1 // Copyright 2022 The Pigweed Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
4 // use this file except in compliance with the License. You may obtain a copy of
5 // the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
11 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
12 // License for the specific language governing permissions and limitations under
13 // the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: result.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `Result<T>` represents a union of an `pw::Status` object and an object of
20 // type `T`. The `Result<T>` will either contain an object of type `T`
21 // (indicating a successful operation), or an error (of type `Status`)
22 // explaining why such a value is not present.
23 //
24 // In general, check the success of an operation returning an `Result<T>` like
25 // you would an `pw::Status` by using the `ok()` member function.
26 //
27 // Example:
28 //
29 // Result<Foo> result = Calculation();
30 // if (result.ok()) {
31 // result->DoSomethingCool();
32 // } else {
33 // PW_LOG_ERROR("Calculation failed: %s", result.status().str());
34 // }
35 #pragma once
36
37 #include <exception>
38 #include <functional>
39 #include <initializer_list>
40 #include <new>
41 #include <string>
42 #include <type_traits>
43 #include <utility>
44
45 #include "pw_preprocessor/compiler.h"
46 #include "pw_result/internal/result_internal.h"
47 #include "pw_status/status.h"
48
49 namespace pw {
50
51 // Returned Result objects may not be ignored.
52 template <typename T>
53 class [[nodiscard]] Result;
54
55 // Result<T>
56 //
57 // The `Result<T>` class template is a union of an `pw::Status` object and an
58 // object of type `T`. The `Result<T>` models an object that is either a usable
59 // object, or an error (of type `Status`) explaining why such an object is not
60 // present. An `Result<T>` is typically the return value of a function which may
61 // fail.
62 //
63 // An `Result<T>` can never hold an "OK" status; instead, the presence of an
64 // object of type `T` indicates success. Instead of checking for a `kOk` value,
65 // use the `Result<T>::ok()` member function. (It is for this reason, and code
66 // readability, that using the `ok()` function is preferred for `Status` as
67 // well.)
68 //
69 // Example:
70 //
71 // Result<Foo> result = DoBigCalculationThatCouldFail();
72 // if (result.ok()) {
73 // result->DoSomethingCool();
74 // } else {
75 // PW_LOG_ERROR("Calculation failed: %s", result.status().str());
76 // }
77 //
78 // Accessing the object held by an `Result<T>` should be performed via
79 // `operator*` or `operator->`, after a call to `ok()` confirms that the
80 // `Result<T>` holds an object of type `T`:
81 //
82 // Example:
83 //
84 // Result<int> i = GetCount();
85 // if (i.ok()) {
86 // updated_total += *i
87 // }
88 //
89 // NOTE: using `Result<T>::value()` when no valid value is present will trigger
90 // a PW_ASSERT.
91 //
92 // Example:
93 //
94 // Result<Foo> result = DoBigCalculationThatCouldFail();
95 // const Foo& foo = result.value(); // Crash/exception if no value present
96 // foo.DoSomethingCool();
97 //
98 // A `Result<T*>` can be constructed from a null pointer like any other pointer
99 // value, and the result will be that `ok()` returns `true` and `value()`
100 // returns `nullptr`. Checking the value of pointer in an `Result<T>` generally
101 // requires a bit more care, to ensure both that a value is present and that
102 // value is not null:
103 //
104 // Result<Foo*> result = LookUpTheFoo(arg);
105 // if (!result.ok()) {
106 // PW_LOG_ERROR("Unable to look up the Foo: %s", result.status().str());
107 // } else if (*result == nullptr) {
108 // PW_LOG_ERROR("Unexpected null pointer");
109 // } else {
110 // (*result)->DoSomethingCool();
111 // }
112 //
113 // Example factory implementation returning Result<T>:
114 //
115 // Result<Foo> FooFactory::MakeFoo(int arg) {
116 // if (arg <= 0) {
117 // return pw::Status::InvalidArgument();
118 // }
119 // return Foo(arg);
120 // }
121 template <typename T>
122 class Result : private internal_result::StatusOrData<T>,
123 private internal_result::CopyCtorBase<T>,
124 private internal_result::MoveCtorBase<T>,
125 private internal_result::CopyAssignBase<T>,
126 private internal_result::MoveAssignBase<T> {
127 template <typename U>
128 friend class Result;
129
130 using Base = internal_result::StatusOrData<T>;
131
132 public:
133 // Result<T>::value_type
134 //
135 // This instance data provides a generic `value_type` member for use within
136 // generic programming. This usage is analogous to that of
137 // `optional::value_type` in the case of `std::optional`.
138 typedef T value_type;
139
140 // Constructors
141
142 // Constructs a new `Result` with an `pw::Status::Unknown()` status. This
143 // constructor is marked 'explicit' to prevent usages in return values such as
144 // 'return {};', under the misconception that `Result<std::vector<int>>` will
145 // be initialized with an empty vector, instead of a `Status::Unknown()` error
146 // code.
147 explicit constexpr Result();
148
149 // `Result<T>` is copy constructible if `T` is copy constructible.
150 constexpr Result(const Result&) = default;
151 // `Result<T>` is copy assignable if `T` is copy constructible and copy
152 // assignable.
153 constexpr Result& operator=(const Result&) = default;
154
155 // `Result<T>` is move constructible if `T` is move constructible.
156 constexpr Result(Result&&) = default;
157 // `Result<T>` is moveAssignable if `T` is move constructible and move
158 // assignable.
159 constexpr Result& operator=(Result&&) = default;
160
161 // Converting Constructors
162
163 // Constructs a new `Result<T>` from an `pw::Result<U>`, when `T` is
164 // constructible from `U`. To avoid ambiguity, these constructors are disabled
165 // if `T` is also constructible from `Result<U>.`. This constructor is
166 // explicit if and only if the corresponding construction of `T` from `U` is
167 // explicit. (This constructor inherits its explicitness from the underlying
168 // constructor.)
169 template <
170 typename U,
171 std::enable_if_t<
172 std::conjunction<
173 std::negation<std::is_same<T, U>>,
174 std::is_constructible<T, const U&>,
175 std::is_convertible<const U&, T>,
176 std::negation<internal_result::
177 IsConstructibleOrConvertibleFromResult<T, U>>>::
178 value,
179 int> = 0>
Result(const Result<U> & other)180 constexpr Result(const Result<U>& other) // NOLINT
181 : Base(static_cast<const typename Result<U>::Base&>(other)) {}
182 template <
183 typename U,
184 std::enable_if_t<
185 std::conjunction<
186 std::negation<std::is_same<T, U>>,
187 std::is_constructible<T, const U&>,
188 std::negation<std::is_convertible<const U&, T>>,
189 std::negation<internal_result::
190 IsConstructibleOrConvertibleFromResult<T, U>>>::
191 value,
192 int> = 0>
Result(const Result<U> & other)193 explicit constexpr Result(const Result<U>& other)
194 : Base(static_cast<const typename Result<U>::Base&>(other)) {}
195
196 template <
197 typename U,
198 std::enable_if_t<
199 std::conjunction<
200 std::negation<std::is_same<T, U>>,
201 std::is_constructible<T, U&&>,
202 std::is_convertible<U&&, T>,
203 std::negation<internal_result::
204 IsConstructibleOrConvertibleFromResult<T, U>>>::
205 value,
206 int> = 0>
Result(Result<U> && other)207 constexpr Result(Result<U>&& other) // NOLINT
208 : Base(static_cast<typename Result<U>::Base&&>(other)) {}
209 template <
210 typename U,
211 std::enable_if_t<
212 std::conjunction<
213 std::negation<std::is_same<T, U>>,
214 std::is_constructible<T, U&&>,
215 std::negation<std::is_convertible<U&&, T>>,
216 std::negation<internal_result::
217 IsConstructibleOrConvertibleFromResult<T, U>>>::
218 value,
219 int> = 0>
Result(Result<U> && other)220 explicit constexpr Result(Result<U>&& other)
221 : Base(static_cast<typename Result<U>::Base&&>(other)) {}
222
223 // Converting Assignment Operators
224
225 // Creates an `Result<T>` through assignment from an
226 // `Result<U>` when:
227 //
228 // * Both `Result<T>` and `pw::Result<U>` are OK by assigning
229 // `U` to `T` directly.
230 // * `Result<T>` is OK and `pw::Result<U>` contains an error
231 // code by destroying `Result<T>`'s value and assigning from
232 // `Result<U>'
233 // * `Result<T>` contains an error code and `pw::Result<U>` is
234 // OK by directly initializing `T` from `U`.
235 // * Both `Result<T>` and `pw::Result<U>` contain an error
236 // code by assigning the `Status` in `Result<U>` to
237 // `Result<T>`
238 //
239 // These overloads only apply if `Result<T>` is constructible and
240 // assignable from `Result<U>` and `Result<T>` cannot be directly
241 // assigned from `Result<U>`.
242 template <typename U,
243 std::enable_if_t<
244 std::conjunction<
245 std::negation<std::is_same<T, U>>,
246 std::is_constructible<T, const U&>,
247 std::is_assignable<T, const U&>,
248 std::negation<
249 internal_result::
250 IsConstructibleOrConvertibleOrAssignableFromResult<
251 T,
252 U>>>::value,
253 int> = 0>
254 constexpr Result& operator=(const Result<U>& other) {
255 this->Assign(other);
256 return *this;
257 }
258 template <typename U,
259 std::enable_if_t<
260 std::conjunction<
261 std::negation<std::is_same<T, U>>,
262 std::is_constructible<T, U&&>,
263 std::is_assignable<T, U&&>,
264 std::negation<
265 internal_result::
266 IsConstructibleOrConvertibleOrAssignableFromResult<
267 T,
268 U>>>::value,
269 int> = 0>
270 constexpr Result& operator=(Result<U>&& other) {
271 this->Assign(std::move(other));
272 return *this;
273 }
274
275 // Constructs a new `Result<T>` with a non-ok status. After calling this
276 // constructor, `this->ok()` will be `false` and calls to `value()` will
277 // crash, or produce an exception if exceptions are enabled.
278 //
279 // The constructor also takes any type `U` that is convertible to `Status`.
280 // This constructor is explicit if an only if `U` is not of type `Status` and
281 // the conversion from `U` to `Status` is explicit.
282 //
283 // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
284 // In optimized builds, passing OkStatus() here will have the effect of
285 // passing Status::Internal() as a fallback.
286 template <
287 typename U = Status,
288 std::enable_if_t<
289 std::conjunction<
290 std::is_convertible<U&&, Status>,
291 std::is_constructible<Status, U&&>,
292 std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
293 std::negation<std::is_same<std::decay_t<U>, T>>,
294 std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
295 std::negation<internal_result::
296 HasConversionOperatorToResult<T, U&&>>>::value,
297 int> = 0>
Result(U && v)298 constexpr Result(U&& v) : Base(std::forward<U>(v)) {}
299
300 template <
301 typename U = Status,
302 std::enable_if_t<
303 std::conjunction<
304 std::negation<std::is_convertible<U&&, Status>>,
305 std::is_constructible<Status, U&&>,
306 std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
307 std::negation<std::is_same<std::decay_t<U>, T>>,
308 std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
309 std::negation<internal_result::
310 HasConversionOperatorToResult<T, U&&>>>::value,
311 int> = 0>
Result(U && v)312 constexpr explicit Result(U&& v) : Base(std::forward<U>(v)) {}
313
314 template <
315 typename U = Status,
316 std::enable_if_t<
317 std::conjunction<
318 std::is_convertible<U&&, Status>,
319 std::is_constructible<Status, U&&>,
320 std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
321 std::negation<std::is_same<std::decay_t<U>, T>>,
322 std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
323 std::negation<internal_result::
324 HasConversionOperatorToResult<T, U&&>>>::value,
325 int> = 0>
326 constexpr Result& operator=(U&& v) {
327 this->AssignStatus(std::forward<U>(v));
328 return *this;
329 }
330
331 // Perfect-forwarding value assignment operator.
332
333 // If `*this` contains a `T` value before the call, the contained value is
334 // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
335 // from `std::forward<U>(v)`.
336 // This function does not participate in overload unless:
337 // 1. `std::is_constructible_v<T, U>` is true,
338 // 2. `std::is_assignable_v<T&, U>` is true.
339 // 3. `std::is_same_v<Result<T>, std::remove_cvref_t<U>>` is false.
340 // 4. Assigning `U` to `T` is not ambiguous:
341 // If `U` is `Result<V>` and `T` is constructible and assignable from
342 // both `Result<V>` and `V`, the assignment is considered bug-prone and
343 // ambiguous thus will fail to compile. For example:
344 // Result<bool> s1 = true; // s1.ok() && *s1 == true
345 // Result<bool> s2 = false; // s2.ok() && *s2 == false
346 // s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
347 template <
348 typename U = T,
349 typename = typename std::enable_if<std::conjunction<
350 std::is_constructible<T, U&&>,
351 std::is_assignable<T&, U&&>,
352 std::disjunction<
353 std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
354 std::conjunction<
355 std::negation<std::is_convertible<U&&, Status>>,
356 std::negation<
357 internal_result::HasConversionOperatorToResult<T, U&&>>>>,
358 internal_result::IsForwardingAssignmentValid<T, U&&>>::value>::type>
359 constexpr Result& operator=(U&& v) {
360 this->Assign(std::forward<U>(v));
361 return *this;
362 }
363
364 // Constructs the inner value `T` in-place using the provided args, using the
365 // `T(args...)` constructor.
366 template <typename... Args>
367 explicit constexpr Result(std::in_place_t, Args&&... args);
368 template <typename U, typename... Args>
369 explicit constexpr Result(std::in_place_t,
370 std::initializer_list<U> ilist,
371 Args&&... args);
372
373 // Constructs the inner value `T` in-place using the provided args, using the
374 // `T(U)` (direct-initialization) constructor. This constructor is only valid
375 // if `T` can be constructed from a `U`. Can accept move or copy constructors.
376 //
377 // This constructor is explicit if `U` is not convertible to `T`. To avoid
378 // ambiguity, this constructor is disabled if `U` is a `Result<J>`, where
379 // `J` is convertible to `T`.
380 template <
381 typename U = T,
382 std::enable_if_t<
383 std::conjunction<
384 internal_result::IsDirectInitializationValid<T, U&&>,
385 std::is_constructible<T, U&&>,
386 std::is_convertible<U&&, T>,
387 std::disjunction<
388 std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
389 std::conjunction<
390 std::negation<std::is_convertible<U&&, Status>>,
391 std::negation<
392 internal_result::
393 HasConversionOperatorToResult<T, U&&>>>>>::value,
394 int> = 0>
Result(U && u)395 constexpr Result(U&& u) // NOLINT
396 : Result(std::in_place, std::forward<U>(u)) {}
397
398 template <
399 typename U = T,
400 std::enable_if_t<
401 std::conjunction<
402 internal_result::IsDirectInitializationValid<T, U&&>,
403 std::disjunction<
404 std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
405 std::conjunction<
406 std::negation<std::is_constructible<Status, U&&>>,
407 std::negation<
408 internal_result::
409 HasConversionOperatorToResult<T, U&&>>>>,
410 std::is_constructible<T, U&&>,
411 std::negation<std::is_convertible<U&&, T>>>::value,
412 int> = 0>
Result(U && u)413 explicit constexpr Result(U&& u) // NOLINT
414 : Result(std::in_place, std::forward<U>(u)) {}
415
416 // Result<T>::ok()
417 //
418 // Returns whether or not this `Result<T>` holds a `T` value. This
419 // member function is analagous to `Status::ok()` and should be used
420 // similarly to check the status of return values.
421 //
422 // Example:
423 //
424 // Result<Foo> result = DoBigCalculationThatCouldFail();
425 // if (result.ok()) {
426 // // Handle result
427 // else {
428 // // Handle error
429 // }
ok()430 [[nodiscard]] constexpr bool ok() const { return this->status_.ok(); }
431
432 // Result<T>::status()
433 //
434 // Returns a reference to the current `Status` contained within the
435 // `Result<T>`. If `pw::Result<T>` contains a `T`, then this function returns
436 // `OkStatus()`.
437 constexpr const Status& status() const&;
438 constexpr Status status() &&;
439
440 // Result<T>::value()
441 //
442 // Returns a reference to the held value if `this->ok()`. Otherwise,
443 // terminates the process.
444 //
445 // If you have already checked the status using `this->ok()`, you probably
446 // want to use `operator*()` or `operator->()` to access the value instead of
447 // `value`.
448 //
449 // Note: for value types that are cheap to copy, prefer simple code:
450 //
451 // T value = result.value();
452 //
453 // Otherwise, if the value type is expensive to copy, but can be left
454 // in the Result, simply assign to a reference:
455 //
456 // T& value = result.value(); // or `const T&`
457 //
458 // Otherwise, if the value type supports an efficient move, it can be
459 // used as follows:
460 //
461 // T value = std::move(result).value();
462 //
463 // The `std::move` on result instead of on the whole expression enables
464 // warnings about possible uses of the result object after the move.
465 constexpr const T& value() const& PW_ATTRIBUTE_LIFETIME_BOUND;
466 constexpr T& value() & PW_ATTRIBUTE_LIFETIME_BOUND;
467 constexpr const T&& value() const&& PW_ATTRIBUTE_LIFETIME_BOUND;
468 constexpr T&& value() && PW_ATTRIBUTE_LIFETIME_BOUND;
469
470 // Result<T>:: operator*()
471 //
472 // Returns a reference to the current value.
473 //
474 // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
475 //
476 // Use `this->ok()` to verify that there is a current value within the
477 // `Result<T>`. Alternatively, see the `value()` member function for a
478 // similar API that guarantees crashing or throwing an exception if there is
479 // no current value.
480 constexpr const T& operator*() const& PW_ATTRIBUTE_LIFETIME_BOUND;
481 constexpr T& operator*() & PW_ATTRIBUTE_LIFETIME_BOUND;
482 constexpr const T&& operator*() const&& PW_ATTRIBUTE_LIFETIME_BOUND;
483 constexpr T&& operator*() && PW_ATTRIBUTE_LIFETIME_BOUND;
484
485 // Result<T>::operator->()
486 //
487 // Returns a pointer to the current value.
488 //
489 // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
490 //
491 // Use `this->ok()` to verify that there is a current value.
492 constexpr const T* operator->() const PW_ATTRIBUTE_LIFETIME_BOUND;
493 constexpr T* operator->() PW_ATTRIBUTE_LIFETIME_BOUND;
494
495 // Result<T>::value_or()
496 //
497 // Returns the current value if `this->ok() == true`. Otherwise constructs a
498 // value using the provided `default_value`.
499 //
500 // Unlike `value`, this function returns by value, copying the current value
501 // if necessary. If the value type supports an efficient move, it can be used
502 // as follows:
503 //
504 // T value = std::move(result).value_or(def);
505 //
506 // Unlike with `value`, calling `std::move()` on the result of `value_or` will
507 // still trigger a copy.
508 template <typename U>
509 constexpr T value_or(U&& default_value) const&;
510 template <typename U>
511 constexpr T value_or(U&& default_value) &&;
512
513 // Result<T>::IgnoreError()
514 //
515 // Ignores any errors. This method does nothing except potentially suppress
516 // complaints from any tools that are checking that errors are not dropped on
517 // the floor.
518 constexpr void IgnoreError() const;
519
520 // Result<T>::emplace()
521 //
522 // Reconstructs the inner value T in-place using the provided args, using the
523 // T(args...) constructor. Returns reference to the reconstructed `T`.
524 template <typename... Args>
emplace(Args &&...args)525 T& emplace(Args&&... args) {
526 if (ok()) {
527 this->Clear();
528 this->MakeValue(std::forward<Args>(args)...);
529 } else {
530 this->MakeValue(std::forward<Args>(args)...);
531 this->status_ = OkStatus();
532 }
533 return this->data_;
534 }
535
536 template <
537 typename U,
538 typename... Args,
539 std::enable_if_t<
540 std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
541 int> = 0>
emplace(std::initializer_list<U> ilist,Args &&...args)542 T& emplace(std::initializer_list<U> ilist, Args&&... args) {
543 if (ok()) {
544 this->Clear();
545 this->MakeValue(ilist, std::forward<Args>(args)...);
546 } else {
547 this->MakeValue(ilist, std::forward<Args>(args)...);
548 this->status_ = OkStatus();
549 }
550 return this->data_;
551 }
552
553 // Result<T>::and_then()
554 //
555 // template <typename U>
556 // Result<U> and_then(Function<Result<U>(T)> func);
557 //
558 // Returns the Result from the invocation of the function on the contained
559 // value if it exists. Otherwise, returns the contained status in the Result.
560 //
561 // Result<Foo> CreateFoo();
562 // Result<Bar> CreateBarFromFoo(const Foo& foo);
563 //
564 // Result<Bar> bar = CreateFoo().and_then(CreateBarFromFoo);
565 template <typename Fn,
566 typename Ret = internal_result::InvokeResultType<Fn, T&>,
567 std::enable_if_t<std::is_copy_constructible_v<Ret>, int> = 0>
and_then(Fn && function)568 constexpr Ret and_then(Fn&& function) & {
569 static_assert(internal_result::IsResult<Ret>,
570 "Fn must return a pw::Result");
571 return ok() ? std::invoke(std::forward<Fn>(function), value())
572 : Ret(status());
573 }
574
575 template <typename Fn,
576 typename Ret = internal_result::InvokeResultType<Fn, T&&>,
577 std::enable_if_t<std::is_move_constructible_v<Ret>, int> = 0>
and_then(Fn && function)578 constexpr auto and_then(Fn&& function) && {
579 static_assert(internal_result::IsResult<Ret>,
580 "Fn must return a pw::Result");
581 return ok() ? std::invoke(std::forward<Fn>(function), std::move(value()))
582 : Ret(status());
583 }
584
585 template <typename Fn,
586 typename Ret = internal_result::InvokeResultType<Fn, const T&>,
587 std::enable_if_t<std::is_copy_constructible_v<Ret>, int> = 0>
and_then(Fn && function)588 constexpr auto and_then(Fn&& function) const& {
589 static_assert(internal_result::IsResult<Ret>,
590 "Fn must return a pw::Result");
591 return ok() ? std::invoke(std::forward<Fn>(function), value())
592 : Ret(status());
593 }
594
595 template <typename Fn,
596 typename Ret = internal_result::InvokeResultType<Fn, const T&&>,
597 std::enable_if_t<std::is_move_constructible_v<Ret>, int> = 0>
and_then(Fn && function)598 constexpr auto and_then(Fn&& function) const&& {
599 static_assert(internal_result::IsResult<Ret>,
600 "Fn must return a pw::Result");
601 return ok() ? std::invoke(std::forward<Fn>(function), std::move(value()))
602 : Ret(status());
603 }
604
605 // Result<T>::or_else()
606 //
607 // template <typename U>
608 // requires std::is_convertible_v<U, Result<T>>
609 // Result<T> or_else(Function<U(Status)> func);
610 //
611 // Result<T> or_else(Function<void(Status)> func);
612 //
613 // Returns a Result if it has a value, otherwise it invokes the given
614 // function. The function must return a type convertible to a Result<T> or a
615 // void.
616 //
617 // Result<Foo> CreateFoo();
618 //
619 // Result<Foo> foo = CreateFoo().or_else(
620 // [](Status s) { PW_LOG_ERROR("Status: %d", s.code()); });
621 template <typename Fn,
622 typename Ret = internal_result::InvokeResultType<Fn, const Status&>,
623 std::enable_if_t<!std::is_void_v<Ret>, int> = 0>
or_else(Fn && function)624 constexpr Result<T> or_else(Fn&& function) const& {
625 static_assert(std::is_convertible_v<Ret, Result<T>>,
626 "Fn must be convertible to a pw::Result");
627 return ok() ? *this : std::invoke(std::forward<Fn>(function), status());
628 }
629
630 template <typename Fn,
631 typename Ret = internal_result::InvokeResultType<Fn, const Status&>,
632 std::enable_if_t<std::is_void_v<Ret>, int> = 0>
or_else(Fn && function)633 constexpr Result<T> or_else(Fn&& function) const& {
634 if (ok()) {
635 return *this;
636 }
637 std::invoke(std::forward<Fn>(function), status());
638 return *this;
639 }
640
641 template <typename Fn,
642 typename Ret = internal_result::InvokeResultType<Fn, Status&&>,
643 std::enable_if_t<!std::is_void_v<Ret>, int> = 0>
or_else(Fn && function)644 constexpr Result<T> or_else(Fn&& function) && {
645 static_assert(std::is_convertible_v<Ret, Result<T>>,
646 "Fn must be convertible to a pw::Result");
647 return ok() ? std::move(*this)
648 : std::invoke(std::forward<Fn>(function), std::move(status()));
649 }
650
651 template <typename Fn,
652 typename Ret = internal_result::InvokeResultType<Fn, Status&&>,
653 std::enable_if_t<std::is_void_v<Ret>, int> = 0>
or_else(Fn && function)654 constexpr Result<T> or_else(Fn&& function) && {
655 if (ok()) {
656 return *this;
657 }
658 std::invoke(std::forward<Fn>(function), status());
659 return std::move(*this);
660 }
661
662 // Result<T>::transform()
663 //
664 // template <typename U>
665 // Result<U> transform(Function<U(T)> func);
666 //
667 // Returns a Result<U> which contains the result of the invocation of the
668 // given function if *this contains a value. Otherwise, it returns a Result<U>
669 // with the same Status as *this.
670 template <typename Fn,
671 typename Ret = internal_result::InvokeResultType<Fn, T&>,
672 std::enable_if_t<std::is_copy_constructible_v<Ret>, int> = 0>
transform(Fn && function)673 constexpr Result<Ret> transform(Fn&& function) & {
674 if (!ok()) {
675 return status();
676 }
677 return std::invoke(std::forward<Fn>(function), value());
678 }
679
680 template <typename Fn,
681 typename Ret = internal_result::InvokeResultType<Fn, T&&>,
682 std::enable_if_t<std::is_move_constructible_v<Ret>, int> = 0>
transform(Fn && function)683 constexpr Result<Ret> transform(Fn&& function) && {
684 if (!ok()) {
685 return std::move(status());
686 }
687 return std::invoke(std::forward<Fn>(function), std::move(value()));
688 }
689
690 template <typename Fn,
691 typename Ret = internal_result::InvokeResultType<Fn, T&>,
692 std::enable_if_t<std::is_copy_constructible_v<Ret>, int> = 0>
transform(Fn && function)693 constexpr Result<Ret> transform(Fn&& function) const& {
694 if (!ok()) {
695 return status();
696 }
697 return std::invoke(std::forward<Fn>(function), value());
698 }
699
700 template <typename Fn,
701 typename Ret = internal_result::InvokeResultType<Fn, T&&>,
702 std::enable_if_t<std::is_move_constructible_v<Ret>, int> = 0>
transform(Fn && function)703 constexpr Result<Ret> transform(Fn&& function) const&& {
704 if (!ok()) {
705 return std::move(status());
706 }
707 return std::invoke(std::forward<Fn>(function), std::move(value()));
708 }
709
710 private:
711 using Base::Assign;
712 template <typename U>
713 constexpr void Assign(const Result<U>& other);
714 template <typename U>
715 constexpr void Assign(Result<U>&& other);
716 };
717
718 // Deduction guide to allow ``Result(v)`` rather than ``Result<T>(v)``.
719 template <typename T>
720 Result(T value) -> Result<T>;
721
722 // operator==()
723 //
724 // This operator checks the equality of two `Result<T>` objects.
725 template <typename T>
726 constexpr bool operator==(const Result<T>& lhs, const Result<T>& rhs) {
727 if (lhs.ok() && rhs.ok()) {
728 return *lhs == *rhs;
729 }
730 return lhs.status() == rhs.status();
731 }
732
733 // operator!=()
734 //
735 // This operator checks the inequality of two `Result<T>` objects.
736 template <typename T>
737 constexpr bool operator!=(const Result<T>& lhs, const Result<T>& rhs) {
738 return !(lhs == rhs);
739 }
740
741 //------------------------------------------------------------------------------
742 // Implementation details for Result<T>
743 //------------------------------------------------------------------------------
744
745 template <typename T>
Result()746 constexpr Result<T>::Result() : Base(Status::Unknown()) {}
747
748 template <typename T>
749 template <typename U>
Assign(const Result<U> & other)750 constexpr inline void Result<T>::Assign(const Result<U>& other) {
751 if (other.ok()) {
752 this->Assign(*other);
753 } else {
754 this->AssignStatus(other.status());
755 }
756 }
757
758 template <typename T>
759 template <typename U>
Assign(Result<U> && other)760 constexpr inline void Result<T>::Assign(Result<U>&& other) {
761 if (other.ok()) {
762 this->Assign(*std::move(other));
763 } else {
764 this->AssignStatus(std::move(other).status());
765 }
766 }
767 template <typename T>
768 template <typename... Args>
Result(std::in_place_t,Args &&...args)769 constexpr Result<T>::Result(std::in_place_t, Args&&... args)
770 : Base(std::in_place, std::forward<Args>(args)...) {}
771
772 template <typename T>
773 template <typename U, typename... Args>
Result(std::in_place_t,std::initializer_list<U> ilist,Args &&...args)774 constexpr Result<T>::Result(std::in_place_t,
775 std::initializer_list<U> ilist,
776 Args&&... args)
777 : Base(std::in_place, ilist, std::forward<Args>(args)...) {}
778
779 template <typename T>
status()780 constexpr const Status& Result<T>::status() const& {
781 return this->status_;
782 }
783 template <typename T>
status()784 constexpr Status Result<T>::status() && {
785 return ok() ? OkStatus() : std::move(this->status_);
786 }
787
788 template <typename T>
value()789 constexpr const T& Result<T>::value() const& {
790 PW_ASSERT(this->status_.ok());
791 return this->data_;
792 }
793
794 template <typename T>
value()795 constexpr T& Result<T>::value() & {
796 PW_ASSERT(this->status_.ok());
797 return this->data_;
798 }
799
800 template <typename T>
value()801 constexpr const T&& Result<T>::value() const&& {
802 PW_ASSERT(this->status_.ok());
803 return std::move(this->data_);
804 }
805
806 template <typename T>
value()807 constexpr T&& Result<T>::value() && {
808 PW_ASSERT(this->status_.ok());
809 return std::move(this->data_);
810 }
811
812 template <typename T>
813 constexpr const T& Result<T>::operator*() const& {
814 PW_ASSERT(this->status_.ok());
815 return this->data_;
816 }
817
818 template <typename T>
819 constexpr T& Result<T>::operator*() & {
820 PW_ASSERT(this->status_.ok());
821 return this->data_;
822 }
823
824 template <typename T>
825 constexpr const T&& Result<T>::operator*() const&& {
826 PW_ASSERT(this->status_.ok());
827 return std::move(this->data_);
828 }
829
830 template <typename T>
831 constexpr T&& Result<T>::operator*() && {
832 PW_ASSERT(this->status_.ok());
833 return std::move(this->data_);
834 }
835
836 template <typename T>
837 constexpr const T* Result<T>::operator->() const {
838 PW_ASSERT(this->status_.ok());
839 return &this->data_;
840 }
841
842 template <typename T>
843 constexpr T* Result<T>::operator->() {
844 PW_ASSERT(this->status_.ok());
845 return &this->data_;
846 }
847
848 template <typename T>
849 template <typename U>
value_or(U && default_value)850 constexpr T Result<T>::value_or(U&& default_value) const& {
851 if (ok()) {
852 return this->data_;
853 }
854 return std::forward<U>(default_value);
855 }
856
857 template <typename T>
858 template <typename U>
value_or(U && default_value)859 constexpr T Result<T>::value_or(U&& default_value) && {
860 if (ok()) {
861 return std::move(this->data_);
862 }
863 return std::forward<U>(default_value);
864 }
865
866 template <typename T>
IgnoreError()867 constexpr void Result<T>::IgnoreError() const {
868 // no-op
869 }
870
871 namespace internal {
872
873 template <typename T>
ConvertToStatus(const Result<T> & result)874 constexpr Status ConvertToStatus(const Result<T>& result) {
875 return result.status();
876 }
877
878 template <typename T>
ConvertToValue(Result<T> & result)879 constexpr T&& ConvertToValue(Result<T>& result) {
880 return std::move(result).value();
881 }
882
883 } // namespace internal
884 } // namespace pw
885