off + i + 1
442	if i < 0 {
443		end = len(b.buf)
444		err = io.EOF
445	}
446	line = b.buf[b.off:end]
447	b.off = end
448	b.lastRead = opRead
449	return line, err
450}
451
452// ReadString reads until the first occurrence of delim in the input,
453// returning a string containing the data up to and including the delimiter.
454// If ReadString encounters an error before finding a delimiter,
455// it returns the data read before the error and the error itself (often [io.EOF]).
456// ReadString returns err != nil if and only if the returned data does not end
457// in delim.
458func (b *Buffer) ReadString(delim byte) (line string, err error) {
459	slice, err := b.readSlice(delim)
460	return string(slice), err
461}
462
463// NewBuffer creates and initializes a new [Buffer] using buf as its
464// initial contents. The new [Buffer] takes ownership of buf, and the
465// caller should not use buf after this call. NewBuffer is intended to
466// prepare a [Buffer] to read existing data. It can also be used to set
467// the initial size of the internal buffer for writing. To do that,
468// buf should have the desired capacity but a length of zero.
469//
470// In most cases, new([Buffer]) (or just declaring a [Buffer] variable) is
471// sufficient to initialize a [Buffer].
472func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} }
473
474// NewBufferString creates and initializes a new [Buffer] using string s as its
475// initial contents. It is intended to prepare a buffer to read an existing
476// string.
477//
478// In most cases, new([Buffer]) (or just declaring a [Buffer] variable) is
479// sufficient to initialize a [Buffer].
480func NewBufferString(s string) *Buffer {
481	return &Buffer{buf: []byte(s)}
482}
483