1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5//go:build unix
6
7package runtime
8
9import (
10	"internal/abi"
11	"internal/runtime/atomic"
12	"runtime/internal/sys"
13	"unsafe"
14)
15
16// sigTabT is the type of an entry in the global sigtable array.
17// sigtable is inherently system dependent, and appears in OS-specific files,
18// but sigTabT is the same for all Unixy systems.
19// The sigtable array is indexed by a system signal number to get the flags
20// and printable name of each signal.
21type sigTabT struct {
22	flags int32
23	name  string
24}
25
26//go:linkname os_sigpipe os.sigpipe
27func os_sigpipe() {
28	systemstack(sigpipe)
29}
30
31func signame(sig uint32) string {
32	if sig >= uint32(len(sigtable)) {
33		return ""
34	}
35	return sigtable[sig].name
36}
37
38const (
39	_SIG_DFL uintptr = 0
40	_SIG_IGN uintptr = 1
41)
42
43// sigPreempt is the signal used for non-cooperative preemption.
44//
45// There's no good way to choose this signal, but there are some
46// heuristics:
47//
48// 1. It should be a signal that's passed-through by debuggers by
49// default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
50// SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
51//
52// 2. It shouldn't be used internally by libc in mixed Go/C binaries
53// because libc may assume it's the only thing that can handle these
54// signals. For example SIGCANCEL or SIGSETXID.
55//
56// 3. It should be a signal that can happen spuriously without
57// consequences. For example, SIGALRM is a bad choice because the
58// signal handler can't tell if it was caused by the real process
59// alarm or not (arguably this means the signal is broken, but I
60// digress). SIGUSR1 and SIGUSR2 are also bad because those are often
61// used in meaningful ways by applications.
62//
63// 4. We need to deal with platforms without real-time signals (like
64// macOS), so those are out.
65//
66// We use SIGURG because it meets all of these criteria, is extremely
67// unlikely to be used by an application for its "real" meaning (both
68// because out-of-band data is basically unused and because SIGURG
69// doesn't report which socket has the condition, making it pretty
70// useless), and even if it is, the application has to be ready for
71// spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
72// likely to be used for real.
73const sigPreempt = _SIGURG
74
75// Stores the signal handlers registered before Go installed its own.
76// These signal handlers will be invoked in cases where Go doesn't want to
77// handle a particular signal (e.g., signal occurred on a non-Go thread).
78// See sigfwdgo for more information on when the signals are forwarded.
79//
80// This is read by the signal handler; accesses should use
81// atomic.Loaduintptr and atomic.Storeuintptr.
82var fwdSig [_NSIG]uintptr
83
84// handlingSig is indexed by signal number and is non-zero if we are
85// currently handling the signal. Or, to put it another way, whether
86// the signal handler is currently set to the Go signal handler or not.
87// This is uint32 rather than bool so that we can use atomic instructions.
88var handlingSig [_NSIG]uint32
89
90// channels for synchronizing signal mask updates with the signal mask
91// thread
92var (
93	disableSigChan  chan uint32
94	enableSigChan   chan uint32
95	maskUpdatedChan chan struct{}
96)
97
98func init() {
99	// _NSIG is the number of signals on this operating system.
100	// sigtable should describe what to do for all the possible signals.
101	if len(sigtable) != _NSIG {
102		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
103		throw("bad sigtable len")
104	}
105}
106
107var signalsOK bool
108
109// Initialize signals.
110// Called by libpreinit so runtime may not be initialized.
111//
112//go:nosplit
113//go:nowritebarrierrec
114func initsig(preinit bool) {
115	if !preinit {
116		// It's now OK for signal handlers to run.
117		signalsOK = true
118	}
119
120	// For c-archive/c-shared this is called by libpreinit with
121	// preinit == true.
122	if (isarchive || islibrary) && !preinit {
123		return
124	}
125
126	for i := uint32(0); i < _NSIG; i++ {
127		t := &sigtable[i]
128		if t.flags == 0 || t.flags&_SigDefault != 0 {
129			continue
130		}
131
132		// We don't need to use atomic operations here because
133		// there shouldn't be any other goroutines running yet.
134		fwdSig[i] = getsig(i)
135
136		if !sigInstallGoHandler(i) {
137			// Even if we are not installing a signal handler,
138			// set SA_ONSTACK if necessary.
139			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
140				setsigstack(i)
141			} else if fwdSig[i] == _SIG_IGN {
142				sigInitIgnored(i)
143			}
144			continue
145		}
146
147		handlingSig[i] = 1
148		setsig(i, abi.FuncPCABIInternal(sighandler))
149	}
150}
151
152//go:nosplit
153//go:nowritebarrierrec
154func sigInstallGoHandler(sig uint32) bool {
155	// For some signals, we respect an inherited SIG_IGN handler
156	// rather than insist on installing our own default handler.
157	// Even these signals can be fetched using the os/signal package.
158	switch sig {
159	case _SIGHUP, _SIGINT:
160		if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
161			return false
162		}
163	}
164
165	if (GOOS == "linux" || GOOS == "android") && !iscgo && sig == sigPerThreadSyscall {
166		// sigPerThreadSyscall is the same signal used by glibc for
167		// per-thread syscalls on Linux. We use it for the same purpose
168		// in non-cgo binaries.
169		return true
170	}
171
172	t := &sigtable[sig]
173	if t.flags&_SigSetStack != 0 {
174		return false
175	}
176
177	// When built using c-archive or c-shared, only install signal
178	// handlers for synchronous signals and SIGPIPE and sigPreempt.
179	if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE && sig != sigPreempt {
180		return false
181	}
182
183	return true
184}
185
186// sigenable enables the Go signal handler to catch the signal sig.
187// It is only called while holding the os/signal.handlers lock,
188// via os/signal.enableSignal and signal_enable.
189func sigenable(sig uint32) {
190	if sig >= uint32(len(sigtable)) {
191		return
192	}
193
194	// SIGPROF is handled specially for profiling.
195	if sig == _SIGPROF {
196		return
197	}
198
199	t := &sigtable[sig]
200	if t.flags&_SigNotify != 0 {
201		ensureSigM()
202		enableSigChan <- sig
203		<-maskUpdatedChan
204		if atomic.Cas(&handlingSig[sig], 0, 1) {
205			atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
206			setsig(sig, abi.FuncPCABIInternal(sighandler))
207		}
208	}
209}
210
211// sigdisable disables the Go signal handler for the signal sig.
212// It is only called while holding the os/signal.handlers lock,
213// via os/signal.disableSignal and signal_disable.
214func sigdisable(sig uint32) {
215	if sig >= uint32(len(sigtable)) {
216		return
217	}
218
219	// SIGPROF is handled specially for profiling.
220	if sig == _SIGPROF {
221		return
222	}
223
224	t := &sigtable[sig]
225	if t.flags&_SigNotify != 0 {
226		ensureSigM()
227		disableSigChan <- sig
228		<-maskUpdatedChan
229
230		// If initsig does not install a signal handler for a
231		// signal, then to go back to the state before Notify
232		// we should remove the one we installed.
233		if !sigInstallGoHandler(sig) {
234			atomic.Store(&handlingSig[sig], 0)
235			setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
236		}
237	}
238}
239
240// sigignore ignores the signal sig.
241// It is only called while holding the os/signal.handlers lock,
242// via os/signal.ignoreSignal and signal_ignore.
243func sigignore(sig uint32) {
244	if sig >= uint32(len(sigtable)) {
245		return
246	}
247
248	// SIGPROF is handled specially for profiling.
249	if sig == _SIGPROF {
250		return
251	}
252
253	t := &sigtable[sig]
254	if t.flags&_SigNotify != 0 {
255		atomic.Store(&handlingSig[sig], 0)
256		setsig(sig, _SIG_IGN)
257	}
258}
259
260// clearSignalHandlers clears all signal handlers that are not ignored
261// back to the default. This is called by the child after a fork, so that
262// we can enable the signal mask for the exec without worrying about
263// running a signal handler in the child.
264//
265//go:nosplit
266//go:nowritebarrierrec
267func clearSignalHandlers() {
268	for i := uint32(0); i < _NSIG; i++ {
269		if atomic.Load(&handlingSig[i]) != 0 {
270			setsig(i, _SIG_DFL)
271		}
272	}
273}
274
275// setProcessCPUProfilerTimer is called when the profiling timer changes.
276// It is called with prof.signalLock held. hz is the new timer, and is 0 if
277// profiling is being disabled. Enable or disable the signal as
278// required for -buildmode=c-archive.
279func setProcessCPUProfilerTimer(hz int32) {
280	if hz != 0 {
281		// Enable the Go signal handler if not enabled.
282		if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
283			h := getsig(_SIGPROF)
284			// If no signal handler was installed before, then we record
285			// _SIG_IGN here. When we turn off profiling (below) we'll start
286			// ignoring SIGPROF signals. We do this, rather than change
287			// to SIG_DFL, because there may be a pending SIGPROF
288			// signal that has not yet been delivered to some other thread.
289			// If we change to SIG_DFL when turning off profiling, the
290			// program will crash when that SIGPROF is delivered. We assume
291			// that programs that use profiling don't want to crash on a
292			// stray SIGPROF. See issue 19320.
293			// We do the change here instead of when turning off profiling,
294			// because there we may race with a signal handler running
295			// concurrently, in particular, sigfwdgo may observe _SIG_DFL and
296			// die. See issue 43828.
297			if h == _SIG_DFL {
298				h = _SIG_IGN
299			}
300			atomic.Storeuintptr(&fwdSig[_SIGPROF], h)
301			setsig(_SIGPROF, abi.FuncPCABIInternal(sighandler))
302		}
303
304		var it itimerval
305		it.it_interval.tv_sec = 0
306		it.it_interval.set_usec(1000000 / hz)
307		it.it_value = it.it_interval
308		setitimer(_ITIMER_PROF, &it, nil)
309	} else {
310		setitimer(_ITIMER_PROF, &itimerval{}, nil)
311
312		// If the Go signal handler should be disabled by default,
313		// switch back to the signal handler that was installed
314		// when we enabled profiling. We don't try to handle the case
315		// of a program that changes the SIGPROF handler while Go
316		// profiling is enabled.
317		if !sigInstallGoHandler(_SIGPROF) {
318			if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
319				h := atomic.Loaduintptr(&fwdSig[_SIGPROF])
320				setsig(_SIGPROF, h)
321			}
322		}
323	}
324}
325
326// setThreadCPUProfilerHz makes any thread-specific changes required to
327// implement profiling at a rate of hz.
328// No changes required on Unix systems when using setitimer.
329func setThreadCPUProfilerHz(hz int32) {
330	getg().m.profilehz = hz
331}
332
333func sigpipe() {
334	if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) {
335		return
336	}
337	dieFromSignal(_SIGPIPE)
338}
339
340// doSigPreempt handles a preemption signal on gp.
341func doSigPreempt(gp *g, ctxt *sigctxt) {
342	// Check if this G wants to be preempted and is safe to
343	// preempt.
344	if wantAsyncPreempt(gp) {
345		if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok {
346			// Adjust the PC and inject a call to asyncPreempt.
347			ctxt.pushCall(abi.FuncPCABI0(asyncPreempt), newpc)
348		}
349	}
350
351	// Acknowledge the preemption.
352	gp.m.preemptGen.Add(1)
353	gp.m.signalPending.Store(0)
354
355	if GOOS == "darwin" || GOOS == "ios" {
356		pendingPreemptSignals.Add(-1)
357	}
358}
359
360const preemptMSupported = true
361
362// preemptM sends a preemption request to mp. This request may be
363// handled asynchronously and may be coalesced with other requests to
364// the M. When the request is received, if the running G or P are
365// marked for preemption and the goroutine is at an asynchronous
366// safe-point, it will preempt the goroutine. It always atomically
367// increments mp.preemptGen after handling a preemption request.
368func preemptM(mp *m) {
369	// On Darwin, don't try to preempt threads during exec.
370	// Issue #41702.
371	if GOOS == "darwin" || GOOS == "ios" {
372		execLock.rlock()
373	}
374
375	if mp.signalPending.CompareAndSwap(0, 1) {
376		if GOOS == "darwin" || GOOS == "ios" {
377			pendingPreemptSignals.Add(1)
378		}
379
380		// If multiple threads are preempting the same M, it may send many
381		// signals to the same M such that it hardly make progress, causing
382		// live-lock problem. Apparently this could happen on darwin. See
383		// issue #37741.
384		// Only send a signal if there isn't already one pending.
385		signalM(mp, sigPreempt)
386	}
387
388	if GOOS == "darwin" || GOOS == "ios" {
389		execLock.runlock()
390	}
391}
392
393// sigFetchG fetches the value of G safely when running in a signal handler.
394// On some architectures, the g value may be clobbered when running in a VDSO.
395// See issue #32912.
396//
397//go:nosplit
398func sigFetchG(c *sigctxt) *g {
399	switch GOARCH {
400	case "arm", "arm64", "loong64", "ppc64", "ppc64le", "riscv64", "s390x":
401		if !iscgo && inVDSOPage(c.sigpc()) {
402			// When using cgo, we save the g on TLS and load it from there
403			// in sigtramp. Just use that.
404			// Otherwise, before making a VDSO call we save the g to the
405			// bottom of the signal stack. Fetch from there.
406			// TODO: in efence mode, stack is sysAlloc'd, so this wouldn't
407			// work.
408			sp := getcallersp()
409			s := spanOf(sp)
410			if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit {
411				gp := *(**g)(unsafe.Pointer(s.base()))
412				return gp
413			}
414			return nil
415		}
416	}
417	return getg()
418}
419
420// sigtrampgo is called from the signal handler function, sigtramp,
421// written in assembly code.
422// This is called by the signal handler, and the world may be stopped.
423//
424// It must be nosplit because getg() is still the G that was running
425// (if any) when the signal was delivered, but it's (usually) called
426// on the gsignal stack. Until this switches the G to gsignal, the
427// stack bounds check won't work.
428//
429//go:nosplit
430//go:nowritebarrierrec
431func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
432	if sigfwdgo(sig, info, ctx) {
433		return
434	}
435	c := &sigctxt{info, ctx}
436	gp := sigFetchG(c)
437	setg(gp)
438	if gp == nil || (gp.m != nil && gp.m.isExtraInC) {
439		if sig == _SIGPROF {
440			// Some platforms (Linux) have per-thread timers, which we use in
441			// combination with the process-wide timer. Avoid double-counting.
442			if validSIGPROF(nil, c) {
443				sigprofNonGoPC(c.sigpc())
444			}
445			return
446		}
447		if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
448			// This is probably a signal from preemptM sent
449			// while executing Go code but received while
450			// executing non-Go code.
451			// We got past sigfwdgo, so we know that there is
452			// no non-Go signal handler for sigPreempt.
453			// The default behavior for sigPreempt is to ignore
454			// the signal, so badsignal will be a no-op anyway.
455			if GOOS == "darwin" || GOOS == "ios" {
456				pendingPreemptSignals.Add(-1)
457			}
458			return
459		}
460		c.fixsigcode(sig)
461		// Set g to nil here and badsignal will use g0 by needm.
462		// TODO: reuse the current m here by using the gsignal and adjustSignalStack,
463		// since the current g maybe a normal goroutine and actually running on the signal stack,
464		// it may hit stack split that is not expected here.
465		if gp != nil {
466			setg(nil)
467		}
468		badsignal(uintptr(sig), c)
469		// Restore g
470		if gp != nil {
471			setg(gp)
472		}
473		return
474	}
475
476	setg(gp.m.gsignal)
477
478	// If some non-Go code called sigaltstack, adjust.
479	var gsignalStack gsignalStack
480	setStack := adjustSignalStack(sig, gp.m, &gsignalStack)
481	if setStack {
482		gp.m.gsignal.stktopsp = getcallersp()
483	}
484
485	if gp.stackguard0 == stackFork {
486		signalDuringFork(sig)
487	}
488
489	c.fixsigcode(sig)
490	sighandler(sig, info, ctx, gp)
491	setg(gp)
492	if setStack {
493		restoreGsignalStack(&gsignalStack)
494	}
495}
496
497// If the signal handler receives a SIGPROF signal on a non-Go thread,
498// it tries to collect a traceback into sigprofCallers.
499// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
500var sigprofCallers cgoCallers
501var sigprofCallersUse uint32
502
503// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
504// and the signal handler collected a stack trace in sigprofCallers.
505// When this is called, sigprofCallersUse will be non-zero.
506// g is nil, and what we can do is very limited.
507//
508// It is called from the signal handling functions written in assembly code that
509// are active for cgo programs, cgoSigtramp and sigprofNonGoWrapper, which have
510// not verified that the SIGPROF delivery corresponds to the best available
511// profiling source for this thread.
512//
513//go:nosplit
514//go:nowritebarrierrec
515func sigprofNonGo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
516	if prof.hz.Load() != 0 {
517		c := &sigctxt{info, ctx}
518		// Some platforms (Linux) have per-thread timers, which we use in
519		// combination with the process-wide timer. Avoid double-counting.
520		if validSIGPROF(nil, c) {
521			n := 0
522			for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
523				n++
524			}
525			cpuprof.addNonGo(sigprofCallers[:n])
526		}
527	}
528
529	atomic.Store(&sigprofCallersUse, 0)
530}
531
532// sigprofNonGoPC is called when a profiling signal arrived on a
533// non-Go thread and we have a single PC value, not a stack trace.
534// g is nil, and what we can do is very limited.
535//
536//go:nosplit
537//go:nowritebarrierrec
538func sigprofNonGoPC(pc uintptr) {
539	if prof.hz.Load() != 0 {
540		stk := []uintptr{
541			pc,
542			abi.FuncPCABIInternal(_ExternalCode) + sys.PCQuantum,
543		}
544		cpuprof.addNonGo(stk)
545	}
546}
547
548// adjustSignalStack adjusts the current stack guard based on the
549// stack pointer that is actually in use while handling a signal.
550// We do this in case some non-Go code called sigaltstack.
551// This reports whether the stack was adjusted, and if so stores the old
552// signal stack in *gsigstack.
553//
554//go:nosplit
555func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool {
556	sp := uintptr(unsafe.Pointer(&sig))
557	if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi {
558		return false
559	}
560
561	var st stackt
562	sigaltstack(nil, &st)
563	stsp := uintptr(unsafe.Pointer(st.ss_sp))
564	if st.ss_flags&_SS_DISABLE == 0 && sp >= stsp && sp < stsp+st.ss_size {
565		setGsignalStack(&st, gsigStack)
566		return true
567	}
568
569	if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi {
570		// The signal was delivered on the g0 stack.
571		// This can happen when linked with C code
572		// using the thread sanitizer, which collects
573		// signals then delivers them itself by calling
574		// the signal handler directly when C code,
575		// including C code called via cgo, calls a
576		// TSAN-intercepted function such as malloc.
577		//
578		// We check this condition last as g0.stack.lo
579		// may be not very accurate (see mstart).
580		st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo}
581		setSignalstackSP(&st, mp.g0.stack.lo)
582		setGsignalStack(&st, gsigStack)
583		return true
584	}
585
586	// sp is not within gsignal stack, g0 stack, or sigaltstack. Bad.
587	setg(nil)
588	needm(true)
589	if st.ss_flags&_SS_DISABLE != 0 {
590		noSignalStack(sig)
591	} else {
592		sigNotOnStack(sig, sp, mp)
593	}
594	dropm()
595	return false
596}
597
598// crashing is the number of m's we have waited for when implementing
599// GOTRACEBACK=crash when a signal is received.
600var crashing atomic.Int32
601
602// testSigtrap and testSigusr1 are used by the runtime tests. If
603// non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the
604// normal behavior on this signal is suppressed.
605var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
606var testSigusr1 func(gp *g) bool
607
608// sighandler is invoked when a signal occurs. The global g will be
609// set to a gsignal goroutine and we will be running on the alternate
610// signal stack. The parameter gp will be the value of the global g
611// when the signal occurred. The sig, info, and ctxt parameters are
612// from the system signal handler: they are the parameters passed when
613// the SA is passed to the sigaction system call.
614//
615// The garbage collector may have stopped the world, so write barriers
616// are not allowed.
617//
618//go:nowritebarrierrec
619func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
620	// The g executing the signal handler. This is almost always
621	// mp.gsignal. See delayedSignal for an exception.
622	gsignal := getg()
623	mp := gsignal.m
624	c := &sigctxt{info, ctxt}
625
626	// Cgo TSAN (not the Go race detector) intercepts signals and calls the
627	// signal handler at a later time. When the signal handler is called, the
628	// memory may have changed, but the signal context remains old. The
629	// unmatched signal context and memory makes it unsafe to unwind or inspect
630	// the stack. So we ignore delayed non-fatal signals that will cause a stack
631	// inspection (profiling signal and preemption signal).
632	// cgo_yield is only non-nil for TSAN, and is specifically used to trigger
633	// signal delivery. We use that as an indicator of delayed signals.
634	// For delayed signals, the handler is called on the g0 stack (see
635	// adjustSignalStack).
636	delayedSignal := *cgo_yield != nil && mp != nil && gsignal.stack == mp.g0.stack
637
638	if sig == _SIGPROF {
639		// Some platforms (Linux) have per-thread timers, which we use in
640		// combination with the process-wide timer. Avoid double-counting.
641		if !delayedSignal && validSIGPROF(mp, c) {
642			sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, mp)
643		}
644		return
645	}
646
647	if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
648		return
649	}
650
651	if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) {
652		return
653	}
654
655	if (GOOS == "linux" || GOOS == "android") && sig == sigPerThreadSyscall {
656		// sigPerThreadSyscall is the same signal used by glibc for
657		// per-thread syscalls on Linux. We use it for the same purpose
658		// in non-cgo binaries. Since this signal is not _SigNotify,
659		// there is nothing more to do once we run the syscall.
660		runPerThreadSyscall()
661		return
662	}
663
664	if sig == sigPreempt && debug.asyncpreemptoff == 0 && !delayedSignal {
665		// Might be a preemption signal.
666		doSigPreempt(gp, c)
667		// Even if this was definitely a preemption signal, it
668		// may have been coalesced with another signal, so we
669		// still let it through to the application.
670	}
671
672	flags := int32(_SigThrow)
673	if sig < uint32(len(sigtable)) {
674		flags = sigtable[sig].flags
675	}
676	if !c.sigFromUser() && flags&_SigPanic != 0 && (gp.throwsplit || gp != mp.curg) {
677		// We can't safely sigpanic because it may grow the
678		// stack. Abort in the signal handler instead.
679		//
680		// Also don't inject a sigpanic if we are not on a
681		// user G stack. Either we're in the runtime, or we're
682		// running C code. Either way we cannot recover.
683		flags = _SigThrow
684	}
685	if isAbortPC(c.sigpc()) {
686		// On many architectures, the abort function just
687		// causes a memory fault. Don't turn that into a panic.
688		flags = _SigThrow
689	}
690	if !c.sigFromUser() && flags&_SigPanic != 0 {
691		// The signal is going to cause a panic.
692		// Arrange the stack so that it looks like the point
693		// where the signal occurred made a call to the
694		// function sigpanic. Then set the PC to sigpanic.
695
696		// Have to pass arguments out of band since
697		// augmenting the stack frame would break
698		// the unwinding code.
699		gp.sig = sig
700		gp.sigcode0 = uintptr(c.sigcode())
701		gp.sigcode1 = c.fault()
702		gp.sigpc = c.sigpc()
703
704		c.preparePanic(sig, gp)
705		return
706	}
707
708	if c.sigFromUser() || flags&_SigNotify != 0 {
709		if sigsend(sig) {
710			return
711		}
712	}
713
714	if c.sigFromUser() && signal_ignored(sig) {
715		return
716	}
717
718	if flags&_SigKill != 0 {
719		dieFromSignal(sig)
720	}
721
722	// _SigThrow means that we should exit now.
723	// If we get here with _SigPanic, it means that the signal
724	// was sent to us by a program (c.sigFromUser() is true);
725	// in that case, if we didn't handle it in sigsend, we exit now.
726	if flags&(_SigThrow|_SigPanic) == 0 {
727		return
728	}
729
730	mp.throwing = throwTypeRuntime
731	mp.caughtsig.set(gp)
732
733	if crashing.Load() == 0 {
734		startpanic_m()
735	}
736
737	gp = fatalsignal(sig, c, gp, mp)
738
739	level, _, docrash := gotraceback()
740	if level > 0 {
741		goroutineheader(gp)
742		tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
743		if crashing.Load() > 0 && gp != mp.curg && mp.curg != nil && readgstatus(mp.curg)&^_Gscan == _Grunning {
744			// tracebackothers on original m skipped this one; trace it now.
745			goroutineheader(mp.curg)
746			traceback(^uintptr(0), ^uintptr(0), 0, mp.curg)
747		} else if crashing.Load() == 0 {
748			tracebackothers(gp)
749			print("\n")
750		}
751		dumpregs(c)
752	}
753
754	if docrash {
755		var crashSleepMicros uint32 = 5000
756		var watchdogTimeoutMicros uint32 = 2000 * crashSleepMicros
757
758		isCrashThread := false
759		if crashing.CompareAndSwap(0, 1) {
760			isCrashThread = true
761		} else {
762			crashing.Add(1)
763		}
764		if crashing.Load() < mcount()-int32(extraMLength.Load()) {
765			// There are other m's that need to dump their stacks.
766			// Relay SIGQUIT to the next m by sending it to the current process.
767			// All m's that have already received SIGQUIT have signal masks blocking
768			// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
769			// The first m will wait until all ms received the SIGQUIT, then crash/exit.
770			// Just in case the relaying gets botched, each m involved in
771			// the relay sleeps for 5 seconds and then does the crash/exit itself.
772			// The faulting m is crashing first so it is the faulting thread in the core dump (see issue #63277):
773			// in expected operation, the first m will wait until the last m has received the SIGQUIT,
774			// and then run crash/exit and the process is gone.
775			// However, if it spends more than 10 seconds to send SIGQUIT to all ms,
776			// any of ms may crash/exit the process after waiting for 10 seconds.
777			print("\n-----\n\n")
778			raiseproc(_SIGQUIT)
779		}
780		if isCrashThread {
781			// Sleep for short intervals so that we can crash quickly after all ms have received SIGQUIT.
782			// Reset the timer whenever we see more ms received SIGQUIT
783			// to make it have enough time to crash (see issue #64752).
784			timeout := watchdogTimeoutMicros
785			maxCrashing := crashing.Load()
786			for timeout > 0 && (crashing.Load() < mcount()-int32(extraMLength.Load())) {
787				usleep(crashSleepMicros)
788				timeout -= crashSleepMicros
789
790				if c := crashing.Load(); c > maxCrashing {
791					// We make progress, so reset the watchdog timeout
792					maxCrashing = c
793					timeout = watchdogTimeoutMicros
794				}
795			}
796		} else {
797			maxCrashing := int32(0)
798			c := crashing.Load()
799			for c > maxCrashing {
800				maxCrashing = c
801				usleep(watchdogTimeoutMicros)
802				c = crashing.Load()
803			}
804		}
805		printDebugLog()
806		crash()
807	}
808
809	printDebugLog()
810
811	exit(2)
812}
813
814func fatalsignal(sig uint32, c *sigctxt, gp *g, mp *m) *g {
815	if sig < uint32(len(sigtable)) {
816		print(sigtable[sig].name, "\n")
817	} else {
818		print("Signal ", sig, "\n")
819	}
820
821	if isSecureMode() {
822		exit(2)
823	}
824
825	print("PC=", hex(c.sigpc()), " m=", mp.id, " sigcode=", c.sigcode())
826	if sig == _SIGSEGV || sig == _SIGBUS {
827		print(" addr=", hex(c.fault()))
828	}
829	print("\n")
830	if mp.incgo && gp == mp.g0 && mp.curg != nil {
831		print("signal arrived during cgo execution\n")
832		// Switch to curg so that we get a traceback of the Go code
833		// leading up to the cgocall, which switched from curg to g0.
834		gp = mp.curg
835	}
836	if sig == _SIGILL || sig == _SIGFPE {
837		// It would be nice to know how long the instruction is.
838		// Unfortunately, that's complicated to do in general (mostly for x86
839		// and s930x, but other archs have non-standard instruction lengths also).
840		// Opt to print 16 bytes, which covers most instructions.
841		const maxN = 16
842		n := uintptr(maxN)
843		// We have to be careful, though. If we're near the end of
844		// a page and the following page isn't mapped, we could
845		// segfault. So make sure we don't straddle a page (even though
846		// that could lead to printing an incomplete instruction).
847		// We're assuming here we can read at least the page containing the PC.
848		// I suppose it is possible that the page is mapped executable but not readable?
849		pc := c.sigpc()
850		if n > physPageSize-pc%physPageSize {
851			n = physPageSize - pc%physPageSize
852		}
853		print("instruction bytes:")
854		b := (*[maxN]byte)(unsafe.Pointer(pc))
855		for i := uintptr(0); i < n; i++ {
856			print(" ", hex(b[i]))
857		}
858		println()
859	}
860	print("\n")
861	return gp
862}
863
864// sigpanic turns a synchronous signal into a run-time panic.
865// If the signal handler sees a synchronous panic, it arranges the
866// stack to look like the function where the signal occurred called
867// sigpanic, sets the signal's PC value to sigpanic, and returns from
868// the signal handler. The effect is that the program will act as
869// though the function that got the signal simply called sigpanic
870// instead.
871//
872// This must NOT be nosplit because the linker doesn't know where
873// sigpanic calls can be injected.
874//
875// The signal handler must not inject a call to sigpanic if
876// getg().throwsplit, since sigpanic may need to grow the stack.
877//
878// This is exported via linkname to assembly in runtime/cgo.
879//
880//go:linkname sigpanic
881func sigpanic() {
882	gp := getg()
883	if !canpanic() {
884		throw("unexpected signal during runtime execution")
885	}
886
887	switch gp.sig {
888	case _SIGBUS:
889		if gp.sigcode0 == _BUS_ADRERR && gp.sigcode1 < 0x1000 {
890			panicmem()
891		}
892		// Support runtime/debug.SetPanicOnFault.
893		if gp.paniconfault {
894			panicmemAddr(gp.sigcode1)
895		}
896		print("unexpected fault address ", hex(gp.sigcode1), "\n")
897		throw("fault")
898	case _SIGSEGV:
899		if (gp.sigcode0 == 0 || gp.sigcode0 == _SEGV_MAPERR || gp.sigcode0 == _SEGV_ACCERR) && gp.sigcode1 < 0x1000 {
900			panicmem()
901		}
902		// Support runtime/debug.SetPanicOnFault.
903		if gp.paniconfault {
904			panicmemAddr(gp.sigcode1)
905		}
906		if inUserArenaChunk(gp.sigcode1) {
907			// We could check that the arena chunk is explicitly set to fault,
908			// but the fact that we faulted on accessing it is enough to prove
909			// that it is.
910			print("accessed data from freed user arena ", hex(gp.sigcode1), "\n")
911		} else {
912			print("unexpected fault address ", hex(gp.sigcode1), "\n")
913		}
914		throw("fault")
915	case _SIGFPE:
916		switch gp.sigcode0 {
917		case _FPE_INTDIV:
918			panicdivide()
919		case _FPE_INTOVF:
920			panicoverflow()
921		}
922		panicfloat()
923	}
924
925	if gp.sig >= uint32(len(sigtable)) {
926		// can't happen: we looked up gp.sig in sigtable to decide to call sigpanic
927		throw("unexpected signal value")
928	}
929	panic(errorString(sigtable[gp.sig].name))
930}
931
932// dieFromSignal kills the program with a signal.
933// This provides the expected exit status for the shell.
934// This is only called with fatal signals expected to kill the process.
935//
936//go:nosplit
937//go:nowritebarrierrec
938func dieFromSignal(sig uint32) {
939	unblocksig(sig)
940	// Mark the signal as unhandled to ensure it is forwarded.
941	atomic.Store(&handlingSig[sig], 0)
942	raise(sig)
943
944	// That should have killed us. On some systems, though, raise
945	// sends the signal to the whole process rather than to just
946	// the current thread, which means that the signal may not yet
947	// have been delivered. Give other threads a chance to run and
948	// pick up the signal.
949	osyield()
950	osyield()
951	osyield()
952
953	// If that didn't work, try _SIG_DFL.
954	setsig(sig, _SIG_DFL)
955	raise(sig)
956
957	osyield()
958	osyield()
959	osyield()
960
961	// If we are still somehow running, just exit with the wrong status.
962	exit(2)
963}
964
965// raisebadsignal is called when a signal is received on a non-Go
966// thread, and the Go program does not want to handle it (that is, the
967// program has not called os/signal.Notify for the signal).
968func raisebadsignal(sig uint32, c *sigctxt) {
969	if sig == _SIGPROF {
970		// Ignore profiling signals that arrive on non-Go threads.
971		return
972	}
973
974	var handler uintptr
975	var flags int32
976	if sig >= _NSIG {
977		handler = _SIG_DFL
978	} else {
979		handler = atomic.Loaduintptr(&fwdSig[sig])
980		flags = sigtable[sig].flags
981	}
982
983	// If the signal is ignored, raising the signal is no-op.
984	if handler == _SIG_IGN || (handler == _SIG_DFL && flags&_SigIgn != 0) {
985		return
986	}
987
988	// Reset the signal handler and raise the signal.
989	// We are currently running inside a signal handler, so the
990	// signal is blocked. We need to unblock it before raising the
991	// signal, or the signal we raise will be ignored until we return
992	// from the signal handler. We know that the signal was unblocked
993	// before entering the handler, or else we would not have received
994	// it. That means that we don't have to worry about blocking it
995	// again.
996	unblocksig(sig)
997	setsig(sig, handler)
998
999	// If we're linked into a non-Go program we want to try to
1000	// avoid modifying the original context in which the signal
1001	// was raised. If the handler is the default, we know it
1002	// is non-recoverable, so we don't have to worry about
1003	// re-installing sighandler. At this point we can just
1004	// return and the signal will be re-raised and caught by
1005	// the default handler with the correct context.
1006	//
1007	// On FreeBSD, the libthr sigaction code prevents
1008	// this from working so we fall through to raise.
1009	if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && !c.sigFromUser() {
1010		return
1011	}
1012
1013	raise(sig)
1014
1015	// Give the signal a chance to be delivered.
1016	// In almost all real cases the program is about to crash,
1017	// so sleeping here is not a waste of time.
1018	usleep(1000)
1019
1020	// If the signal didn't cause the program to exit, restore the
1021	// Go signal handler and carry on.
1022	//
1023	// We may receive another instance of the signal before we
1024	// restore the Go handler, but that is not so bad: we know
1025	// that the Go program has been ignoring the signal.
1026	setsig(sig, abi.FuncPCABIInternal(sighandler))
1027}
1028
1029//go:nosplit
1030func crash() {
1031	dieFromSignal(_SIGABRT)
1032}
1033
1034// ensureSigM starts one global, sleeping thread to make sure at least one thread
1035// is available to catch signals enabled for os/signal.
1036func ensureSigM() {
1037	if maskUpdatedChan != nil {
1038		return
1039	}
1040	maskUpdatedChan = make(chan struct{})
1041	disableSigChan = make(chan uint32)
1042	enableSigChan = make(chan uint32)
1043	go func() {
1044		// Signal masks are per-thread, so make sure this goroutine stays on one
1045		// thread.
1046		LockOSThread()
1047		defer UnlockOSThread()
1048		// The sigBlocked mask contains the signals not active for os/signal,
1049		// initially all signals except the essential. When signal.Notify()/Stop is called,
1050		// sigenable/sigdisable in turn notify this thread to update its signal
1051		// mask accordingly.
1052		sigBlocked := sigset_all
1053		for i := range sigtable {
1054			if !blockableSig(uint32(i)) {
1055				sigdelset(&sigBlocked, i)
1056			}
1057		}
1058		sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
1059		for {
1060			select {
1061			case sig := <-enableSigChan:
1062				if sig > 0 {
1063					sigdelset(&sigBlocked, int(sig))
1064				}
1065			case sig := <-disableSigChan:
1066				if sig > 0 && blockableSig(sig) {
1067					sigaddset(&sigBlocked, int(sig))
1068				}
1069			}
1070			sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
1071			maskUpdatedChan <- struct{}{}
1072		}
1073	}()
1074}
1075
1076// This is called when we receive a signal when there is no signal stack.
1077// This can only happen if non-Go code calls sigaltstack to disable the
1078// signal stack.
1079func noSignalStack(sig uint32) {
1080	println("signal", sig, "received on thread with no signal stack")
1081	throw("non-Go code disabled sigaltstack")
1082}
1083
1084// This is called if we receive a signal when there is a signal stack
1085// but we are not on it. This can only happen if non-Go code called
1086// sigaction without setting the SS_ONSTACK flag.
1087func sigNotOnStack(sig uint32, sp uintptr, mp *m) {
1088	println("signal", sig, "received but handler not on signal stack")
1089	print("mp.gsignal stack [", hex(mp.gsignal.stack.lo), " ", hex(mp.gsignal.stack.hi), "], ")
1090	print("mp.g0 stack [", hex(mp.g0.stack.lo), " ", hex(mp.g0.stack.hi), "], sp=", hex(sp), "\n")
1091	throw("non-Go code set up signal handler without SA_ONSTACK flag")
1092}
1093
1094// signalDuringFork is called if we receive a signal while doing a fork.
1095// We do not want signals at that time, as a signal sent to the process
1096// group may be delivered to the child process, causing confusion.
1097// This should never be called, because we block signals across the fork;
1098// this function is just a safety check. See issue 18600 for background.
1099func signalDuringFork(sig uint32) {
1100	println("signal", sig, "received during fork")
1101	throw("signal received during fork")
1102}
1103
1104// This runs on a foreign stack, without an m or a g. No stack split.
1105//
1106//go:nosplit
1107//go:norace
1108//go:nowritebarrierrec
1109func badsignal(sig uintptr, c *sigctxt) {
1110	if !iscgo && !cgoHasExtraM {
1111		// There is no extra M. needm will not be able to grab
1112		// an M. Instead of hanging, just crash.
1113		// Cannot call split-stack function as there is no G.
1114		writeErrStr("fatal: bad g in signal handler\n")
1115		exit(2)
1116		*(*uintptr)(unsafe.Pointer(uintptr(123))) = 2
1117	}
1118	needm(true)
1119	if !sigsend(uint32(sig)) {
1120		// A foreign thread received the signal sig, and the
1121		// Go code does not want to handle it.
1122		raisebadsignal(uint32(sig), c)
1123	}
1124	dropm()
1125}
1126
1127//go:noescape
1128func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
1129
1130// Determines if the signal should be handled by Go and if not, forwards the
1131// signal to the handler that was installed before Go's. Returns whether the
1132// signal was forwarded.
1133// This is called by the signal handler, and the world may be stopped.
1134//
1135//go:nosplit
1136//go:nowritebarrierrec
1137func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
1138	if sig >= uint32(len(sigtable)) {
1139		return false
1140	}
1141	fwdFn := atomic.Loaduintptr(&fwdSig[sig])
1142	flags := sigtable[sig].flags
1143
1144	// If we aren't handling the signal, forward it.
1145	if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
1146		// If the signal is ignored, doing nothing is the same as forwarding.
1147		if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
1148			return true
1149		}
1150		// We are not handling the signal and there is no other handler to forward to.
1151		// Crash with the default behavior.
1152		if fwdFn == _SIG_DFL {
1153			setsig(sig, _SIG_DFL)
1154			dieFromSignal(sig)
1155			return false
1156		}
1157
1158		sigfwd(fwdFn, sig, info, ctx)
1159		return true
1160	}
1161
1162	// This function and its caller sigtrampgo assumes SIGPIPE is delivered on the
1163	// originating thread. This property does not hold on macOS (golang.org/issue/33384),
1164	// so we have no choice but to ignore SIGPIPE.
1165	if (GOOS == "darwin" || GOOS == "ios") && sig == _SIGPIPE {
1166		return true
1167	}
1168
1169	// If there is no handler to forward to, no need to forward.
1170	if fwdFn == _SIG_DFL {
1171		return false
1172	}
1173
1174	c := &sigctxt{info, ctx}
1175	// Only forward synchronous signals and SIGPIPE.
1176	// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
1177	// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
1178	// or pipe.
1179	if (c.sigFromUser() || flags&_SigPanic == 0) && sig != _SIGPIPE {
1180		return false
1181	}
1182	// Determine if the signal occurred inside Go code. We test that:
1183	//   (1) we weren't in VDSO page,
1184	//   (2) we were in a goroutine (i.e., m.curg != nil), and
1185	//   (3) we weren't in CGO.
1186	//   (4) we weren't in dropped extra m.
1187	gp := sigFetchG(c)
1188	if gp != nil && gp.m != nil && gp.m.curg != nil && !gp.m.isExtraInC && !gp.m.incgo {
1189		return false
1190	}
1191
1192	// Signal not handled by Go, forward it.
1193	if fwdFn != _SIG_IGN {
1194		sigfwd(fwdFn, sig, info, ctx)
1195	}
1196
1197	return true
1198}
1199
1200// sigsave saves the current thread's signal mask into *p.
1201// This is used to preserve the non-Go signal mask when a non-Go
1202// thread calls a Go function.
1203// This is nosplit and nowritebarrierrec because it is called by needm
1204// which may be called on a non-Go thread with no g available.
1205//
1206//go:nosplit
1207//go:nowritebarrierrec
1208func sigsave(p *sigset) {
1209	sigprocmask(_SIG_SETMASK, nil, p)
1210}
1211
1212// msigrestore sets the current thread's signal mask to sigmask.
1213// This is used to restore the non-Go signal mask when a non-Go thread
1214// calls a Go function.
1215// This is nosplit and nowritebarrierrec because it is called by dropm
1216// after g has been cleared.
1217//
1218//go:nosplit
1219//go:nowritebarrierrec
1220func msigrestore(sigmask sigset) {
1221	sigprocmask(_SIG_SETMASK, &sigmask, nil)
1222}
1223
1224// sigsetAllExiting is used by sigblock(true) when a thread is
1225// exiting.
1226var sigsetAllExiting = func() sigset {
1227	res := sigset_all
1228
1229	// Apply GOOS-specific overrides here, rather than in osinit,
1230	// because osinit may be called before sigsetAllExiting is
1231	// initialized (#51913).
1232	if GOOS == "linux" && iscgo {
1233		// #42494 glibc and musl reserve some signals for
1234		// internal use and require they not be blocked by
1235		// the rest of a normal C runtime. When the go runtime
1236		// blocks...unblocks signals, temporarily, the blocked
1237		// interval of time is generally very short. As such,
1238		// these expectations of *libc code are mostly met by
1239		// the combined go+cgo system of threads. However,
1240		// when go causes a thread to exit, via a return from
1241		// mstart(), the combined runtime can deadlock if
1242		// these signals are blocked. Thus, don't block these
1243		// signals when exiting threads.
1244		// - glibc: SIGCANCEL (32), SIGSETXID (33)
1245		// - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34)
1246		sigdelset(&res, 32)
1247		sigdelset(&res, 33)
1248		sigdelset(&res, 34)
1249	}
1250
1251	return res
1252}()
1253
1254// sigblock blocks signals in the current thread's signal mask.
1255// This is used to block signals while setting up and tearing down g
1256// when a non-Go thread calls a Go function. When a thread is exiting
1257// we use the sigsetAllExiting value, otherwise the OS specific
1258// definition of sigset_all is used.
1259// This is nosplit and nowritebarrierrec because it is called by needm
1260// which may be called on a non-Go thread with no g available.
1261//
1262//go:nosplit
1263//go:nowritebarrierrec
1264func sigblock(exiting bool) {
1265	if exiting {
1266		sigprocmask(_SIG_SETMASK, &sigsetAllExiting, nil)
1267		return
1268	}
1269	sigprocmask(_SIG_SETMASK, &sigset_all, nil)
1270}
1271
1272// unblocksig removes sig from the current thread's signal mask.
1273// This is nosplit and nowritebarrierrec because it is called from
1274// dieFromSignal, which can be called by sigfwdgo while running in the
1275// signal handler, on the signal stack, with no g available.
1276//
1277//go:nosplit
1278//go:nowritebarrierrec
1279func unblocksig(sig uint32) {
1280	var set sigset
1281	sigaddset(&set, int(sig))
1282	sigprocmask(_SIG_UNBLOCK, &set, nil)
1283}
1284
1285// minitSignals is called when initializing a new m to set the
1286// thread's alternate signal stack and signal mask.
1287func minitSignals() {
1288	minitSignalStack()
1289	minitSignalMask()
1290}
1291
1292// minitSignalStack is called when initializing a new m to set the
1293// alternate signal stack. If the alternate signal stack is not set
1294// for the thread (the normal case) then set the alternate signal
1295// stack to the gsignal stack. If the alternate signal stack is set
1296// for the thread (the case when a non-Go thread sets the alternate
1297// signal stack and then calls a Go function) then set the gsignal
1298// stack to the alternate signal stack. We also set the alternate
1299// signal stack to the gsignal stack if cgo is not used (regardless
1300// of whether it is already set). Record which choice was made in
1301// newSigstack, so that it can be undone in unminit.
1302func minitSignalStack() {
1303	mp := getg().m
1304	var st stackt
1305	sigaltstack(nil, &st)
1306	if st.ss_flags&_SS_DISABLE != 0 || !iscgo {
1307		signalstack(&mp.gsignal.stack)
1308		mp.newSigstack = true
1309	} else {
1310		setGsignalStack(&st, &mp.goSigStack)
1311		mp.newSigstack = false
1312	}
1313}
1314
1315// minitSignalMask is called when initializing a new m to set the
1316// thread's signal mask. When this is called all signals have been
1317// blocked for the thread.  This starts with m.sigmask, which was set
1318// either from initSigmask for a newly created thread or by calling
1319// sigsave if this is a non-Go thread calling a Go function. It
1320// removes all essential signals from the mask, thus causing those
1321// signals to not be blocked. Then it sets the thread's signal mask.
1322// After this is called the thread can receive signals.
1323func minitSignalMask() {
1324	nmask := getg().m.sigmask
1325	for i := range sigtable {
1326		if !blockableSig(uint32(i)) {
1327			sigdelset(&nmask, i)
1328		}
1329	}
1330	sigprocmask(_SIG_SETMASK, &nmask, nil)
1331}
1332
1333// unminitSignals is called from dropm, via unminit, to undo the
1334// effect of calling minit on a non-Go thread.
1335//
1336//go:nosplit
1337func unminitSignals() {
1338	if getg().m.newSigstack {
1339		st := stackt{ss_flags: _SS_DISABLE}
1340		sigaltstack(&st, nil)
1341	} else {
1342		// We got the signal stack from someone else. Restore
1343		// the Go-allocated stack in case this M gets reused
1344		// for another thread (e.g., it's an extram). Also, on
1345		// Android, libc allocates a signal stack for all
1346		// threads, so it's important to restore the Go stack
1347		// even on Go-created threads so we can free it.
1348		restoreGsignalStack(&getg().m.goSigStack)
1349	}
1350}
1351
1352// blockableSig reports whether sig may be blocked by the signal mask.
1353// We never want to block the signals marked _SigUnblock;
1354// these are the synchronous signals that turn into a Go panic.
1355// We never want to block the preemption signal if it is being used.
1356// In a Go program--not a c-archive/c-shared--we never want to block
1357// the signals marked _SigKill or _SigThrow, as otherwise it's possible
1358// for all running threads to block them and delay their delivery until
1359// we start a new thread. When linked into a C program we let the C code
1360// decide on the disposition of those signals.
1361func blockableSig(sig uint32) bool {
1362	flags := sigtable[sig].flags
1363	if flags&_SigUnblock != 0 {
1364		return false
1365	}
1366	if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
1367		return false
1368	}
1369	if isarchive || islibrary {
1370		return true
1371	}
1372	return flags&(_SigKill|_SigThrow) == 0
1373}
1374
1375// gsignalStack saves the fields of the gsignal stack changed by
1376// setGsignalStack.
1377type gsignalStack struct {
1378	stack       stack
1379	stackguard0 uintptr
1380	stackguard1 uintptr
1381	stktopsp    uintptr
1382}
1383
1384// setGsignalStack sets the gsignal stack of the current m to an
1385// alternate signal stack returned from the sigaltstack system call.
1386// It saves the old values in *old for use by restoreGsignalStack.
1387// This is used when handling a signal if non-Go code has set the
1388// alternate signal stack.
1389//
1390//go:nosplit
1391//go:nowritebarrierrec
1392func setGsignalStack(st *stackt, old *gsignalStack) {
1393	gp := getg()
1394	if old != nil {
1395		old.stack = gp.m.gsignal.stack
1396		old.stackguard0 = gp.m.gsignal.stackguard0
1397		old.stackguard1 = gp.m.gsignal.stackguard1
1398		old.stktopsp = gp.m.gsignal.stktopsp
1399	}
1400	stsp := uintptr(unsafe.Pointer(st.ss_sp))
1401	gp.m.gsignal.stack.lo = stsp
1402	gp.m.gsignal.stack.hi = stsp + st.ss_size
1403	gp.m.gsignal.stackguard0 = stsp + stackGuard
1404	gp.m.gsignal.stackguard1 = stsp + stackGuard
1405}
1406
1407// restoreGsignalStack restores the gsignal stack to the value it had
1408// before entering the signal handler.
1409//
1410//go:nosplit
1411//go:nowritebarrierrec
1412func restoreGsignalStack(st *gsignalStack) {
1413	gp := getg().m.gsignal
1414	gp.stack = st.stack
1415	gp.stackguard0 = st.stackguard0
1416	gp.stackguard1 = st.stackguard1
1417	gp.stktopsp = st.stktopsp
1418}
1419
1420// signalstack sets the current thread's alternate signal stack to s.
1421//
1422//go:nosplit
1423func signalstack(s *stack) {
1424	st := stackt{ss_size: s.hi - s.lo}
1425	setSignalstackSP(&st, s.lo)
1426	sigaltstack(&st, nil)
1427}
1428
1429// setsigsegv is used on darwin/arm64 to fake a segmentation fault.
1430//
1431// This is exported via linkname to assembly in runtime/cgo.
1432//
1433//go:nosplit
1434//go:linkname setsigsegv
1435func setsigsegv(pc uintptr) {
1436	gp := getg()
1437	gp.sig = _SIGSEGV
1438	gp.sigpc = pc
1439	gp.sigcode0 = _SEGV_MAPERR
1440	gp.sigcode1 = 0 // TODO: emulate si_addr
1441}
1442