1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package bytes 6 7// Simple byte buffer for marshaling data. 8 9import ( 10 "errors" 11 "io" 12 "unicode/utf8" 13) 14 15// smallBufferSize is an initial allocation minimal capacity. 16const smallBufferSize = 64 17 18// A Buffer is a variable-sized buffer of bytes with [Buffer.Read] and [Buffer.Write] methods. 19// The zero value for Buffer is an empty buffer ready to use. 20type Buffer struct { 21 buf []byte // contents are the bytes buf[off : len(buf)] 22 off int // read at &buf[off], write at &buf[len(buf)] 23 lastRead readOp // last read operation, so that Unread* can work correctly. 24} 25 26// The readOp constants describe the last action performed on 27// the buffer, so that UnreadRune and UnreadByte can check for 28// invalid usage. opReadRuneX constants are chosen such that 29// converted to int they correspond to the rune size that was read. 30type readOp int8 31 32// Don't use iota for these, as the values need to correspond with the 33// names and comments, which is easier to see when being explicit. 34const ( 35 opRead readOp = -1 // Any other read operation. 36 opInvalid readOp = 0 // Non-read operation. 37 opReadRune1 readOp = 1 // Read rune of size 1. 38 opReadRune2 readOp = 2 // Read rune of size 2. 39 opReadRune3 readOp = 3 // Read rune of size 3. 40 opReadRune4 readOp = 4 // Read rune of size 4. 41) 42 43// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer. 44var ErrTooLarge = errors.New("bytes.Buffer: too large") 45var errNegativeRead = errors.New("bytes.Buffer: reader returned negative count from Read") 46 47const maxInt = int(^uint(0) >> 1) 48 49// Bytes returns a slice of length b.Len() holding the unread portion of the buffer. 50// The slice is valid for use only until the next buffer modification (that is, 51// only until the next call to a method like [Buffer.Read], [Buffer.Write], [Buffer.Reset], or [Buffer.Truncate]). 52// The slice aliases the buffer content at least until the next buffer modification, 53// so immediate changes to the slice will affect the result of future reads. 54func (b *Buffer) Bytes() []byte { return b.buf[b.off:] } 55 56// AvailableBuffer returns an empty buffer with b.Available() capacity. 57// This buffer is intended to be appended to and 58// passed to an immediately succeeding [Buffer.Write] call. 59// The buffer is only valid until the next write operation on b. 60func (b *Buffer) AvailableBuffer() []byte { return b.buf[len(b.buf):] } 61 62// String returns the contents of the unread portion of the buffer 63// as a string. If the [Buffer] is a nil pointer, it returns "<nil>". 64// 65// To build strings more efficiently, see the [strings.Builder] type. 66func (b *Buffer) String() string { 67 if b == nil { 68 // Special case, useful in debugging. 69 return "<nil>" 70 } 71 return string(b.buf[b.off:]) 72} 73 74// empty reports whether the unread portion of the buffer is empty. 75func (b *Buffer) empty() bool { return len(b.buf) <= b.off } 76 77// Len returns the number of bytes of the unread portion of the buffer; 78// b.Len() == len(b.Bytes()). 79func (b *Buffer) Len() int { return len(b.buf) - b.off } 80 81// Cap returns the capacity of the buffer's underlying byte slice, that is, the 82// total space allocated for the buffer's data. 83func (b *Buffer) Cap() int { return cap(b.buf) } 84 85// Available returns how many bytes are unused in the buffer. 86func (b *Buffer) Available() int { return cap(b.buf) - len(b.buf) } 87 88// Truncate discards all but the first n unread bytes from the buffer 89// but continues to use the same allocated storage. 90// It panics if n is negative or greater than the length of the buffer. 91func (b *Buffer) Truncate(n int) { 92 if n == 0 { 93 b.Reset() 94 return 95 } 96 b.lastRead = opInvalid 97 if n < 0 || n > b.Len() { 98 panic("bytes.Buffer: truncation out of range") 99 } 100 b.buf = b.buf[:b.off+n] 101} 102 103// Reset resets the buffer to be empty, 104// but it retains the underlying storage for use by future writes. 105// Reset is the same as [Buffer.Truncate](0). 106func (b *Buffer) Reset() { 107 b.buf = b.buf[:0] 108 b.off = 0 109 b.lastRead = opInvalid 110} 111 112// tryGrowByReslice is an inlineable version of grow for the fast-case where the 113// internal buffer only needs to be resliced. 114// It returns the index where bytes should be written and whether it succeeded. 115func (b *Buffer) tryGrowByReslice(n int) (int, bool) { 116 if l := len(b.buf); n <= cap(b.buf)-l { 117 b.buf = b.buf[:l+n] 118 return l, true 119 } 120 return 0, false 121} 122 123// grow grows the buffer to guarantee space for n more bytes. 124// It returns the index where bytes should be written. 125// If the buffer can't grow it will panic with ErrTooLarge. 126func (b *Buffer) grow(n int) int { 127 m := b.Len() 128 // If buffer is empty, reset to recover space. 129 if m == 0 && b.off != 0 { 130 b.Reset() 131 } 132 // Try to grow by means of a reslice. 133 if i, ok := b.tryGrowByReslice(n); ok { 134 return i 135 } 136 if b.buf == nil && n <= smallBufferSize { 137 b.buf = make([]byte, n, smallBufferSize) 138 return 0 139 } 140 c := cap(b.buf) 141 if n <= c/2-m { 142 // We can slide things down instead of allocating a new 143 // slice. We only need m+n <= c to slide, but 144 // we instead let capacity get twice as large so we 145 // don't spend all our time copying. 146 copy(b.buf, b.buf[b.off:]) 147 } else if c > maxInt-c-n { 148 panic(ErrTooLarge) 149 } else { 150 // Add b.off to account for b.buf[:b.off] being sliced off the front. 151 b.buf = growSlice(b.buf[b.off:], b.off+n) 152 } 153 // Restore b.off and len(b.buf). 154 b.off = 0 155 b.buf = b.buf[:m+n] 156 return m 157} 158 159// Grow grows the buffer's capacity, if necessary, to guarantee space for 160// another n bytes. After Grow(n), at least n bytes can be written to the 161// buffer without another allocation. 162// If n is negative, Grow will panic. 163// If the buffer can't grow it will panic with [ErrTooLarge]. 164func (b *Buffer) Grow(n int) { 165 if n < 0 { 166 panic("bytes.Buffer.Grow: negative count") 167 } 168 m := b.grow(n) 169 b.buf = b.buf[:m] 170} 171 172// Write appends the contents of p to the buffer, growing the buffer as 173// needed. The return value n is the length of p; err is always nil. If the 174// buffer becomes too large, Write will panic with [ErrTooLarge]. 175func (b *Buffer) Write(p []byte) (n int, err error) { 176 b.lastRead = opInvalid 177 m, ok := b.tryGrowByReslice(len(p)) 178 if !ok { 179 m = b.grow(len(p)) 180 } 181 return copy(b.buf[m:], p), nil 182} 183 184// WriteString appends the contents of s to the buffer, growing the buffer as 185// needed. The return value n is the length of s; err is always nil. If the 186// buffer becomes too large, WriteString will panic with [ErrTooLarge]. 187func (b *Buffer) WriteString(s string) (n int, err error) { 188 b.lastRead = opInvalid 189 m, ok := b.tryGrowByReslice(len(s)) 190 if !ok { 191 m = b.grow(len(s)) 192 } 193 return copy(b.buf[m:], s), nil 194} 195 196// MinRead is the minimum slice size passed to a [Buffer.Read] call by 197// [Buffer.ReadFrom]. As long as the [Buffer] has at least MinRead bytes beyond 198// what is required to hold the contents of r, [Buffer.ReadFrom] will not grow the 199// underlying buffer. 200const MinRead = 512 201 202// ReadFrom reads data from r until EOF and appends it to the buffer, growing 203// the buffer as needed. The return value n is the number of bytes read. Any 204// error except io.EOF encountered during the read is also returned. If the 205// buffer becomes too large, ReadFrom will panic with [ErrTooLarge]. 206func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) { 207 b.lastRead = opInvalid 208 for { 209 i := b.grow(MinRead) 210 b.buf = b.buf[:i] 211 m, e := r.Read(b.buf[i:cap(b.buf)]) 212 if m < 0 { 213 panic(errNegativeRead) 214 } 215 216 b.buf = b.buf[:i+m] 217 n += int64(m) 218 if e == io.EOF { 219 return n, nil // e is EOF, so return nil explicitly 220 } 221 if e != nil { 222 return n, e 223 } 224 } 225} 226 227// growSlice grows b by n, preserving the original content of b. 228// If the allocation fails, it panics with ErrTooLarge. 229func growSlice(b []byte, n int) []byte { 230 defer func() { 231 if recover() != nil { 232 panic(ErrTooLarge) 233 } 234 }() 235 // TODO(http://golang.org/issue/51462): We should rely on the append-make 236 // pattern so that the compiler can call runtime.growslice. For example: 237 // return append(b, make([]byte, n)...) 238 // This avoids unnecessary zero-ing of the first len(b) bytes of the 239 // allocated slice, but this pattern causes b to escape onto the heap. 240 // 241 // Instead use the append-make pattern with a nil slice to ensure that 242 // we allocate buffers rounded up to the closest size class. 243 c := len(b) + n // ensure enough space for n elements 244 if c < 2*cap(b) { 245 // The growth rate has historically always been 2x. In the future, 246 // we could rely purely on append to determine the growth rate. 247 c = 2 * cap(b) 248 } 249 b2 := append([]byte(nil), make([]byte, c)...) 250 copy(b2, b) 251 return b2[:len(b)] 252} 253 254// WriteTo writes data to w until the buffer is drained or an error occurs. 255// The return value n is the number of bytes written; it always fits into an 256// int, but it is int64 to match the [io.WriterTo] interface. Any error 257// encountered during the write is also returned. 258func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) { 259 b.lastRead = opInvalid 260 if nBytes := b.Len(); nBytes > 0 { 261 m, e := w.Write(b.buf[b.off:]) 262 if m > nBytes { 263 panic("bytes.Buffer.WriteTo: invalid Write count") 264 } 265 b.off += m 266 n = int64(m) 267 if e != nil { 268 return n, e 269 } 270 // all bytes should have been written, by definition of 271 // Write method in io.Writer 272 if m != nBytes { 273 return n, io.ErrShortWrite 274 } 275 } 276 // Buffer is now empty; reset. 277 b.Reset() 278 return n, nil 279} 280 281// WriteByte appends the byte c to the buffer, growing the buffer as needed. 282// The returned error is always nil, but is included to match [bufio.Writer]'s 283// WriteByte. If the buffer becomes too large, WriteByte will panic with 284// [ErrTooLarge]. 285func (b *Buffer) WriteByte(c byte) error { 286 b.lastRead = opInvalid 287 m, ok := b.tryGrowByReslice(1) 288 if !ok { 289 m = b.grow(1) 290 } 291 b.buf[m] = c 292 return nil 293} 294 295// WriteRune appends the UTF-8 encoding of Unicode code point r to the 296// buffer, returning its length and an error, which is always nil but is 297// included to match [bufio.Writer]'s WriteRune. The buffer is grown as needed; 298// if it becomes too large, WriteRune will panic with [ErrTooLarge]. 299func (b *Buffer) WriteRune(r rune) (n int, err error) { 300 // Compare as uint32 to correctly handle negative runes. 301 if uint32(r) < utf8.RuneSelf { 302 b.WriteByte(byte(r)) 303 return 1, nil 304 } 305 b.lastRead = opInvalid 306 m, ok := b.tryGrowByReslice(utf8.UTFMax) 307 if !ok { 308 m = b.grow(utf8.UTFMax) 309 } 310 b.buf = utf8.AppendRune(b.buf[:m], r) 311 return len(b.buf) - m, nil 312} 313 314// Read reads the next len(p) bytes from the buffer or until the buffer 315// is drained. The return value n is the number of bytes read. If the 316// buffer has no data to return, err is [io.EOF] (unless len(p) is zero); 317// otherwise it is nil. 318func (b *Buffer) Read(p []byte) (n int, err error) { 319 b.lastRead = opInvalid 320 if b.empty() { 321 // Buffer is empty, reset to recover space. 322 b.Reset() 323 if len(p) == 0 { 324 return 0, nil 325 } 326 return 0, io.EOF 327 } 328 n = copy(p, b.buf[b.off:]) 329 b.off += n 330 if n > 0 { 331 b.lastRead = opRead 332 } 333 return n, nil 334} 335 336// Next returns a slice containing the next n bytes from the buffer, 337// advancing the buffer as if the bytes had been returned by [Buffer.Read]. 338// If there are fewer than n bytes in the buffer, Next returns the entire buffer. 339// The slice is only valid until the next call to a read or write method. 340func (b *Buffer) Next(n int) []byte { 341 b.lastRead = opInvalid 342 m := b.Len() 343 if n > m { 344 n = m 345 } 346 data := b.buf[b.off : b.off+n] 347 b.off += n 348 if n > 0 { 349 b.lastRead = opRead 350 } 351 return data 352} 353 354// ReadByte reads and returns the next byte from the buffer. 355// If no byte is available, it returns error [io.EOF]. 356func (b *Buffer) ReadByte() (byte, error) { 357 if b.empty() { 358 // Buffer is empty, reset to recover space. 359 b.Reset() 360 return 0, io.EOF 361 } 362 c := b.buf[b.off] 363 b.off++ 364 b.lastRead = opRead 365 return c, nil 366} 367 368// ReadRune reads and returns the next UTF-8-encoded 369// Unicode code point from the buffer. 370// If no bytes are available, the error returned is io.EOF. 371// If the bytes are an erroneous UTF-8 encoding, it 372// consumes one byte and returns U+FFFD, 1. 373func (b *Buffer) ReadRune() (r rune, size int, err error) { 374 if b.empty() { 375 // Buffer is empty, reset to recover space. 376 b.Reset() 377 return 0, 0, io.EOF 378 } 379 c := b.buf[b.off] 380 if c < utf8.RuneSelf { 381 b.off++ 382 b.lastRead = opReadRune1 383 return rune(c), 1, nil 384 } 385 r, n := utf8.DecodeRune(b.buf[b.off:]) 386 b.off += n 387 b.lastRead = readOp(n) 388 return r, n, nil 389} 390 391// UnreadRune unreads the last rune returned by [Buffer.ReadRune]. 392// If the most recent read or write operation on the buffer was 393// not a successful [Buffer.ReadRune], UnreadRune returns an error. (In this regard 394// it is stricter than [Buffer.UnreadByte], which will unread the last byte 395// from any read operation.) 396func (b *Buffer) UnreadRune() error { 397 if b.lastRead <= opInvalid { 398 return errors.New("bytes.Buffer: UnreadRune: previous operation was not a successful ReadRune") 399 } 400 if b.off >= int(b.lastRead) { 401 b.off -= int(b.lastRead) 402 } 403 b.lastRead = opInvalid 404 return nil 405} 406 407var errUnreadByte = errors.New("bytes.Buffer: UnreadByte: previous operation was not a successful read") 408 409// UnreadByte unreads the last byte returned by the most recent successful 410// read operation that read at least one byte. If a write has happened since 411// the last read, if the last read returned an error, or if the read read zero 412// bytes, UnreadByte returns an error. 413func (b *Buffer) UnreadByte() error { 414 if b.lastRead == opInvalid { 415 return errUnreadByte 416 } 417 b.lastRead = opInvalid 418 if b.off > 0 { 419 b.off-- 420 } 421 return nil 422} 423 424// ReadBytes reads until the first occurrence of delim in the input, 425// returning a slice containing the data up to and including the delimiter. 426// If ReadBytes encounters an error before finding a delimiter, 427// it returns the data read before the error and the error itself (often [io.EOF]). 428// ReadBytes returns err != nil if and only if the returned data does not end in 429// delim. 430func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) { 431 slice, err := b.readSlice(delim) 432 // return a copy of slice. The buffer's backing array may 433 // be overwritten by later calls. 434 line = append(line, slice...) 435 return line, err 436} 437 438// readSlice is like ReadBytes but returns a reference to internal buffer data. 439func (b *Buffer) readSlice(delim byte) (line []byte, err error) { 440 i := IndexByte(b.buf[b.off:], delim) 441 end := b.off + i + 1 442 if i < 0 { 443 end = len(b.buf) 444 err = io.EOF 445 } 446 line = b.buf[b.off:end] 447 b.off = end 448 b.lastRead = opRead 449 return line, err 450} 451 452// ReadString reads until the first occurrence of delim in the input, 453// returning a string containing the data up to and including the delimiter. 454// If ReadString encounters an error before finding a delimiter, 455// it returns the data read before the error and the error itself (often [io.EOF]). 456// ReadString returns err != nil if and only if the returned data does not end 457// in delim. 458func (b *Buffer) ReadString(delim byte) (line string, err error) { 459 slice, err := b.readSlice(delim) 460 return string(slice), err 461} 462 463// NewBuffer creates and initializes a new [Buffer] using buf as its 464// initial contents. The new [Buffer] takes ownership of buf, and the 465// caller should not use buf after this call. NewBuffer is intended to 466// prepare a [Buffer] to read existing data. It can also be used to set 467// the initial size of the internal buffer for writing. To do that, 468// buf should have the desired capacity but a length of zero. 469// 470// In most cases, new([Buffer]) (or just declaring a [Buffer] variable) is 471// sufficient to initialize a [Buffer]. 472func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} } 473 474// NewBufferString creates and initializes a new [Buffer] using string s as its 475// initial contents. It is intended to prepare a buffer to read an existing 476// string. 477// 478// In most cases, new([Buffer]) (or just declaring a [Buffer] variable) is 479// sufficient to initialize a [Buffer]. 480func NewBufferString(s string) *Buffer { 481 return &Buffer{buf: []byte(s)} 482} 483