1// Code generated by gen_sort_variants.go; DO NOT EDIT.
2
3// Copyright 2022 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7package sort
8
9// insertionSort sorts data[a:b] using insertion sort.
10func insertionSort(data Interface, a, b int) {
11	for i := a + 1; i < b; i++ {
12		for j := i; j > a && data.Less(j, j-1); j-- {
13			data.Swap(j, j-1)
14		}
15	}
16}
17
18// siftDown implements the heap property on data[lo:hi].
19// first is an offset into the array where the root of the heap lies.
20func siftDown(data Interface, lo, hi, first int) {
21	root := lo
22	for {
23		child := 2*root + 1
24		if child >= hi {
25			break
26		}
27		if child+1 < hi && data.Less(first+child, first+child+1) {
28			child++
29		}
30		if !data.Less(first+root, first+child) {
31			return
32		}
33		data.Swap(first+root, first+child)
34		root = child
35	}
36}
37
38func heapSort(data Interface, a, b int) {
39	first := a
40	lo := 0
41	hi := b - a
42
43	// Build heap with greatest element at top.
44	for i := (hi - 1) / 2; i >= 0; i-- {
45		siftDown(data, i, hi, first)
46	}
47
48	// Pop elements, largest first, into end of data.
49	for i := hi - 1; i >= 0; i-- {
50		data.Swap(first, first+i)
51		siftDown(data, lo, i, first)
52	}
53}
54
55// pdqsort sorts data[a:b].
56// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
57// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
58// C++ implementation: https://github.com/orlp/pdqsort
59// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
60// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
61func pdqsort(data Interface, a, b, limit int) {
62	const maxInsertion = 12
63
64	var (
65		wasBalanced    = true // whether the last partitioning was reasonably balanced
66		wasPartitioned = true // whether the slice was already partitioned
67	)
68
69	for {
70		length := b - a
71
72		if length <= maxInsertion {
73			insertionSort(data, a, b)
74			return
75		}
76
77		// Fall back to heapsort if too many bad choices were made.
78		if limit == 0 {
79			heapSort(data, a, b)
80			return
81		}
82
83		// If the last partitioning was imbalanced, we need to breaking patterns.
84		if !wasBalanced {
85			breakPatterns(data, a, b)
86			limit--
87		}
88
89		pivot, hint := choosePivot(data, a, b)
90		if hint == decreasingHint {
91			reverseRange(data, a, b)
92			// The chosen pivot was pivot-a elements after the start of the array.
93			// After reversing it is pivot-a elements before the end of the array.
94			// The idea came from Rust's implementation.
95			pivot = (b - 1) - (pivot - a)
96			hint = increasingHint
97		}
98
99		// The slice is likely already sorted.
100		if wasBalanced && wasPartitioned && hint == increasingHint {
101			if partialInsertionSort(data, a, b) {
102				return
103			}
104		}
105
106		// Probably the slice contains many duplicate elements, partition the slice into
107		// elements equal to and elements greater than the pivot.
108		if a > 0 && !data.Less(a-1, pivot) {
109			mid := partitionEqual(data, a, b, pivot)
110			a = mid
111			continue
112		}
113
114		mid, alreadyPartitioned := partition(data, a, b, pivot)
115		wasPartitioned = alreadyPartitioned
116
117		leftLen, rightLen := mid-a, b-mid
118		balanceThreshold := length / 8
119		if leftLen < rightLen {
120			wasBalanced = leftLen >= balanceThreshold
121			pdqsort(data, a, mid, limit)
122			a = mid + 1
123		} else {
124			wasBalanced = rightLen >= balanceThreshold
125			pdqsort(data, mid+1, b, limit)
126			b = mid
127		}
128	}
129}
130
131// partition does one quicksort partition.
132// Let p = data[pivot]
133// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
134// On return, data[newpivot] = p
135func partition(data Interface, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
136	data.Swap(a, pivot)
137	i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
138
139	for i <= j && data.Less(i, a) {
140		i++
141	}
142	for i <= j && !data.Less(j, a) {
143		j--
144	}
145	if i > j {
146		data.Swap(j, a)
147		return j, true
148	}
149	data.Swap(i, j)
150	i++
151	j--
152
153	for {
154		for i <= j && data.Less(i, a) {
155			i++
156		}
157		for i <= j && !data.Less(j, a) {
158			j--
159		}
160		if i > j {
161			break
162		}
163		data.Swap(i, j)
164		i++
165		j--
166	}
167	data.Swap(j, a)
168	return j, false
169}
170
171// partitionEqual partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
172// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
173func partitionEqual(data Interface, a, b, pivot int) (newpivot int) {
174	data.Swap(a, pivot)
175	i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
176
177	for {
178		for i <= j && !data.Less(a, i) {
179			i++
180		}
181		for i <= j && data.Less(a, j) {
182			j--
183		}
184		if i > j {
185			break
186		}
187		data.Swap(i, j)
188		i++
189		j--
190	}
191	return i
192}
193
194// partialInsertionSort partially sorts a slice, returns true if the slice is sorted at the end.
195func partialInsertionSort(data Interface, a, b int) bool {
196	const (
197		maxSteps         = 5  // maximum number of adjacent out-of-order pairs that will get shifted
198		shortestShifting = 50 // don't shift any elements on short arrays
199	)
200	i := a + 1
201	for j := 0; j < maxSteps; j++ {
202		for i < b && !data.Less(i, i-1) {
203			i++
204		}
205
206		if i == b {
207			return true
208		}
209
210		if b-a < shortestShifting {
211			return false
212		}
213
214		data.Swap(i, i-1)
215
216		// Shift the smaller one to the left.
217		if i-a >= 2 {
218			for j := i - 1; j >= 1; j-- {
219				if !data.Less(j, j-1) {
220					break
221				}
222				data.Swap(j, j-1)
223			}
224		}
225		// Shift the greater one to the right.
226		if b-i >= 2 {
227			for j := i + 1; j < b; j++ {
228				if !data.Less(j, j-1) {
229					break
230				}
231				data.Swap(j, j-1)
232			}
233		}
234	}
235	return false
236}
237
238// breakPatterns scatters some elements around in an attempt to break some patterns
239// that might cause imbalanced partitions in quicksort.
240func breakPatterns(data Interface, a, b int) {
241	length := b - a
242	if length >= 8 {
243		random := xorshift(length)
244		modulus := nextPowerOfTwo(length)
245
246		for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
247			other := int(uint(random.Next()) & (modulus - 1))
248			if other >= length {
249				other -= length
250			}
251			data.Swap(idx, a+other)
252		}
253	}
254}
255
256// choosePivot chooses a pivot in data[a:b].
257//
258// [0,8): chooses a static pivot.
259// [8,shortestNinther): uses the simple median-of-three method.
260// [shortestNinther,∞): uses the Tukey ninther method.
261func choosePivot(data Interface, a, b int) (pivot int, hint sortedHint) {
262	const (
263		shortestNinther = 50
264		maxSwaps        = 4 * 3
265	)
266
267	l := b - a
268
269	var (
270		swaps int
271		i     = a + l/4*1
272		j     = a + l/4*2
273		k     = a + l/4*3
274	)
275
276	if l >= 8 {
277		if l >= shortestNinther {
278			// Tukey ninther method, the idea came from Rust's implementation.
279			i = medianAdjacent(data, i, &swaps)
280			j = medianAdjacent(data, j, &swaps)
281			k = medianAdjacent(data, k, &swaps)
282		}
283		// Find the median among i, j, k and stores it into j.
284		j = median(data, i, j, k, &swaps)
285	}
286
287	switch swaps {
288	case 0:
289		return j, increasingHint
290	case maxSwaps:
291		return j, decreasingHint
292	default:
293		return j, unknownHint
294	}
295}
296
297// order2 returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
298func order2(data Interface, a, b int, swaps *int) (int, int) {
299	if data.Less(b, a) {
300		*swaps++
301		return b, a
302	}
303	return a, b
304}
305
306// median returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
307func median(data Interface, a, b, c int, swaps *int) int {
308	a, b = order2(data, a, b, swaps)
309	b, c = order2(data, b, c, swaps)
310	a, b = order2(data, a, b, swaps)
311	return b
312}
313
314// medianAdjacent finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
315func medianAdjacent(data Interface, a int, swaps *int) int {
316	return median(data, a-1, a, a+1, swaps)
317}
318
319func reverseRange(data Interface, a, b int) {
320	i := a
321	j := b - 1
322	for i < j {
323		data.Swap(i, j)
324		i++
325		j--
326	}
327}
328
329func swapRange(data Interface, a, b, n int) {
330	for i := 0; i < n; i++ {
331		data.Swap(a+i, b+i)
332	}
333}
334
335func stable(data Interface, n int) {
336	blockSize := 20 // must be > 0
337	a, b := 0, blockSize
338	for b <= n {
339		insertionSort(data, a, b)
340		a = b
341		b += blockSize
342	}
343	insertionSort(data, a, n)
344
345	for blockSize < n {
346		a, b = 0, 2*blockSize
347		for b <= n {
348			symMerge(data, a, a+blockSize, b)
349			a = b
350			b += 2 * blockSize
351		}
352		if m := a + blockSize; m < n {
353			symMerge(data, a, m, n)
354		}
355		blockSize *= 2
356	}
357}
358
359// symMerge merges the two sorted subsequences data[a:m] and data[m:b] using
360// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
361// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
362// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
363// Computer Science, pages 714-723. Springer, 2004.
364//
365// Let M = m-a and N = b-n. Wolog M < N.
366// The recursion depth is bound by ceil(log(N+M)).
367// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
368// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
369//
370// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
371// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
372// in the paper carries through for Swap operations, especially as the block
373// swapping rotate uses only O(M+N) Swaps.
374//
375// symMerge assumes non-degenerate arguments: a < m && m < b.
376// Having the caller check this condition eliminates many leaf recursion calls,
377// which improves performance.
378func symMerge(data Interface, a, m, b int) {
379	// Avoid unnecessary recursions of symMerge
380	// by direct insertion of data[a] into data[m:b]
381	// if data[a:m] only contains one element.
382	if m-a == 1 {
383		// Use binary search to find the lowest index i
384		// such that data[i] >= data[a] for m <= i < b.
385		// Exit the search loop with i == b in case no such index exists.
386		i := m
387		j := b
388		for i < j {
389			h := int(uint(i+j) >> 1)
390			if data.Less(h, a) {
391				i = h + 1
392			} else {
393				j = h
394			}
395		}
396		// Swap values until data[a] reaches the position before i.
397		for k := a; k < i-1; k++ {
398			data.Swap(k, k+1)
399		}
400		return
401	}
402
403	// Avoid unnecessary recursions of symMerge
404	// by direct insertion of data[m] into data[a:m]
405	// if data[m:b] only contains one element.
406	if b-m == 1 {
407		// Use binary search to find the lowest index i
408		// such that data[i] > data[m] for a <= i < m.
409		// Exit the search loop with i == m in case no such index exists.
410		i := a
411		j := m
412		for i < j {
413			h := int(uint(i+j) >> 1)
414			if !data.Less(m, h) {
415				i = h + 1
416			} else {
417				j = h
418			}
419		}
420		// Swap values until data[m] reaches the position i.
421		for k := m; k > i; k-- {
422			data.Swap(k, k-1)
423		}
424		return
425	}
426
427	mid := int(uint(a+b) >> 1)
428	n := mid + m
429	var start, r int
430	if m > mid {
431		start = n - b
432		r = mid
433	} else {
434		start = a
435		r = m
436	}
437	p := n - 1
438
439	for start < r {
440		c := int(uint(start+r) >> 1)
441		if !data.Less(p-c, c) {
442			start = c + 1
443		} else {
444			r = c
445		}
446	}
447
448	end := n - start
449	if start < m && m < end {
450		rotate(data, start, m, end)
451	}
452	if a < start && start < mid {
453		symMerge(data, a, start, mid)
454	}
455	if mid < end && end < b {
456		symMerge(data, mid, end, b)
457	}
458}
459
460// rotate rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
461// Data of the form 'x u v y' is changed to 'x v u y'.
462// rotate performs at most b-a many calls to data.Swap,
463// and it assumes non-degenerate arguments: a < m && m < b.
464func rotate(data Interface, a, m, b int) {
465	i := m - a
466	j := b - m
467
468	for i != j {
469		if i > j {
470			swapRange(data, m-i, m, j)
471			i -= j
472		} else {
473			swapRange(data, m-i, m+j-i, i)
474			j -= i
475		}
476	}
477	// i == j
478	swapRange(data, m-i, m, i)
479}
480