xref: /aosp_15_r20/external/webrtc/rtc_base/weak_ptr.h (revision d9f758449e529ab9291ac668be2861e7a55c2422)
1 /*
2  *  Copyright 2016 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef RTC_BASE_WEAK_PTR_H_
12 #define RTC_BASE_WEAK_PTR_H_
13 
14 #include <memory>
15 #include <utility>
16 
17 #include "api/scoped_refptr.h"
18 #include "api/sequence_checker.h"
19 #include "rtc_base/ref_count.h"
20 #include "rtc_base/ref_counted_object.h"
21 #include "rtc_base/system/no_unique_address.h"
22 
23 // The implementation is borrowed from chromium except that it does not
24 // implement SupportsWeakPtr.
25 
26 // Weak pointers are pointers to an object that do not affect its lifetime,
27 // and which may be invalidated (i.e. reset to nullptr) by the object, or its
28 // owner, at any time, most commonly when the object is about to be deleted.
29 
30 // Weak pointers are useful when an object needs to be accessed safely by one
31 // or more objects other than its owner, and those callers can cope with the
32 // object vanishing and e.g. tasks posted to it being silently dropped.
33 // Reference-counting such an object would complicate the ownership graph and
34 // make it harder to reason about the object's lifetime.
35 
36 // EXAMPLE:
37 //
38 //  class Controller {
39 //   public:
40 //    Controller() : weak_factory_(this) {}
41 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
42 //    void WorkComplete(const Result& result) { ... }
43 //   private:
44 //    // Member variables should appear before the WeakPtrFactory, to ensure
45 //    // that any WeakPtrs to Controller are invalidated before its members
46 //    // variable's destructors are executed, rendering them invalid.
47 //    WeakPtrFactory<Controller> weak_factory_;
48 //  };
49 //
50 //  class Worker {
51 //   public:
52 //    static void StartNew(const WeakPtr<Controller>& controller) {
53 //      Worker* worker = new Worker(controller);
54 //      // Kick off asynchronous processing...
55 //    }
56 //   private:
57 //    Worker(const WeakPtr<Controller>& controller)
58 //        : controller_(controller) {}
59 //    void DidCompleteAsynchronousProcessing(const Result& result) {
60 //      if (controller_)
61 //        controller_->WorkComplete(result);
62 //    }
63 //    WeakPtr<Controller> controller_;
64 //  };
65 //
66 // With this implementation a caller may use SpawnWorker() to dispatch multiple
67 // Workers and subsequently delete the Controller, without waiting for all
68 // Workers to have completed.
69 
70 // ------------------------- IMPORTANT: Thread-safety -------------------------
71 
72 // Weak pointers may be passed safely between threads, but must always be
73 // dereferenced and invalidated on the same TaskQueue or thread, otherwise
74 // checking the pointer would be racey.
75 //
76 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
77 // is dereferenced, the factory and its WeakPtrs become bound to the calling
78 // TaskQueue/thread, and cannot be dereferenced or
79 // invalidated on any other TaskQueue/thread. Bound WeakPtrs can still be handed
80 // off to other TaskQueues, e.g. to use to post tasks back to object on the
81 // bound sequence.
82 //
83 // Thus, at least one WeakPtr object must exist and have been dereferenced on
84 // the correct thread to enforce that other WeakPtr objects will enforce they
85 // are used on the desired thread.
86 
87 namespace rtc {
88 
89 namespace internal {
90 
91 class WeakReference {
92  public:
93   // Although Flag is bound to a specific sequence, it may be
94   // deleted from another via base::WeakPtr::~WeakPtr().
95   class Flag : public RefCountInterface {
96    public:
97     Flag();
98 
99     void Invalidate();
100     bool IsValid() const;
101 
102    private:
103     friend class RefCountedObject<Flag>;
104 
105     ~Flag() override;
106 
107     RTC_NO_UNIQUE_ADDRESS ::webrtc::SequenceChecker checker_;
108     bool is_valid_;
109   };
110 
111   WeakReference();
112   explicit WeakReference(const Flag* flag);
113   ~WeakReference();
114 
115   WeakReference(WeakReference&& other);
116   WeakReference(const WeakReference& other);
117   WeakReference& operator=(WeakReference&& other) = default;
118   WeakReference& operator=(const WeakReference& other) = default;
119 
120   bool is_valid() const;
121 
122  private:
123   scoped_refptr<const Flag> flag_;
124 };
125 
126 class WeakReferenceOwner {
127  public:
128   WeakReferenceOwner();
129   ~WeakReferenceOwner();
130 
131   WeakReference GetRef() const;
132 
HasRefs()133   bool HasRefs() const { return flag_.get() && !flag_->HasOneRef(); }
134 
135   void Invalidate();
136 
137  private:
138   mutable scoped_refptr<RefCountedObject<WeakReference::Flag>> flag_;
139 };
140 
141 // This class simplifies the implementation of WeakPtr's type conversion
142 // constructor by avoiding the need for a public accessor for ref_.  A
143 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
144 // base class gives us a way to access ref_ in a protected fashion.
145 class WeakPtrBase {
146  public:
147   WeakPtrBase();
148   ~WeakPtrBase();
149 
150   WeakPtrBase(const WeakPtrBase& other) = default;
151   WeakPtrBase(WeakPtrBase&& other) = default;
152   WeakPtrBase& operator=(const WeakPtrBase& other) = default;
153   WeakPtrBase& operator=(WeakPtrBase&& other) = default;
154 
155  protected:
156   explicit WeakPtrBase(const WeakReference& ref);
157 
158   WeakReference ref_;
159 };
160 
161 }  // namespace internal
162 
163 template <typename T>
164 class WeakPtrFactory;
165 
166 template <typename T>
167 class WeakPtr : public internal::WeakPtrBase {
168  public:
WeakPtr()169   WeakPtr() : ptr_(nullptr) {}
170 
171   // Allow conversion from U to T provided U "is a" T. Note that this
172   // is separate from the (implicit) copy and move constructors.
173   template <typename U>
WeakPtr(const WeakPtr<U> & other)174   WeakPtr(const WeakPtr<U>& other)
175       : internal::WeakPtrBase(other), ptr_(other.ptr_) {}
176   template <typename U>
WeakPtr(WeakPtr<U> && other)177   WeakPtr(WeakPtr<U>&& other)
178       : internal::WeakPtrBase(std::move(other)), ptr_(other.ptr_) {}
179 
get()180   T* get() const { return ref_.is_valid() ? ptr_ : nullptr; }
181 
182   T& operator*() const {
183     RTC_DCHECK(get() != nullptr);
184     return *get();
185   }
186   T* operator->() const {
187     RTC_DCHECK(get() != nullptr);
188     return get();
189   }
190 
reset()191   void reset() {
192     ref_ = internal::WeakReference();
193     ptr_ = nullptr;
194   }
195 
196   // Allow conditionals to test validity, e.g. if (weak_ptr) {...};
197   explicit operator bool() const { return get() != nullptr; }
198 
199  private:
200   template <typename U>
201   friend class WeakPtr;
202   friend class WeakPtrFactory<T>;
203 
WeakPtr(const internal::WeakReference & ref,T * ptr)204   WeakPtr(const internal::WeakReference& ref, T* ptr)
205       : internal::WeakPtrBase(ref), ptr_(ptr) {}
206 
207   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
208   // value is undefined (as opposed to nullptr).
209   T* ptr_;
210 };
211 
212 // Allow callers to compare WeakPtrs against nullptr to test validity.
213 template <class T>
214 bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
215   return !(weak_ptr == nullptr);
216 }
217 template <class T>
218 bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
219   return weak_ptr != nullptr;
220 }
221 template <class T>
222 bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
223   return weak_ptr.get() == nullptr;
224 }
225 template <class T>
226 bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
227   return weak_ptr == nullptr;
228 }
229 
230 // A class may be composed of a WeakPtrFactory and thereby
231 // control how it exposes weak pointers to itself.  This is helpful if you only
232 // need weak pointers within the implementation of a class.  This class is also
233 // useful when working with primitive types.  For example, you could have a
234 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
235 
236 // Note that GetWeakPtr must be called on one and only one TaskQueue or thread
237 // and the WeakPtr must only be dereferenced and invalidated on that same
238 // TaskQueue/thread. A WeakPtr instance can be copied and posted to other
239 // sequences though as long as it is not dereferenced (WeakPtr<T>::get()).
240 template <class T>
241 class WeakPtrFactory {
242  public:
WeakPtrFactory(T * ptr)243   explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {}
244 
245   WeakPtrFactory() = delete;
246   WeakPtrFactory(const WeakPtrFactory&) = delete;
247   WeakPtrFactory& operator=(const WeakPtrFactory&) = delete;
248 
~WeakPtrFactory()249   ~WeakPtrFactory() { ptr_ = nullptr; }
250 
GetWeakPtr()251   WeakPtr<T> GetWeakPtr() {
252     RTC_DCHECK(ptr_);
253     return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
254   }
255 
256   // Call this method to invalidate all existing weak pointers.
InvalidateWeakPtrs()257   void InvalidateWeakPtrs() {
258     RTC_DCHECK(ptr_);
259     weak_reference_owner_.Invalidate();
260   }
261 
262   // Call this method to determine if any weak pointers exist.
HasWeakPtrs()263   bool HasWeakPtrs() const {
264     RTC_DCHECK(ptr_);
265     return weak_reference_owner_.HasRefs();
266   }
267 
268  private:
269   internal::WeakReferenceOwner weak_reference_owner_;
270   T* ptr_;
271 };
272 
273 }  // namespace rtc
274 
275 #endif  // RTC_BASE_WEAK_PTR_H_
276