1 /* libFLAC - Free Lossless Audio Codec library 2 * Copyright (C) 2000-2009 Josh Coalson 3 * Copyright (C) 2011-2023 Xiph.Org Foundation 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * - Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 12 * - Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * - Neither the name of the Xiph.org Foundation nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #ifndef FLAC__PRIVATE__LPC_H 34 #define FLAC__PRIVATE__LPC_H 35 36 #ifdef HAVE_CONFIG_H 37 #include <config.h> 38 #endif 39 40 #include "private/cpu.h" 41 #include "private/float.h" 42 #include "FLAC/format.h" 43 44 #ifndef FLAC__INTEGER_ONLY_LIBRARY 45 46 /* 47 * FLAC__lpc_window_data() 48 * -------------------------------------------------------------------- 49 * Applies the given window to the data. 50 * OPT: asm implementation 51 * 52 * IN in[0,data_len-1] 53 * IN window[0,data_len-1] 54 * OUT out[0,lag-1] 55 * IN data_len 56 */ 57 void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len); 58 void FLAC__lpc_window_data_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len); 59 void FLAC__lpc_window_data_partial(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift); 60 void FLAC__lpc_window_data_partial_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift); 61 62 /* 63 * FLAC__lpc_compute_autocorrelation() 64 * -------------------------------------------------------------------- 65 * Compute the autocorrelation for lags between 0 and lag-1. 66 * Assumes data[] outside of [0,data_len-1] == 0. 67 * Asserts that lag > 0. 68 * 69 * IN data[0,data_len-1] 70 * IN data_len 71 * IN 0 < lag <= data_len 72 * OUT autoc[0,lag-1] 73 */ 74 void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 75 #ifndef FLAC__NO_ASM 76 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN 77 # ifdef FLAC__SSE2_SUPPORTED 78 void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 79 void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 80 void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 81 # endif 82 # endif 83 # if defined FLAC__CPU_X86_64 && FLAC__HAS_X86INTRIN 84 # ifdef FLAC__FMA_SUPPORTED 85 void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 86 void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_12(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 87 void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_16(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 88 # endif 89 # endif 90 #if defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN && FLAC__HAS_A64NEONINTRIN 91 void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 92 void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 93 void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); 94 #endif 95 #endif /* FLAC__NO_ASM */ 96 97 /* 98 * FLAC__lpc_compute_lp_coefficients() 99 * -------------------------------------------------------------------- 100 * Computes LP coefficients for orders 1..max_order. 101 * Do not call if autoc[0] == 0.0. This means the signal is zero 102 * and there is no point in calculating a predictor. 103 * 104 * IN autoc[0,max_order] autocorrelation values 105 * IN 0 < max_order <= FLAC__MAX_LPC_ORDER max LP order to compute 106 * OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order 107 * *** IMPORTANT: 108 * *** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched 109 * OUT error[0,max_order-1] error for each order (more 110 * specifically, the variance of 111 * the error signal times # of 112 * samples in the signal) 113 * 114 * Example: if max_order is 9, the LP coefficients for order 9 will be 115 * in lp_coeff[8][0,8], the LP coefficients for order 8 will be 116 * in lp_coeff[7][0,7], etc. 117 */ 118 void FLAC__lpc_compute_lp_coefficients(const double autoc[], uint32_t *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], double error[]); 119 120 /* 121 * FLAC__lpc_quantize_coefficients() 122 * -------------------------------------------------------------------- 123 * Quantizes the LP coefficients. NOTE: precision + bits_per_sample 124 * must be less than 32 (sizeof(FLAC__int32)*8). 125 * 126 * IN lp_coeff[0,order-1] LP coefficients 127 * IN order LP order 128 * IN FLAC__MIN_QLP_COEFF_PRECISION < precision 129 * desired precision (in bits, including sign 130 * bit) of largest coefficient 131 * OUT qlp_coeff[0,order-1] quantized coefficients 132 * OUT shift # of bits to shift right to get approximated 133 * LP coefficients. NOTE: could be negative. 134 * RETURN 0 => quantization OK 135 * 1 => coefficients require too much shifting for *shift to 136 * fit in the LPC subframe header. 'shift' is unset. 137 * 2 => coefficients are all zero, which is bad. 'shift' is 138 * unset. 139 */ 140 int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], uint32_t order, uint32_t precision, FLAC__int32 qlp_coeff[], int *shift); 141 142 /* 143 * FLAC__lpc_compute_residual_from_qlp_coefficients() 144 * -------------------------------------------------------------------- 145 * Compute the residual signal obtained from sutracting the predicted 146 * signal from the original. 147 * 148 * IN data[-order,data_len-1] original signal (NOTE THE INDICES!) 149 * IN data_len length of original signal 150 * IN qlp_coeff[0,order-1] quantized LP coefficients 151 * IN order > 0 LP order 152 * IN lp_quantization quantization of LP coefficients in bits 153 * OUT residual[0,data_len-1] residual signal 154 */ 155 void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 156 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 157 FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 158 FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit(const FLAC__int64 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 159 #ifndef FLAC__NO_ASM 160 # ifdef FLAC__CPU_ARM64 161 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 162 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 163 # endif 164 165 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN 166 # ifdef FLAC__SSE2_SUPPORTED 167 void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 168 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 169 # endif 170 # ifdef FLAC__SSE4_1_SUPPORTED 171 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 172 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 173 # endif 174 # ifdef FLAC__AVX2_SUPPORTED 175 void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 176 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 177 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); 178 # endif 179 # endif 180 #endif 181 182 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ 183 184 uint32_t FLAC__lpc_max_prediction_before_shift_bps(uint32_t subframe_bps, const FLAC__int32 qlp_coeff[], uint32_t order); 185 uint32_t FLAC__lpc_max_residual_bps(uint32_t subframe_bps, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization); 186 187 /* 188 * FLAC__lpc_restore_signal() 189 * -------------------------------------------------------------------- 190 * Restore the original signal by summing the residual and the 191 * predictor. 192 * 193 * IN residual[0,data_len-1] residual signal 194 * IN data_len length of original signal 195 * IN qlp_coeff[0,order-1] quantized LP coefficients 196 * IN order > 0 LP order 197 * IN lp_quantization quantization of LP coefficients in bits 198 * *** IMPORTANT: the caller must pass in the historical samples: 199 * IN data[-order,-1] previously-reconstructed historical samples 200 * OUT data[0,data_len-1] original signal 201 */ 202 void FLAC__lpc_restore_signal(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]); 203 void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]); 204 void FLAC__lpc_restore_signal_wide_33bit(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int64 data[]); 205 206 #ifndef FLAC__INTEGER_ONLY_LIBRARY 207 208 /* 209 * FLAC__lpc_compute_expected_bits_per_residual_sample() 210 * -------------------------------------------------------------------- 211 * Compute the expected number of bits per residual signal sample 212 * based on the LP error (which is related to the residual variance). 213 * 214 * IN lpc_error >= 0.0 error returned from calculating LP coefficients 215 * IN total_samples > 0 # of samples in residual signal 216 * RETURN expected bits per sample 217 */ 218 double FLAC__lpc_compute_expected_bits_per_residual_sample(double lpc_error, uint32_t total_samples); 219 double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(double lpc_error, double error_scale); 220 221 /* 222 * FLAC__lpc_compute_best_order() 223 * -------------------------------------------------------------------- 224 * Compute the best order from the array of signal errors returned 225 * during coefficient computation. 226 * 227 * IN lpc_error[0,max_order-1] >= 0.0 error returned from calculating LP coefficients 228 * IN max_order > 0 max LP order 229 * IN total_samples > 0 # of samples in residual signal 230 * IN overhead_bits_per_order # of bits overhead for each increased LP order 231 * (includes warmup sample size and quantized LP coefficient) 232 * RETURN [1,max_order] best order 233 */ 234 uint32_t FLAC__lpc_compute_best_order(const double lpc_error[], uint32_t max_order, uint32_t total_samples, uint32_t overhead_bits_per_order); 235 236 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ 237 238 #endif 239