1// Code generated by gen_sort_variants.go; DO NOT EDIT. 2 3// Copyright 2022 The Go Authors. All rights reserved. 4// Use of this source code is governed by a BSD-style 5// license that can be found in the LICENSE file. 6 7package sort 8 9// insertionSort sorts data[a:b] using insertion sort. 10func insertionSort(data Interface, a, b int) { 11 for i := a + 1; i < b; i++ { 12 for j := i; j > a && data.Less(j, j-1); j-- { 13 data.Swap(j, j-1) 14 } 15 } 16} 17 18// siftDown implements the heap property on data[lo:hi]. 19// first is an offset into the array where the root of the heap lies. 20func siftDown(data Interface, lo, hi, first int) { 21 root := lo 22 for { 23 child := 2*root + 1 24 if child >= hi { 25 break 26 } 27 if child+1 < hi && data.Less(first+child, first+child+1) { 28 child++ 29 } 30 if !data.Less(first+root, first+child) { 31 return 32 } 33 data.Swap(first+root, first+child) 34 root = child 35 } 36} 37 38func heapSort(data Interface, a, b int) { 39 first := a 40 lo := 0 41 hi := b - a 42 43 // Build heap with greatest element at top. 44 for i := (hi - 1) / 2; i >= 0; i-- { 45 siftDown(data, i, hi, first) 46 } 47 48 // Pop elements, largest first, into end of data. 49 for i := hi - 1; i >= 0; i-- { 50 data.Swap(first, first+i) 51 siftDown(data, lo, i, first) 52 } 53} 54 55// pdqsort sorts data[a:b]. 56// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort. 57// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf 58// C++ implementation: https://github.com/orlp/pdqsort 59// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/ 60// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort. 61func pdqsort(data Interface, a, b, limit int) { 62 const maxInsertion = 12 63 64 var ( 65 wasBalanced = true // whether the last partitioning was reasonably balanced 66 wasPartitioned = true // whether the slice was already partitioned 67 ) 68 69 for { 70 length := b - a 71 72 if length <= maxInsertion { 73 insertionSort(data, a, b) 74 return 75 } 76 77 // Fall back to heapsort if too many bad choices were made. 78 if limit == 0 { 79 heapSort(data, a, b) 80 return 81 } 82 83 // If the last partitioning was imbalanced, we need to breaking patterns. 84 if !wasBalanced { 85 breakPatterns(data, a, b) 86 limit-- 87 } 88 89 pivot, hint := choosePivot(data, a, b) 90 if hint == decreasingHint { 91 reverseRange(data, a, b) 92 // The chosen pivot was pivot-a elements after the start of the array. 93 // After reversing it is pivot-a elements before the end of the array. 94 // The idea came from Rust's implementation. 95 pivot = (b - 1) - (pivot - a) 96 hint = increasingHint 97 } 98 99 // The slice is likely already sorted. 100 if wasBalanced && wasPartitioned && hint == increasingHint { 101 if partialInsertionSort(data, a, b) { 102 return 103 } 104 } 105 106 // Probably the slice contains many duplicate elements, partition the slice into 107 // elements equal to and elements greater than the pivot. 108 if a > 0 && !data.Less(a-1, pivot) { 109 mid := partitionEqual(data, a, b, pivot) 110 a = mid 111 continue 112 } 113 114 mid, alreadyPartitioned := partition(data, a, b, pivot) 115 wasPartitioned = alreadyPartitioned 116 117 leftLen, rightLen := mid-a, b-mid 118 balanceThreshold := length / 8 119 if leftLen < rightLen { 120 wasBalanced = leftLen >= balanceThreshold 121 pdqsort(data, a, mid, limit) 122 a = mid + 1 123 } else { 124 wasBalanced = rightLen >= balanceThreshold 125 pdqsort(data, mid+1, b, limit) 126 b = mid 127 } 128 } 129} 130 131// partition does one quicksort partition. 132// Let p = data[pivot] 133// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot. 134// On return, data[newpivot] = p 135func partition(data Interface, a, b, pivot int) (newpivot int, alreadyPartitioned bool) { 136 data.Swap(a, pivot) 137 i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned 138 139 for i <= j && data.Less(i, a) { 140 i++ 141 } 142 for i <= j && !data.Less(j, a) { 143 j-- 144 } 145 if i > j { 146 data.Swap(j, a) 147 return j, true 148 } 149 data.Swap(i, j) 150 i++ 151 j-- 152 153 for { 154 for i <= j && data.Less(i, a) { 155 i++ 156 } 157 for i <= j && !data.Less(j, a) { 158 j-- 159 } 160 if i > j { 161 break 162 } 163 data.Swap(i, j) 164 i++ 165 j-- 166 } 167 data.Swap(j, a) 168 return j, false 169} 170 171// partitionEqual partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot]. 172// It assumed that data[a:b] does not contain elements smaller than the data[pivot]. 173func partitionEqual(data Interface, a, b, pivot int) (newpivot int) { 174 data.Swap(a, pivot) 175 i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned 176 177 for { 178 for i <= j && !data.Less(a, i) { 179 i++ 180 } 181 for i <= j && data.Less(a, j) { 182 j-- 183 } 184 if i > j { 185 break 186 } 187 data.Swap(i, j) 188 i++ 189 j-- 190 } 191 return i 192} 193 194// partialInsertionSort partially sorts a slice, returns true if the slice is sorted at the end. 195func partialInsertionSort(data Interface, a, b int) bool { 196 const ( 197 maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted 198 shortestShifting = 50 // don't shift any elements on short arrays 199 ) 200 i := a + 1 201 for j := 0; j < maxSteps; j++ { 202 for i < b && !data.Less(i, i-1) { 203 i++ 204 } 205 206 if i == b { 207 return true 208 } 209 210 if b-a < shortestShifting { 211 return false 212 } 213 214 data.Swap(i, i-1) 215 216 // Shift the smaller one to the left. 217 if i-a >= 2 { 218 for j := i - 1; j >= 1; j-- { 219 if !data.Less(j, j-1) { 220 break 221 } 222 data.Swap(j, j-1) 223 } 224 } 225 // Shift the greater one to the right. 226 if b-i >= 2 { 227 for j := i + 1; j < b; j++ { 228 if !data.Less(j, j-1) { 229 break 230 } 231 data.Swap(j, j-1) 232 } 233 } 234 } 235 return false 236} 237 238// breakPatterns scatters some elements around in an attempt to break some patterns 239// that might cause imbalanced partitions in quicksort. 240func breakPatterns(data Interface, a, b int) { 241 length := b - a 242 if length >= 8 { 243 random := xorshift(length) 244 modulus := nextPowerOfTwo(length) 245 246 for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ { 247 other := int(uint(random.Next()) & (modulus - 1)) 248 if other >= length { 249 other -= length 250 } 251 data.Swap(idx, a+other) 252 } 253 } 254} 255 256// choosePivot chooses a pivot in data[a:b]. 257// 258// [0,8): chooses a static pivot. 259// [8,shortestNinther): uses the simple median-of-three method. 260// [shortestNinther,∞): uses the Tukey ninther method. 261func choosePivot(data Interface, a, b int) (pivot int, hint sortedHint) { 262 const ( 263 shortestNinther = 50 264 maxSwaps = 4 * 3 265 ) 266 267 l := b - a 268 269 var ( 270 swaps int 271 i = a + l/4*1 272 j = a + l/4*2 273 k = a + l/4*3 274 ) 275 276 if l >= 8 { 277 if l >= shortestNinther { 278 // Tukey ninther method, the idea came from Rust's implementation. 279 i = medianAdjacent(data, i, &swaps) 280 j = medianAdjacent(data, j, &swaps) 281 k = medianAdjacent(data, k, &swaps) 282 } 283 // Find the median among i, j, k and stores it into j. 284 j = median(data, i, j, k, &swaps) 285 } 286 287 switch swaps { 288 case 0: 289 return j, increasingHint 290 case maxSwaps: 291 return j, decreasingHint 292 default: 293 return j, unknownHint 294 } 295} 296 297// order2 returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a. 298func order2(data Interface, a, b int, swaps *int) (int, int) { 299 if data.Less(b, a) { 300 *swaps++ 301 return b, a 302 } 303 return a, b 304} 305 306// median returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c. 307func median(data Interface, a, b, c int, swaps *int) int { 308 a, b = order2(data, a, b, swaps) 309 b, c = order2(data, b, c, swaps) 310 a, b = order2(data, a, b, swaps) 311 return b 312} 313 314// medianAdjacent finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a. 315func medianAdjacent(data Interface, a int, swaps *int) int { 316 return median(data, a-1, a, a+1, swaps) 317} 318 319func reverseRange(data Interface, a, b int) { 320 i := a 321 j := b - 1 322 for i < j { 323 data.Swap(i, j) 324 i++ 325 j-- 326 } 327} 328 329func swapRange(data Interface, a, b, n int) { 330 for i := 0; i < n; i++ { 331 data.Swap(a+i, b+i) 332 } 333} 334 335func stable(data Interface, n int) { 336 blockSize := 20 // must be > 0 337 a, b := 0, blockSize 338 for b <= n { 339 insertionSort(data, a, b) 340 a = b 341 b += blockSize 342 } 343 insertionSort(data, a, n) 344 345 for blockSize < n { 346 a, b = 0, 2*blockSize 347 for b <= n { 348 symMerge(data, a, a+blockSize, b) 349 a = b 350 b += 2 * blockSize 351 } 352 if m := a + blockSize; m < n { 353 symMerge(data, a, m, n) 354 } 355 blockSize *= 2 356 } 357} 358 359// symMerge merges the two sorted subsequences data[a:m] and data[m:b] using 360// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum 361// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz 362// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in 363// Computer Science, pages 714-723. Springer, 2004. 364// 365// Let M = m-a and N = b-n. Wolog M < N. 366// The recursion depth is bound by ceil(log(N+M)). 367// The algorithm needs O(M*log(N/M + 1)) calls to data.Less. 368// The algorithm needs O((M+N)*log(M)) calls to data.Swap. 369// 370// The paper gives O((M+N)*log(M)) as the number of assignments assuming a 371// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation 372// in the paper carries through for Swap operations, especially as the block 373// swapping rotate uses only O(M+N) Swaps. 374// 375// symMerge assumes non-degenerate arguments: a < m && m < b. 376// Having the caller check this condition eliminates many leaf recursion calls, 377// which improves performance. 378func symMerge(data Interface, a, m, b int) { 379 // Avoid unnecessary recursions of symMerge 380 // by direct insertion of data[a] into data[m:b] 381 // if data[a:m] only contains one element. 382 if m-a == 1 { 383 // Use binary search to find the lowest index i 384 // such that data[i] >= data[a] for m <= i < b. 385 // Exit the search loop with i == b in case no such index exists. 386 i := m 387 j := b 388 for i < j { 389 h := int(uint(i+j) >> 1) 390 if data.Less(h, a) { 391 i = h + 1 392 } else { 393 j = h 394 } 395 } 396 // Swap values until data[a] reaches the position before i. 397 for k := a; k < i-1; k++ { 398 data.Swap(k, k+1) 399 } 400 return 401 } 402 403 // Avoid unnecessary recursions of symMerge 404 // by direct insertion of data[m] into data[a:m] 405 // if data[m:b] only contains one element. 406 if b-m == 1 { 407 // Use binary search to find the lowest index i 408 // such that data[i] > data[m] for a <= i < m. 409 // Exit the search loop with i == m in case no such index exists. 410 i := a 411 j := m 412 for i < j { 413 h := int(uint(i+j) >> 1) 414 if !data.Less(m, h) { 415 i = h + 1 416 } else { 417 j = h 418 } 419 } 420 // Swap values until data[m] reaches the position i. 421 for k := m; k > i; k-- { 422 data.Swap(k, k-1) 423 } 424 return 425 } 426 427 mid := int(uint(a+b) >> 1) 428 n := mid + m 429 var start, r int 430 if m > mid { 431 start = n - b 432 r = mid 433 } else { 434 start = a 435 r = m 436 } 437 p := n - 1 438 439 for start < r { 440 c := int(uint(start+r) >> 1) 441 if !data.Less(p-c, c) { 442 start = c + 1 443 } else { 444 r = c 445 } 446 } 447 448 end := n - start 449 if start < m && m < end { 450 rotate(data, start, m, end) 451 } 452 if a < start && start < mid { 453 symMerge(data, a, start, mid) 454 } 455 if mid < end && end < b { 456 symMerge(data, mid, end, b) 457 } 458} 459 460// rotate rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data: 461// Data of the form 'x u v y' is changed to 'x v u y'. 462// rotate performs at most b-a many calls to data.Swap, 463// and it assumes non-degenerate arguments: a < m && m < b. 464func rotate(data Interface, a, m, b int) { 465 i := m - a 466 j := b - m 467 468 for i != j { 469 if i > j { 470 swapRange(data, m-i, m, j) 471 i -= j 472 } else { 473 swapRange(data, m-i, m+j-i, i) 474 j -= i 475 } 476 } 477 // i == j 478 swapRange(data, m-i, m, i) 479} 480