xref: /aosp_15_r20/external/mesa3d/src/gallium/drivers/radeonsi/si_state_shaders.cpp (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #if AMD_LLVM_AVAILABLE
8 #include "ac_llvm_util.h"
9 #endif
10 
11 #include "ac_nir.h"
12 #include "ac_shader_util.h"
13 #include "compiler/nir/nir_serialize.h"
14 #include "nir/tgsi_to_nir.h"
15 #include "si_build_pm4.h"
16 #include "sid.h"
17 #include "util/crc32.h"
18 #include "util/disk_cache.h"
19 #include "util/hash_table.h"
20 #include "util/mesa-sha1.h"
21 #include "util/u_async_debug.h"
22 #include "util/u_math.h"
23 #include "util/u_memory.h"
24 #include "util/u_prim.h"
25 #include "tgsi/tgsi_from_mesa.h"
26 
27 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx);
28 
si_determine_wave_size(struct si_screen * sscreen,struct si_shader * shader)29 unsigned si_determine_wave_size(struct si_screen *sscreen, struct si_shader *shader)
30 {
31    struct si_shader_info *info = &shader->selector->info;
32    gl_shader_stage stage = shader->selector->stage;
33 
34    struct si_shader_selector *prev_sel = NULL;
35    if (stage == MESA_SHADER_TESS_CTRL)
36       prev_sel = shader->key.ge.part.tcs.ls;
37    else if (stage == MESA_SHADER_GEOMETRY)
38       prev_sel = shader->key.ge.part.gs.es;
39 
40    if (sscreen->info.gfx_level < GFX10)
41       return 64;
42 
43    /* Legacy GS only supports Wave64. */
44    if ((stage == MESA_SHADER_VERTEX && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
45        (stage == MESA_SHADER_TESS_EVAL && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
46        (stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg))
47       return 64;
48 
49    /* For KHR_shader_subgroup which require a constant subgroup size known by user. */
50    if (info->base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT ||
51        (prev_sel && prev_sel->info.base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT))
52       return 64;
53 
54    /* Workgroup sizes that are not divisible by 64 use Wave32. */
55    if (stage == MESA_SHADER_COMPUTE && !info->base.workgroup_size_variable &&
56        (info->base.workgroup_size[0] *
57         info->base.workgroup_size[1] *
58         info->base.workgroup_size[2]) % 64 != 0)
59       return 32;
60 
61    /* AMD_DEBUG wave flags override everything else. */
62    if (sscreen->debug_flags &
63        (stage == MESA_SHADER_COMPUTE ? DBG(W32_CS) :
64         stage == MESA_SHADER_FRAGMENT ? DBG(W32_PS) : DBG(W32_GE)))
65       return 32;
66 
67    if (sscreen->debug_flags &
68        (stage == MESA_SHADER_COMPUTE ? DBG(W64_CS) :
69         stage == MESA_SHADER_FRAGMENT ? DBG(W64_PS) : DBG(W64_GE)))
70       return 64;
71 
72    /* Shader profiles. */
73    if (info->options & SI_PROFILE_WAVE32)
74       return 32;
75 
76    if (info->options & SI_PROFILE_GFX10_WAVE64 &&
77        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3))
78       return 64;
79 
80    /* Gfx10: Pixel shaders without interp instructions don't suffer from reduced interpolation
81     * performance in Wave32, so use Wave32. This helps Piano and Voloplosion.
82     *
83     * Gfx11: Prefer Wave64 to take advantage of doubled VALU performance.
84     */
85    if (sscreen->info.gfx_level < GFX11 && stage == MESA_SHADER_FRAGMENT && !info->num_inputs)
86       return 32;
87 
88    /* Gfx10: There are a few very rare cases where VS is better with Wave32, and there are no
89     * known cases where Wave64 is better.
90     *
91     * Wave32 is disabled for GFX10 when culling is active as a workaround for #6457. I don't
92     * know why this helps.
93     *
94     * Gfx11: Prefer Wave64 because it's slightly better than Wave32.
95     */
96    if (stage <= MESA_SHADER_GEOMETRY &&
97        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3) &&
98        !(sscreen->info.gfx_level == GFX10 && shader->key.ge.opt.ngg_culling))
99       return 32;
100 
101    /* Divergent loops in Wave64 can end up having too many iterations in one half of the wave
102     * while the other half is idling but occupying VGPRs, preventing other waves from launching.
103     * Wave32 eliminates the idling half to allow the next wave to start.
104     *
105     * Gfx11: Wave32 continues to be faster with divergent loops despite worse VALU performance.
106     */
107    if (info->has_divergent_loop ||
108        /* Merged shader has to use same wave size for two shader stages. */
109        (prev_sel && prev_sel->info.has_divergent_loop))
110       return 32;
111 
112    return 64;
113 }
114 
115 /* SHADER_CACHE */
116 
117 /**
118  * Return the IR key for the shader cache.
119  */
si_get_ir_cache_key(struct si_shader_selector * sel,bool ngg,bool es,unsigned wave_size,unsigned char ir_sha1_cache_key[20])120 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
121                          unsigned wave_size, unsigned char ir_sha1_cache_key[20])
122 {
123    struct blob blob = {};
124    unsigned ir_size;
125    void *ir_binary;
126 
127    if (sel->nir_binary) {
128       ir_binary = sel->nir_binary;
129       ir_size = sel->nir_size;
130    } else {
131       assert(sel->nir);
132 
133       blob_init(&blob);
134       /* Keep debug info if NIR debug prints are in use. */
135       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
136       ir_binary = blob.data;
137       ir_size = blob.size;
138    }
139 
140    /* These settings affect the compilation, but they are not derived
141     * from the input shader IR.
142     */
143    unsigned shader_variant_flags = 0;
144 
145    if (ngg)
146       shader_variant_flags |= 1 << 0;
147    /* bit gap */
148    if (wave_size == 32)
149       shader_variant_flags |= 1 << 2;
150    if (sel->screen->options.optimize_io)
151       shader_variant_flags |= 1 << 3;
152    /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context
153     * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc.
154     */
155    if (sel->screen->use_ngg_culling)
156       shader_variant_flags |= 1 << 4;
157    if (sel->screen->record_llvm_ir)
158       shader_variant_flags |= 1 << 5;
159    if (sel->screen->info.has_image_opcodes)
160       shader_variant_flags |= 1 << 6;
161    if (sel->screen->options.no_infinite_interp)
162       shader_variant_flags |= 1 << 7;
163    if (sel->screen->options.clamp_div_by_zero)
164       shader_variant_flags |= 1 << 8;
165    if ((sel->stage == MESA_SHADER_VERTEX ||
166         sel->stage == MESA_SHADER_TESS_EVAL ||
167         sel->stage == MESA_SHADER_GEOMETRY) &&
168        !es &&
169        sel->screen->options.vrs2x2)
170       shader_variant_flags |= 1 << 10;
171    if (sel->screen->options.inline_uniforms)
172       shader_variant_flags |= 1 << 11;
173    if (sel->screen->options.clear_lds)
174       shader_variant_flags |= 1 << 12;
175 
176    struct mesa_sha1 ctx;
177    _mesa_sha1_init(&ctx);
178    _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
179    _mesa_sha1_update(&ctx, ir_binary, ir_size);
180    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
181 
182    if (ir_binary == blob.data)
183       blob_finish(&blob);
184 }
185 
186 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)187 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
188 {
189    /* data may be NULL if size == 0 */
190    if (size)
191       memcpy(ptr, data, size);
192    ptr += DIV_ROUND_UP(size, 4);
193    return ptr;
194 }
195 
196 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)197 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
198 {
199    memcpy(data, ptr, size);
200    ptr += DIV_ROUND_UP(size, 4);
201    return ptr;
202 }
203 
204 /**
205  * Write the size as uint followed by the data. Return the next dword
206  * following the copied data.
207  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)208 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
209 {
210    *ptr++ = size;
211    return write_data(ptr, data, size);
212 }
213 
214 /**
215  * Read the size as uint followed by the data. Return both via parameters.
216  * Return the next dword following the data.
217  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)218 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
219 {
220    *size = *ptr++;
221    assert(*data == NULL);
222    if (!*size)
223       return ptr;
224    *data = malloc(*size);
225    return read_data(ptr, *data, *size);
226 }
227 
228 struct si_shader_blob_head {
229    uint32_t size;
230    uint32_t type;
231    uint32_t crc32;
232 };
233 
234 /**
235  * Return the shader binary in a buffer.
236  */
si_get_shader_binary(struct si_shader * shader)237 static uint32_t *si_get_shader_binary(struct si_shader *shader)
238 {
239    /* There is always a size of data followed by the data itself. */
240    unsigned llvm_ir_size =
241       shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
242 
243    /* Refuse to allocate overly large buffers and guard against integer
244     * overflow. */
245    if (shader->binary.code_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4 ||
246        shader->binary.num_symbols > UINT_MAX / 32)
247       return NULL;
248 
249    unsigned size = sizeof(struct si_shader_blob_head) +
250                    align(sizeof(shader->config), 4) +
251                    align(sizeof(shader->info), 4) +
252                    4 + 4 + align(shader->binary.code_size, 4) +
253                    4 + shader->binary.num_symbols * 8 +
254                    4 + align(llvm_ir_size, 4) +
255                    4 + align(shader->binary.disasm_size, 4);
256    uint32_t *buffer = (uint32_t*)CALLOC(1, size);
257    if (!buffer)
258       return NULL;
259 
260    struct si_shader_blob_head *head = (struct si_shader_blob_head *)buffer;
261    head->type = shader->binary.type;
262    head->size = size;
263 
264    uint32_t *data = buffer + sizeof(*head) / 4;
265    uint32_t *ptr = data;
266 
267    ptr = write_data(ptr, &shader->config, sizeof(shader->config));
268    ptr = write_data(ptr, &shader->info, sizeof(shader->info));
269    ptr = write_data(ptr, &shader->binary.exec_size, 4);
270    ptr = write_chunk(ptr, shader->binary.code_buffer, shader->binary.code_size);
271    ptr = write_chunk(ptr, shader->binary.symbols, shader->binary.num_symbols * 8);
272    ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
273    ptr = write_chunk(ptr, shader->binary.disasm_string, shader->binary.disasm_size);
274    assert((char *)ptr - (char *)buffer == (ptrdiff_t)size);
275 
276    /* Compute CRC32. */
277    head->crc32 = util_hash_crc32(data, size - sizeof(*head));
278 
279    return buffer;
280 }
281 
si_load_shader_binary(struct si_shader * shader,void * binary)282 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
283 {
284    struct si_shader_blob_head *head = (struct si_shader_blob_head *)binary;
285    unsigned chunk_size;
286    unsigned code_size;
287 
288    uint32_t *ptr = (uint32_t *)binary + sizeof(*head) / 4;
289    if (util_hash_crc32(ptr, head->size - sizeof(*head)) != head->crc32) {
290       fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
291       return false;
292    }
293 
294    shader->binary.type = (enum si_shader_binary_type)head->type;
295    ptr = read_data(ptr, &shader->config, sizeof(shader->config));
296    ptr = read_data(ptr, &shader->info, sizeof(shader->info));
297    ptr = read_data(ptr, &shader->binary.exec_size, 4);
298    ptr = read_chunk(ptr, (void **)&shader->binary.code_buffer, &code_size);
299    shader->binary.code_size = code_size;
300    ptr = read_chunk(ptr, (void **)&shader->binary.symbols, &chunk_size);
301    shader->binary.num_symbols = chunk_size / 8;
302    ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
303    ptr = read_chunk(ptr, (void **)&shader->binary.disasm_string, &chunk_size);
304    shader->binary.disasm_size = chunk_size;
305 
306    if (!shader->is_gs_copy_shader &&
307        shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
308       shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
309       if (!shader->gs_copy_shader)
310          return false;
311 
312       shader->gs_copy_shader->is_gs_copy_shader = true;
313 
314       if (!si_load_shader_binary(shader->gs_copy_shader, (uint8_t*)binary + head->size)) {
315          FREE(shader->gs_copy_shader);
316          shader->gs_copy_shader = NULL;
317          return false;
318       }
319 
320       util_queue_fence_init(&shader->gs_copy_shader->ready);
321       shader->gs_copy_shader->selector = shader->selector;
322       shader->gs_copy_shader->is_gs_copy_shader = true;
323       shader->gs_copy_shader->wave_size =
324          si_determine_wave_size(shader->selector->screen, shader->gs_copy_shader);
325 
326       si_shader_binary_upload(shader->selector->screen, shader->gs_copy_shader, 0);
327    }
328 
329    return true;
330 }
331 
332 /**
333  * Insert a shader into the cache. It's assumed the shader is not in the cache.
334  * Use si_shader_cache_load_shader before calling this.
335  */
si_shader_cache_insert_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader,bool insert_into_disk_cache)336 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
337                                    struct si_shader *shader, bool insert_into_disk_cache)
338 {
339    uint32_t *hw_binary;
340    struct hash_entry *entry;
341    uint8_t key[CACHE_KEY_SIZE];
342    bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size;
343 
344    if (!insert_into_disk_cache && memory_cache_full)
345       return;
346 
347    entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
348    if (entry)
349       return; /* already added */
350 
351    hw_binary = si_get_shader_binary(shader);
352    if (!hw_binary)
353       return;
354 
355    unsigned size = *hw_binary;
356 
357    if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
358       uint32_t *gs_copy_binary = si_get_shader_binary(shader->gs_copy_shader);
359       if (!gs_copy_binary) {
360          FREE(hw_binary);
361          return;
362       }
363 
364       /* Combine both binaries. */
365       size += *gs_copy_binary;
366       uint32_t *combined_binary = (uint32_t*)MALLOC(size);
367       if (!combined_binary) {
368          FREE(hw_binary);
369          FREE(gs_copy_binary);
370          return;
371       }
372 
373       memcpy(combined_binary, hw_binary, *hw_binary);
374       memcpy(combined_binary + *hw_binary / 4, gs_copy_binary, *gs_copy_binary);
375       FREE(hw_binary);
376       FREE(gs_copy_binary);
377       hw_binary = combined_binary;
378    }
379 
380    if (!memory_cache_full) {
381       if (_mesa_hash_table_insert(sscreen->shader_cache,
382                                   mem_dup(ir_sha1_cache_key, 20),
383                                   hw_binary) == NULL) {
384           FREE(hw_binary);
385           return;
386       }
387 
388       sscreen->shader_cache_size += size;
389    }
390 
391    if (sscreen->disk_shader_cache && insert_into_disk_cache) {
392       disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
393       disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, size, NULL);
394    }
395 
396    if (memory_cache_full)
397       FREE(hw_binary);
398 }
399 
si_shader_cache_load_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader)400 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
401                                  struct si_shader *shader)
402 {
403    struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
404 
405    if (entry) {
406       if (si_load_shader_binary(shader, entry->data)) {
407          p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
408          return true;
409       }
410    }
411    p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
412 
413    if (!sscreen->disk_shader_cache)
414       return false;
415 
416    unsigned char sha1[CACHE_KEY_SIZE];
417    disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
418 
419    size_t total_size;
420    uint32_t *buffer = (uint32_t*)disk_cache_get(sscreen->disk_shader_cache, sha1, &total_size);
421    if (buffer) {
422       unsigned size = *buffer;
423       unsigned gs_copy_binary_size = 0;
424 
425       /* The GS copy shader binary is after the GS binary. */
426       if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg)
427          gs_copy_binary_size = buffer[size / 4];
428 
429       if (total_size >= sizeof(uint32_t) && size + gs_copy_binary_size == total_size) {
430          if (si_load_shader_binary(shader, buffer)) {
431             free(buffer);
432             si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
433             p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
434             return true;
435          }
436       } else {
437          /* Something has gone wrong discard the item from the cache and
438           * rebuild/link from source.
439           */
440          assert(!"Invalid radeonsi shader disk cache item!");
441          disk_cache_remove(sscreen->disk_shader_cache, sha1);
442       }
443    }
444 
445    free(buffer);
446    p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
447    return false;
448 }
449 
si_shader_cache_key_hash(const void * key)450 static uint32_t si_shader_cache_key_hash(const void *key)
451 {
452    /* Take the first dword of SHA1. */
453    return *(uint32_t *)key;
454 }
455 
si_shader_cache_key_equals(const void * a,const void * b)456 static bool si_shader_cache_key_equals(const void *a, const void *b)
457 {
458    /* Compare SHA1s. */
459    return memcmp(a, b, 20) == 0;
460 }
461 
si_destroy_shader_cache_entry(struct hash_entry * entry)462 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
463 {
464    FREE((void *)entry->key);
465    FREE(entry->data);
466 }
467 
si_init_shader_cache(struct si_screen * sscreen)468 bool si_init_shader_cache(struct si_screen *sscreen)
469 {
470    (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
471    sscreen->shader_cache =
472       _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
473    sscreen->shader_cache_size = 0;
474    /* Maximum size: 64MB on 32 bits, 1GB else */
475    sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024;
476 
477    return sscreen->shader_cache != NULL;
478 }
479 
si_destroy_shader_cache(struct si_screen * sscreen)480 void si_destroy_shader_cache(struct si_screen *sscreen)
481 {
482    if (sscreen->shader_cache)
483       _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
484    simple_mtx_destroy(&sscreen->shader_cache_mutex);
485 }
486 
487 /* SHADER STATES */
488 
si_shader_encode_vgprs(struct si_shader * shader)489 unsigned si_shader_encode_vgprs(struct si_shader *shader)
490 {
491    assert(shader->selector->screen->info.gfx_level >= GFX10 || shader->wave_size == 64);
492    return shader->config.num_vgprs / (shader->wave_size == 32 ? 8 : 4) - 1;
493 }
494 
si_shader_encode_sgprs(struct si_shader * shader)495 unsigned si_shader_encode_sgprs(struct si_shader *shader)
496 {
497    if (shader->selector->screen->info.gfx_level >= GFX10)
498       return 0; /* Gfx10+ don't have the SGPRS field and always allocate 128 SGPRs. */
499 
500    return shader->config.num_sgprs / 8 - 1;
501 }
502 
si_shader_mem_ordered(struct si_shader * shader)503 bool si_shader_mem_ordered(struct si_shader *shader)
504 {
505    struct si_screen *sscreen = shader->selector->screen;
506 
507    if (sscreen->info.gfx_level < GFX10 || sscreen->info.gfx_level >= GFX12)
508       return false;
509 
510    /* Return true if both types of VMEM that return something are used. */
511    return shader->info.uses_vmem_sampler_or_bvh &&
512           (shader->info.uses_vmem_load_other ||
513            shader->config.scratch_bytes_per_wave);
514 }
515 
si_set_tesseval_regs(struct si_screen * sscreen,const struct si_shader_selector * tes,struct si_shader * shader)516 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
517                                  struct si_shader *shader)
518 {
519    const struct si_shader_info *info = &tes->info;
520    enum tess_primitive_mode tes_prim_mode = info->base.tess._primitive_mode;
521    unsigned tes_spacing = info->base.tess.spacing;
522    bool tes_vertex_order_cw = !info->base.tess.ccw;
523    bool tes_point_mode = info->base.tess.point_mode;
524    unsigned type, partitioning, topology, distribution_mode;
525 
526    switch (tes_prim_mode) {
527    case TESS_PRIMITIVE_ISOLINES:
528       type = V_028B6C_TESS_ISOLINE;
529       break;
530    case TESS_PRIMITIVE_TRIANGLES:
531       type = V_028B6C_TESS_TRIANGLE;
532       break;
533    case TESS_PRIMITIVE_QUADS:
534       type = V_028B6C_TESS_QUAD;
535       break;
536    default:
537       assert(0);
538       return;
539    }
540 
541    switch (tes_spacing) {
542    case TESS_SPACING_FRACTIONAL_ODD:
543       partitioning = V_028B6C_PART_FRAC_ODD;
544       break;
545    case TESS_SPACING_FRACTIONAL_EVEN:
546       partitioning = V_028B6C_PART_FRAC_EVEN;
547       break;
548    case TESS_SPACING_EQUAL:
549       partitioning = V_028B6C_PART_INTEGER;
550       break;
551    default:
552       assert(0);
553       return;
554    }
555 
556    if (tes_point_mode)
557       topology = V_028B6C_OUTPUT_POINT;
558    else if (tes_prim_mode == TESS_PRIMITIVE_ISOLINES)
559       topology = V_028B6C_OUTPUT_LINE;
560    else if (tes_vertex_order_cw)
561       /* for some reason, this must be the other way around */
562       topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
563    else
564       topology = V_028B6C_OUTPUT_TRIANGLE_CW;
565 
566    if (sscreen->info.has_distributed_tess) {
567       if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
568          distribution_mode = V_028B6C_TRAPEZOIDS;
569       else
570          distribution_mode = V_028B6C_DONUTS;
571    } else
572       distribution_mode = V_028B6C_NO_DIST;
573 
574    shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
575                           S_028B6C_TOPOLOGY(topology) |
576                           S_028B6C_DISTRIBUTION_MODE(distribution_mode);
577 
578    if (sscreen->info.gfx_level >= GFX12)
579       shader->vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
580 }
581 
582 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
583  * whether the "fractional odd" tessellation spacing is used.
584  *
585  * Possible VGT configurations and which state should set the register:
586  *
587  *   Reg set in | VGT shader configuration   | Value
588  * ------------------------------------------------------
589  *     VS as VS | VS                         | 30
590  *     VS as ES | ES -> GS -> VS             | 30
591  *    TES as VS | LS -> HS -> VS             | 14 or 30
592  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
593  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader)594 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
595                                          struct si_shader *shader)
596 {
597    if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.gfx_level >= GFX10)
598       return;
599 
600    /* VS as VS, or VS as ES: */
601    if ((sel->stage == MESA_SHADER_VERTEX &&
602         (!shader->key.ge.as_ls && !shader->is_gs_copy_shader)) ||
603        /* TES as VS, or TES as ES: */
604        sel->stage == MESA_SHADER_TESS_EVAL) {
605       unsigned vtx_reuse_depth = 30;
606 
607       if (sel->stage == MESA_SHADER_TESS_EVAL &&
608           sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
609          vtx_reuse_depth = 14;
610 
611       shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
612    }
613 }
614 
615 static struct si_pm4_state *
si_get_shader_pm4_state(struct si_shader * shader,void (* emit_func)(struct si_context * ctx,unsigned index))616 si_get_shader_pm4_state(struct si_shader *shader,
617                         void (*emit_func)(struct si_context *ctx, unsigned index))
618 {
619    si_pm4_clear_state(&shader->pm4, shader->selector->screen, false);
620    shader->pm4.atom.emit = emit_func;
621    return &shader->pm4;
622 }
623 
si_get_num_vs_user_sgprs(struct si_shader * shader,unsigned num_always_on_user_sgprs)624 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
625                                          unsigned num_always_on_user_sgprs)
626 {
627    struct si_shader_selector *vs =
628       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
629    unsigned num_vbos_in_user_sgprs = vs->info.num_vbos_in_user_sgprs;
630 
631    /* 1 SGPR is reserved for the vertex buffer pointer. */
632    assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
633 
634    if (num_vbos_in_user_sgprs)
635       return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
636 
637    /* Add the pointer to VBO descriptors. */
638    return num_always_on_user_sgprs + 1;
639 }
640 
641 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
si_get_vs_vgpr_comp_cnt(struct si_screen * sscreen,struct si_shader * shader,bool legacy_vs_prim_id)642 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
643                                         bool legacy_vs_prim_id)
644 {
645    assert(shader->selector->stage == MESA_SHADER_VERTEX ||
646           (shader->previous_stage_sel && shader->previous_stage_sel->stage == MESA_SHADER_VERTEX));
647 
648    /* GFX6-9   LS    (VertexID, RelAutoIndex,           InstanceID / StepRate0, InstanceID)
649     * GFX6-9   ES,VS (VertexID, InstanceID / StepRate0, VSPrimID,               InstanceID)
650     * GFX10-11 LS    (VertexID, RelAutoIndex,           UserVGPR1,              UserVGPR2 or InstanceID)
651     * GFX10-11 ES,VS (VertexID, UserVGPR1,              UserVGPR2 or VSPrimID,  UserVGPR3 or InstanceID)
652     * GFX12    LS,ES (VertexID, InstanceID)
653     */
654    bool is_ls = shader->selector->stage == MESA_SHADER_TESS_CTRL || shader->key.ge.as_ls;
655    unsigned max = 0;
656 
657    if (shader->info.uses_instanceid) {
658       if (sscreen->info.gfx_level >= GFX12)
659          max = MAX2(max, 1);
660       else if (sscreen->info.gfx_level >= GFX10)
661          max = MAX2(max, 3);
662       else if (is_ls)
663          max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
664       else
665          max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
666    }
667 
668    if (legacy_vs_prim_id)
669       max = MAX2(max, 2); /* VSPrimID */
670 
671    /* GFX11: We prefer to compute RelAutoIndex using (WaveID * WaveSize + ThreadID).
672     * Older chips didn't have WaveID in LS.
673     * GFX12 doesn't have RelAutoIndex.
674     */
675    if (is_ls && sscreen->info.gfx_level <= GFX10_3)
676       max = MAX2(max, 1); /* RelAutoIndex */
677 
678    return max;
679 }
680 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)681 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
682 {
683    struct si_pm4_state *pm4;
684    uint64_t va;
685 
686    assert(sscreen->info.gfx_level <= GFX8);
687 
688    pm4 = si_get_shader_pm4_state(shader, NULL);
689    if (!pm4)
690       return;
691 
692    va = shader->bo->gpu_address;
693    ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
694 
695    shader->config.rsrc1 = S_00B528_VGPRS(si_shader_encode_vgprs(shader)) |
696                           S_00B528_SGPRS(si_shader_encode_sgprs(shader)) |
697                           S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
698                           S_00B528_DX10_CLAMP(1) |
699                           S_00B528_FLOAT_MODE(shader->config.float_mode);
700    shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
701                           S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
702    ac_pm4_finalize(&pm4->base);
703 }
704 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)705 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
706 {
707    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
708    if (!pm4)
709       return;
710 
711    uint64_t va = shader->bo->gpu_address;
712    unsigned num_user_sgprs = sscreen->info.gfx_level >= GFX9 ?
713                                 si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR) :
714                                 GFX6_TCS_NUM_USER_SGPR;
715 
716    if (sscreen->info.gfx_level >= GFX12) {
717       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_RSRC4_HS,
718                      S_00B420_WAVE_LIMIT(0x3ff) |
719                      S_00B420_GLG_FORCE_DISABLE(1) |
720                      S_00B420_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
721 
722       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_LO_LS, va >> 8);
723    } else if (sscreen->info.gfx_level >= GFX11) {
724       ac_pm4_set_reg_idx3(&pm4->base, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
725                           ac_apply_cu_en(S_00B404_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)) |
726                                          S_00B404_CU_EN(0xffff),
727                                          C_00B404_CU_EN, 16, &sscreen->info));
728 
729       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
730    } else if (sscreen->info.gfx_level >= GFX10) {
731       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
732    } else if (sscreen->info.gfx_level >= GFX9) {
733       ac_pm4_set_reg(&pm4->base, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
734    } else {
735       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
736       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_HI_HS,
737                      S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8));
738    }
739 
740    ac_pm4_set_reg(&pm4->base, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
741                   S_00B428_VGPRS(si_shader_encode_vgprs(shader)) |
742                   S_00B428_SGPRS(si_shader_encode_sgprs(shader)) |
743                   S_00B428_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
744                   S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) |
745                   S_00B428_FLOAT_MODE(shader->config.float_mode) |
746                   S_00B428_LS_VGPR_COMP_CNT(sscreen->info.gfx_level >= GFX9 ?
747                                             si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0));
748 
749    shader->config.rsrc2 = S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
750                           S_00B42C_USER_SGPR(num_user_sgprs);
751 
752    if (sscreen->info.gfx_level >= GFX10)
753       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
754    else if (sscreen->info.gfx_level >= GFX9)
755       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
756    else
757       shader->config.rsrc2 |= S_00B42C_OC_LDS_EN(1);
758 
759    if (sscreen->info.gfx_level <= GFX8)
760       ac_pm4_set_reg(&pm4->base, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
761 
762    ac_pm4_finalize(&pm4->base);
763 }
764 
si_emit_shader_es(struct si_context * sctx,unsigned index)765 static void si_emit_shader_es(struct si_context *sctx, unsigned index)
766 {
767    struct si_shader *shader = sctx->queued.named.es;
768 
769    radeon_begin(&sctx->gfx_cs);
770    radeon_opt_set_context_reg(R_028AAC_VGT_ESGS_RING_ITEMSIZE,
771                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
772                               shader->selector->info.esgs_vertex_stride / 4);
773 
774    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
775       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
776                                  shader->vgt_tf_param);
777 
778    if (shader->vgt_vertex_reuse_block_cntl)
779       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
780                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
781                                  shader->vgt_vertex_reuse_block_cntl);
782    radeon_end_update_context_roll();
783 }
784 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)785 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
786 {
787    struct si_pm4_state *pm4;
788    unsigned num_user_sgprs;
789    unsigned vgpr_comp_cnt;
790    uint64_t va;
791    unsigned oc_lds_en;
792 
793    assert(sscreen->info.gfx_level <= GFX8);
794 
795    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_es);
796    if (!pm4)
797       return;
798 
799    va = shader->bo->gpu_address;
800 
801    if (shader->selector->stage == MESA_SHADER_VERTEX) {
802       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
803       num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
804    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
805       vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
806       num_user_sgprs = SI_TES_NUM_USER_SGPR;
807    } else
808       unreachable("invalid shader selector type");
809 
810    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
811 
812    ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
813    ac_pm4_set_reg(&pm4->base, R_00B324_SPI_SHADER_PGM_HI_ES,
814                   S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8));
815    ac_pm4_set_reg(&pm4->base, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
816                   S_00B328_VGPRS(si_shader_encode_vgprs(shader)) |
817                   S_00B328_SGPRS(si_shader_encode_sgprs(shader)) |
818                   S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
819                   S_00B328_DX10_CLAMP(1) |
820                   S_00B328_FLOAT_MODE(shader->config.float_mode));
821    ac_pm4_set_reg(&pm4->base, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
822                   S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
823                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
824 
825    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
826       si_set_tesseval_regs(sscreen, shader->selector, shader);
827 
828    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
829    ac_pm4_finalize(&pm4->base);
830 }
831 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)832 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
833                       struct gfx9_gs_info *out)
834 {
835    unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
836    unsigned input_prim = gs->info.base.gs.input_primitive;
837    bool uses_adjacency =
838       input_prim >= MESA_PRIM_LINES_ADJACENCY && input_prim <= MESA_PRIM_TRIANGLE_STRIP_ADJACENCY;
839 
840    /* All these are in dwords: */
841    /* We can't allow using the whole LDS, because GS waves compete with
842     * other shader stages for LDS space. */
843    const unsigned max_lds_size = 8 * 1024;
844    const unsigned esgs_itemsize = es->info.esgs_vertex_stride / 4;
845    unsigned esgs_lds_size;
846 
847    /* All these are per subgroup: */
848    const unsigned max_out_prims = 32 * 1024;
849    const unsigned max_es_verts = 255;
850    const unsigned ideal_gs_prims = 64;
851    unsigned max_gs_prims, gs_prims;
852    unsigned min_es_verts, es_verts, worst_case_es_verts;
853 
854    if (uses_adjacency || gs_num_invocations > 1)
855       max_gs_prims = 127 / gs_num_invocations;
856    else
857       max_gs_prims = 255;
858 
859    /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
860     * Make sure we don't go over the maximum value.
861     */
862    if (gs->info.base.gs.vertices_out > 0) {
863       max_gs_prims =
864          MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
865    }
866    assert(max_gs_prims > 0);
867 
868    /* If the primitive has adjacency, halve the number of vertices
869     * that will be reused in multiple primitives.
870     */
871    min_es_verts = gs->info.gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
872 
873    gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
874    worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
875 
876    /* Compute ESGS LDS size based on the worst case number of ES vertices
877     * needed to create the target number of GS prims per subgroup.
878     */
879    esgs_lds_size = esgs_itemsize * worst_case_es_verts;
880 
881    /* If total LDS usage is too big, refactor partitions based on ratio
882     * of ESGS item sizes.
883     */
884    if (esgs_lds_size > max_lds_size) {
885       /* Our target GS Prims Per Subgroup was too large. Calculate
886        * the maximum number of GS Prims Per Subgroup that will fit
887        * into LDS, capped by the maximum that the hardware can support.
888        */
889       gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
890       assert(gs_prims > 0);
891       worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
892 
893       esgs_lds_size = esgs_itemsize * worst_case_es_verts;
894       assert(esgs_lds_size <= max_lds_size);
895    }
896 
897    /* Now calculate remaining ESGS information. */
898    if (esgs_lds_size)
899       es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
900    else
901       es_verts = max_es_verts;
902 
903    /* Vertices for adjacency primitives are not always reused, so restore
904     * it for ES_VERTS_PER_SUBGRP.
905     */
906    min_es_verts = gs->info.gs_input_verts_per_prim;
907 
908    /* For normal primitives, the VGT only checks if they are past the ES
909     * verts per subgroup after allocating a full GS primitive and if they
910     * are, kick off a new subgroup.  But if those additional ES verts are
911     * unique (e.g. not reused) we need to make sure there is enough LDS
912     * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
913     */
914    es_verts -= min_es_verts - 1;
915 
916    out->es_verts_per_subgroup = es_verts;
917    out->gs_prims_per_subgroup = gs_prims;
918    out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
919    out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
920    out->esgs_ring_size = esgs_lds_size;
921 
922    assert(out->max_prims_per_subgroup <= max_out_prims);
923 }
924 
gfx9_set_gs_sgpr_num_es_outputs(struct si_context * sctx,unsigned esgs_vertex_stride)925 static void gfx9_set_gs_sgpr_num_es_outputs(struct si_context *sctx, unsigned esgs_vertex_stride)
926 {
927    /* The stride must always be odd (e.g. a multiple of 4 + 1) to reduce LDS bank conflicts. */
928    assert(esgs_vertex_stride % 4 == 1);
929    unsigned num_es_outputs = (esgs_vertex_stride - 1) / 4;
930 
931    /* If there are no ES outputs, GS doesn't use this SGPR field, so only set it if the number
932     * is non-zero.
933     */
934    if (num_es_outputs)
935       SET_FIELD(sctx->current_gs_state, GS_STATE_NUM_ES_OUTPUTS, num_es_outputs);
936 }
937 
si_emit_shader_gs(struct si_context * sctx,unsigned index)938 static void si_emit_shader_gs(struct si_context *sctx, unsigned index)
939 {
940    struct si_shader *shader = sctx->queued.named.gs;
941 
942    if (sctx->gfx_level >= GFX9)
943       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4);
944 
945    radeon_begin(&sctx->gfx_cs);
946 
947    /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
948     * R_028A68_VGT_GSVS_RING_OFFSET_3 */
949    radeon_opt_set_context_reg3(
950       R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
951       shader->gs.vgt_gsvs_ring_offset_1, shader->gs.vgt_gsvs_ring_offset_2,
952       shader->gs.vgt_gsvs_ring_offset_3);
953 
954    /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
955    radeon_opt_set_context_reg(R_028AB0_VGT_GSVS_RING_ITEMSIZE,
956                               SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
957                               shader->gs.vgt_gsvs_ring_itemsize);
958 
959    /* R_028B38_VGT_GS_MAX_VERT_OUT */
960    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
961                               shader->gs.vgt_gs_max_vert_out);
962 
963    /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
964     * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
965    radeon_opt_set_context_reg4(
966       R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
967       shader->gs.vgt_gs_vert_itemsize, shader->gs.vgt_gs_vert_itemsize_1,
968       shader->gs.vgt_gs_vert_itemsize_2, shader->gs.vgt_gs_vert_itemsize_3);
969 
970    /* R_028B90_VGT_GS_INSTANCE_CNT */
971    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
972                               shader->gs.vgt_gs_instance_cnt);
973 
974    if (sctx->gfx_level >= GFX9) {
975       /* R_028A44_VGT_GS_ONCHIP_CNTL */
976       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
977                                  shader->gs.vgt_gs_onchip_cntl);
978       /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
979       if (sctx->gfx_level == GFX9) {
980          radeon_opt_set_context_reg(R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
981                                     SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
982                                     shader->gs.vgt_gs_max_prims_per_subgroup);
983       }
984 
985       if (shader->key.ge.part.gs.es->stage == MESA_SHADER_TESS_EVAL)
986          radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
987                                     shader->vgt_tf_param);
988       if (shader->vgt_vertex_reuse_block_cntl)
989          radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
990                                     SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
991                                     shader->vgt_vertex_reuse_block_cntl);
992    }
993    radeon_end_update_context_roll();
994 
995    /* These don't cause any context rolls. */
996    radeon_begin_again(&sctx->gfx_cs);
997    if (sctx->gfx_level >= GFX7) {
998       if (sctx->screen->info.uses_kernel_cu_mask) {
999          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1000                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1001                                    3, shader->gs.spi_shader_pgm_rsrc3_gs);
1002       } else {
1003          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1004                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1005                                shader->gs.spi_shader_pgm_rsrc3_gs);
1006       }
1007    }
1008    if (sctx->gfx_level >= GFX10) {
1009       if (sctx->screen->info.uses_kernel_cu_mask) {
1010          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1011                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1012                                    3, shader->gs.spi_shader_pgm_rsrc4_gs);
1013       } else {
1014          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1015                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1016                                shader->gs.spi_shader_pgm_rsrc4_gs);
1017       }
1018    }
1019    radeon_end();
1020 }
1021 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)1022 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
1023 {
1024    struct si_shader_selector *sel = shader->selector;
1025    const uint8_t *num_components = sel->info.num_stream_output_components;
1026    unsigned gs_num_invocations = sel->info.base.gs.invocations;
1027    struct si_pm4_state *pm4;
1028    uint64_t va;
1029    unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
1030    unsigned offset;
1031 
1032    assert(sscreen->info.gfx_level < GFX11); /* gfx11 doesn't have the legacy pipeline */
1033 
1034    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_gs);
1035    if (!pm4)
1036       return;
1037 
1038    offset = num_components[0] * sel->info.base.gs.vertices_out;
1039    shader->gs.vgt_gsvs_ring_offset_1 = offset;
1040 
1041    if (max_stream >= 2)
1042       offset += num_components[1] * sel->info.base.gs.vertices_out;
1043    shader->gs.vgt_gsvs_ring_offset_2 = offset;
1044 
1045    if (max_stream >= 3)
1046       offset += num_components[2] * sel->info.base.gs.vertices_out;
1047    shader->gs.vgt_gsvs_ring_offset_3 = offset;
1048 
1049    if (max_stream >= 4)
1050       offset += num_components[3] * sel->info.base.gs.vertices_out;
1051    shader->gs.vgt_gsvs_ring_itemsize = offset;
1052 
1053    /* The GSVS_RING_ITEMSIZE register takes 15 bits */
1054    assert(offset < (1 << 15));
1055 
1056    shader->gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
1057 
1058    shader->gs.vgt_gs_vert_itemsize = num_components[0];
1059    shader->gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
1060    shader->gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
1061    shader->gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
1062 
1063    shader->gs.vgt_gs_instance_cnt =
1064       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1065 
1066    /* Copy over fields from the GS copy shader to make them easily accessible from GS. */
1067    shader->pa_cl_vs_out_cntl = shader->gs_copy_shader->pa_cl_vs_out_cntl;
1068 
1069    va = shader->bo->gpu_address;
1070 
1071    if (sscreen->info.gfx_level >= GFX9) {
1072       unsigned input_prim = sel->info.base.gs.input_primitive;
1073       gl_shader_stage es_stage = shader->key.ge.part.gs.es->stage;
1074       unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1075 
1076       if (es_stage == MESA_SHADER_VERTEX) {
1077          es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1078       } else if (es_stage == MESA_SHADER_TESS_EVAL)
1079          es_vgpr_comp_cnt = shader->key.ge.part.gs.es->info.uses_primid ? 3 : 2;
1080       else
1081          unreachable("invalid shader selector type");
1082 
1083       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1084        * VGPR[0:4] are always loaded.
1085        */
1086       if (sel->info.uses_invocationid)
1087          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1088       else if (sel->info.uses_primid)
1089          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1090       else if (input_prim >= MESA_PRIM_TRIANGLES)
1091          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1092       else
1093          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1094 
1095       unsigned num_user_sgprs;
1096       if (es_stage == MESA_SHADER_VERTEX)
1097          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1098       else
1099          num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1100 
1101       if (sscreen->info.gfx_level >= GFX10) {
1102          ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1103       } else {
1104          ac_pm4_set_reg(&pm4->base, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
1105       }
1106 
1107       uint32_t rsrc1 = S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1108                        S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1109                        S_00B228_DX10_CLAMP(1) |
1110                        S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1111                        S_00B228_FLOAT_MODE(shader->config.float_mode) |
1112                        S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
1113       uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
1114                        S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1115                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1116                        S_00B22C_LDS_SIZE(shader->config.lds_size) |
1117                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1118 
1119       if (sscreen->info.gfx_level >= GFX10) {
1120          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1121       } else {
1122          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1123       }
1124 
1125       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
1126       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
1127 
1128       shader->gs.spi_shader_pgm_rsrc3_gs =
1129          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1130                         S_00B21C_WAVE_LIMIT(0x3F),
1131                         C_00B21C_CU_EN, 0, &sscreen->info);
1132       shader->gs.spi_shader_pgm_rsrc4_gs =
1133          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) |
1134                         S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
1135                         C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1136 
1137       shader->gs.vgt_gs_onchip_cntl =
1138          S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
1139          S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
1140          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
1141       shader->gs.vgt_gs_max_prims_per_subgroup =
1142          S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
1143       shader->gs.vgt_esgs_ring_itemsize = shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4;
1144 
1145       if (es_stage == MESA_SHADER_TESS_EVAL)
1146          si_set_tesseval_regs(sscreen, shader->key.ge.part.gs.es, shader);
1147 
1148       polaris_set_vgt_vertex_reuse(sscreen, shader->key.ge.part.gs.es, shader);
1149    } else {
1150       shader->gs.spi_shader_pgm_rsrc3_gs =
1151          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1152                         S_00B21C_WAVE_LIMIT(0x3F),
1153                         C_00B21C_CU_EN, 0, &sscreen->info);
1154 
1155       ac_pm4_set_reg(&pm4->base, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
1156       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_HI_GS,
1157                      S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8));
1158 
1159       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1160                      S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1161                      S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1162                      S_00B228_DX10_CLAMP(1) |
1163                      S_00B228_FLOAT_MODE(shader->config.float_mode));
1164       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1165                      S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
1166                      S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1167    }
1168    ac_pm4_finalize(&pm4->base);
1169 }
1170 
gfx10_is_ngg_passthrough(struct si_shader * shader)1171 bool gfx10_is_ngg_passthrough(struct si_shader *shader)
1172 {
1173    struct si_shader_selector *sel = shader->selector;
1174 
1175    /* Never use NGG passthrough if culling is possible even when it's not used by this shader,
1176     * so that we don't get context rolls when enabling and disabling NGG passthrough.
1177     */
1178    if (sel->screen->use_ngg_culling)
1179       return false;
1180 
1181    /* The definition of NGG passthrough is:
1182     * - user GS is turned off (no amplification, no GS instancing, and no culling)
1183     * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1)
1184     * - vertex indices are packed into 1 VGPR
1185     * - Navi23 and later chips can optionally skip the gs_alloc_req message
1186     *
1187     * NGG passthrough still allows the use of LDS.
1188     */
1189    return sel->stage != MESA_SHADER_GEOMETRY && !shader->key.ge.opt.ngg_culling;
1190 }
1191 
1192 template <enum si_has_tess HAS_TESS>
gfx10_emit_shader_ngg(struct si_context * sctx,unsigned index)1193 static void gfx10_emit_shader_ngg(struct si_context *sctx, unsigned index)
1194 {
1195    struct si_shader *shader = sctx->queued.named.gs;
1196 
1197    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1198       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1199 
1200    radeon_begin(&sctx->gfx_cs);
1201    if (HAS_TESS) {
1202       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1203                                  shader->vgt_tf_param);
1204    }
1205    radeon_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1206                               SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1207                               shader->ngg.ge_max_output_per_subgroup);
1208    radeon_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1209                               shader->ngg.ge_ngg_subgrp_cntl);
1210    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1211                               shader->ngg.vgt_primitiveid_en);
1212    if (sctx->gfx_level < GFX11) {
1213       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1214                                  shader->ngg.vgt_gs_onchip_cntl);
1215    }
1216    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1217                               shader->ngg.vgt_gs_max_vert_out);
1218    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1219                               shader->ngg.vgt_gs_instance_cnt);
1220    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1221                               shader->ngg.spi_vs_out_config);
1222    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1223                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1224                               shader->ngg.spi_shader_pos_format);
1225    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1226                               shader->ngg.pa_cl_vte_cntl);
1227    radeon_end_update_context_roll();
1228 
1229    /* These don't cause a context roll. */
1230    radeon_begin_again(&sctx->gfx_cs);
1231    if (sctx->screen->info.uses_kernel_cu_mask) {
1232       radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1233                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1234                                 3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1235       radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1236                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1237                                 3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1238    } else {
1239       radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1240                             SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1241                             shader->ngg.spi_shader_pgm_rsrc3_gs);
1242       radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1243                             SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1244                             shader->ngg.spi_shader_pgm_rsrc4_gs);
1245    }
1246    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1247                               shader->ngg.ge_pc_alloc);
1248    radeon_end();
1249 }
1250 
1251 template <enum si_has_tess HAS_TESS>
gfx11_dgpu_emit_shader_ngg(struct si_context * sctx,unsigned index)1252 static void gfx11_dgpu_emit_shader_ngg(struct si_context *sctx, unsigned index)
1253 {
1254    struct si_shader *shader = sctx->queued.named.gs;
1255 
1256    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1257       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1258 
1259    radeon_begin(&sctx->gfx_cs);
1260    gfx11_begin_packed_context_regs();
1261    if (HAS_TESS) {
1262       gfx11_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1263                                 shader->vgt_tf_param);
1264    }
1265    gfx11_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1266                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1267                              shader->ngg.ge_max_output_per_subgroup);
1268    gfx11_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1269                              shader->ngg.ge_ngg_subgrp_cntl);
1270    gfx11_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1271                              shader->ngg.vgt_primitiveid_en);
1272    gfx11_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1273                              shader->ngg.vgt_gs_max_vert_out);
1274    gfx11_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1275                              shader->ngg.vgt_gs_instance_cnt);
1276    gfx11_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1277                              shader->ngg.spi_vs_out_config);
1278    gfx11_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1279                              shader->ngg.spi_shader_pos_format);
1280    gfx11_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1281                              shader->ngg.pa_cl_vte_cntl);
1282    gfx11_end_packed_context_regs();
1283 
1284    assert(!sctx->screen->info.uses_kernel_cu_mask);
1285    if (sctx->screen->info.has_set_sh_pairs_packed) {
1286       gfx11_opt_push_gfx_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1287                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1288                                 shader->gs.spi_shader_pgm_rsrc3_gs);
1289       gfx11_opt_push_gfx_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1290                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1291                                 shader->gs.spi_shader_pgm_rsrc4_gs);
1292    } else {
1293       if (sctx->screen->info.uses_kernel_cu_mask) {
1294          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1295                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1296                                    3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1297          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1298                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1299                                    3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1300       } else {
1301          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1302                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1303                                shader->ngg.spi_shader_pgm_rsrc3_gs);
1304          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1305                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1306                                shader->ngg.spi_shader_pgm_rsrc4_gs);
1307       }
1308    }
1309 
1310    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1311                               shader->ngg.ge_pc_alloc);
1312    radeon_end();
1313 }
1314 
1315 template <enum si_has_tess HAS_TESS>
gfx12_emit_shader_ngg(struct si_context * sctx,unsigned index)1316 static void gfx12_emit_shader_ngg(struct si_context *sctx, unsigned index)
1317 {
1318    struct si_shader *shader = sctx->queued.named.gs;
1319 
1320    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1321       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1322 
1323    radeon_begin(&sctx->gfx_cs);
1324    gfx12_begin_context_regs();
1325    if (HAS_TESS) {
1326       gfx12_opt_set_context_reg(R_028AA4_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1327                                 shader->vgt_tf_param);
1328    }
1329    gfx12_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1330                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1331                              shader->ngg.ge_max_output_per_subgroup);
1332    gfx12_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1333                              shader->ngg.ge_ngg_subgrp_cntl);
1334    gfx12_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1335                              shader->ngg.vgt_gs_max_vert_out);
1336    gfx12_opt_set_context_reg(R_028B3C_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1337                              shader->ngg.vgt_gs_instance_cnt);
1338    gfx12_opt_set_context_reg(R_02864C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1339                              shader->ngg.spi_shader_pos_format);
1340    gfx12_opt_set_context_reg(R_028814_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1341                              shader->ngg.pa_cl_vte_cntl);
1342    gfx12_end_context_regs();
1343 
1344    radeon_opt_set_uconfig_reg(R_030988_VGT_PRIMITIVEID_EN,
1345                               SI_TRACKED_VGT_PRIMITIVEID_EN_UCONFIG,
1346                               shader->ngg.vgt_primitiveid_en);
1347    radeon_end(); /* don't track context rolls on GFX12 */
1348 
1349    assert(!sctx->screen->info.uses_kernel_cu_mask);
1350    gfx12_opt_push_gfx_sh_reg(R_00B220_SPI_SHADER_PGM_RSRC4_GS,
1351                              SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1352                              shader->ngg.spi_shader_pgm_rsrc4_gs);
1353 }
1354 
si_get_input_prim(const struct si_shader_selector * gs,const union si_shader_key * key)1355 unsigned si_get_input_prim(const struct si_shader_selector *gs, const union si_shader_key *key)
1356 {
1357    if (gs->stage == MESA_SHADER_GEOMETRY)
1358       return gs->info.base.gs.input_primitive;
1359 
1360    if (gs->stage == MESA_SHADER_TESS_EVAL) {
1361       if (gs->info.base.tess.point_mode)
1362          return MESA_PRIM_POINTS;
1363       if (gs->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
1364          return MESA_PRIM_LINES;
1365       return MESA_PRIM_TRIANGLES;
1366    }
1367 
1368    if (key->ge.opt.ngg_culling & SI_NGG_CULL_LINES)
1369       return MESA_PRIM_LINES;
1370 
1371    return MESA_PRIM_TRIANGLES; /* worst case for all callers */
1372 }
1373 
si_get_vs_out_cntl(const struct si_shader_selector * sel,const struct si_shader * shader,bool ngg)1374 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel,
1375                                    const struct si_shader *shader, bool ngg)
1376 {
1377    /* Clip distances can be killed, but cull distances can't. */
1378    unsigned clipcull_mask = (sel->info.clipdist_mask & ~shader->key.ge.opt.kill_clip_distances) |
1379                             sel->info.culldist_mask;
1380    bool writes_psize = sel->info.writes_psize && !shader->key.ge.opt.kill_pointsize;
1381    bool writes_layer = sel->info.writes_layer && !shader->key.ge.opt.kill_layer;
1382    bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1383                        writes_layer || sel->info.writes_viewport_index ||
1384                        sel->screen->options.vrs2x2;
1385 
1386    return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) |
1387           S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) |
1388           S_02881C_USE_VTX_POINT_SIZE(writes_psize) |
1389           S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1390           S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) |
1391           S_02881C_USE_VTX_RENDER_TARGET_INDX(writes_layer) |
1392           S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1393           S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1394           S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1395                                             (sel->screen->info.gfx_level >= GFX10_3 &&
1396                                              shader->info.nr_pos_exports > 1));
1397 }
1398 
1399 /* Return the number of allocated param exports. This can be more than the number of param
1400  * exports in the shader.
1401  */
si_shader_num_alloc_param_exports(struct si_shader * shader)1402 unsigned si_shader_num_alloc_param_exports(struct si_shader *shader)
1403 {
1404    unsigned num_params = shader->info.nr_param_exports;
1405 
1406    /* Since there is no alloc/dealloc mechanism for the 12-bit ordered IDs on GFX12, they can wrap
1407     * around if there are more than 2^12 workgroups, causing 2 workgroups to get the same
1408     * ordered ID, which can deadlock the "ordered add" loop.
1409     *
1410     * The recommended solution is to use the alloc/dealloc mechanism of the attribute ring to limit
1411     * the number of workgroups in flight and thus the number of ordered IDs in flight.
1412     */
1413    if (shader->selector->screen->info.gfx_level >= GFX12 && si_shader_uses_streamout(shader))
1414       num_params = MAX2(num_params, 8);
1415 
1416    return num_params;
1417 }
1418 
1419 /**
1420  * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1421  * in NGG mode.
1422  */
gfx10_shader_ngg(struct si_screen * sscreen,struct si_shader * shader)1423 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1424 {
1425    const struct si_shader_selector *gs_sel = shader->selector;
1426    const struct si_shader_info *gs_info = &gs_sel->info;
1427    const gl_shader_stage gs_stage = shader->selector->stage;
1428    const struct si_shader_selector *es_sel =
1429       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1430    const struct si_shader_info *es_info = &es_sel->info;
1431    const gl_shader_stage es_stage = es_sel->stage;
1432    unsigned num_user_sgprs;
1433    unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1434    uint64_t va;
1435    bool window_space = gs_sel->stage == MESA_SHADER_VERTEX ?
1436                           gs_info->base.vs.window_space_position : 0;
1437    bool es_enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || es_info->uses_primid;
1438    unsigned gs_num_invocations = gs_sel->stage == MESA_SHADER_GEOMETRY ?
1439                                     CLAMP(gs_info->base.gs.invocations, 1, 32) : 0;
1440    unsigned input_prim = si_get_input_prim(gs_sel, &shader->key);
1441    bool break_wave_at_eoi = false;
1442 
1443    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
1444    if (!pm4)
1445       return;
1446 
1447    if (sscreen->info.gfx_level >= GFX12) {
1448       if (es_stage == MESA_SHADER_TESS_EVAL)
1449          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_ON>;
1450       else
1451          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_OFF>;
1452    } else if (sscreen->info.has_set_context_pairs_packed) {
1453       if (es_stage == MESA_SHADER_TESS_EVAL)
1454          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_ON>;
1455       else
1456          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_OFF>;
1457    } else {
1458       if (es_stage == MESA_SHADER_TESS_EVAL)
1459          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_ON>;
1460       else
1461          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_OFF>;
1462    }
1463 
1464    va = shader->bo->gpu_address;
1465 
1466    if (es_stage == MESA_SHADER_VERTEX) {
1467       es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1468 
1469       if (es_info->base.vs.blit_sgprs_amd) {
1470          num_user_sgprs =
1471             SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1472       } else {
1473          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1474       }
1475    } else {
1476       assert(es_stage == MESA_SHADER_TESS_EVAL);
1477       es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1478       num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1479 
1480       if (es_enable_prim_id || gs_info->uses_primid)
1481          break_wave_at_eoi = true;
1482    }
1483 
1484    /* Primitives with adjancency can only occur without tessellation. */
1485    assert(gs_info->gs_input_verts_per_prim <= 3 || es_stage == MESA_SHADER_VERTEX);
1486 
1487    if (sscreen->info.gfx_level >= GFX12) {
1488       if (gs_info->gs_input_verts_per_prim >= 4)
1489          gs_vgpr_comp_cnt = 2; /* VGPR2 contains offsets 3-5 */
1490       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1491                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1492          gs_vgpr_comp_cnt = 1; /* VGPR1 contains PrimitiveID */
1493       else
1494          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0-2, edgeflags, GS invocation ID. */
1495    } else {
1496       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1497        * VGPR[0:4] are always loaded.
1498        *
1499        * Vertex shaders always need to load VGPR3, because they need to
1500        * pass edge flags for decomposed primitives (such as quads) to the PA
1501        * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1502        */
1503       if (gs_info->uses_invocationid ||
1504           (gfx10_edgeflags_have_effect(shader) && !gfx10_is_ngg_passthrough(shader)))
1505          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1506       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1507                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1508          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1509       else if (input_prim >= MESA_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1510          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1511       else
1512          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1513    }
1514 
1515    if (sscreen->info.gfx_level >= GFX12) {
1516       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_LO_ES, va >> 8);
1517    } else {
1518       ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1519    }
1520 
1521    ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1522                   S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1523                   S_00B228_FLOAT_MODE(shader->config.float_mode) |
1524                   S_00B228_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
1525                   S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1526                   S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1527    ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1528                   S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1529                   S_00B22C_USER_SGPR(num_user_sgprs) |
1530                   S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1531                   S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1532                   S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1533                   S_00B22C_LDS_SIZE(shader->config.lds_size));
1534 
1535    /* Set register values emitted conditionally in gfx10_emit_shader_ngg_*. */
1536    shader->ngg.spi_shader_pos_format =
1537       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1538       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1539                                                                   : V_02870C_SPI_SHADER_NONE) |
1540       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1541                                                                   : V_02870C_SPI_SHADER_NONE) |
1542       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1543                                                                   : V_02870C_SPI_SHADER_NONE);
1544    shader->ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1545    shader->ngg.vgt_gs_instance_cnt =
1546       S_028B90_ENABLE(gs_num_invocations > 1) |
1547       S_028B90_CNT(gs_num_invocations) |
1548       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1549    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true);
1550 
1551    if (gs_stage == MESA_SHADER_GEOMETRY) {
1552       shader->ngg.esgs_vertex_stride = es_sel->info.esgs_vertex_stride / 4;
1553       shader->ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1554       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(gs_sel->info.base.gs.vertices_out);
1555    } else {
1556       shader->ngg.esgs_vertex_stride = 1;
1557       shader->ngg.vgt_gs_max_vert_out = 1;
1558       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(1);
1559    }
1560 
1561    if (es_stage == MESA_SHADER_TESS_EVAL)
1562       si_set_tesseval_regs(sscreen, es_sel, shader);
1563 
1564    shader->ngg.vgt_primitiveid_en =
1565       S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.ge.mono.u.vs_export_prim_id ||
1566                                         gs_sel->info.writes_primid);
1567 
1568    if (sscreen->info.gfx_level >= GFX12) {
1569       unsigned num_params = si_shader_num_alloc_param_exports(shader);
1570 
1571       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B220_SPI_SHADER_LATE_ALLOC_GS(127) |
1572                                             S_00B220_GLG_FORCE_DISABLE(1) |
1573                                             S_00B220_WAVE_LIMIT(0x3ff) |
1574                                             S_00B220_INST_PREF_SIZE(si_get_shader_prefetch_size(shader));
1575       shader->ngg.spi_vs_out_config = S_00B0C4_VS_EXPORT_COUNT(MAX2(num_params, 1) - 1) |
1576                                       S_00B0C4_NO_PC_EXPORT(num_params == 0);
1577    } else {
1578       unsigned late_alloc_wave64, cu_mask;
1579 
1580       ac_compute_late_alloc(&sscreen->info, true, shader->key.ge.opt.ngg_culling,
1581                             shader->config.scratch_bytes_per_wave > 0,
1582                             &late_alloc_wave64, &cu_mask);
1583 
1584       /* Oversubscribe PC. This improves performance when there are too many varyings. */
1585       unsigned oversub_pc_lines, oversub_pc_factor = 1;
1586 
1587       if (shader->key.ge.opt.ngg_culling) {
1588          /* Be more aggressive with NGG culling. */
1589          if (shader->info.nr_param_exports > 4)
1590             oversub_pc_factor = 4;
1591          else if (shader->info.nr_param_exports > 2)
1592             oversub_pc_factor = 3;
1593          else
1594             oversub_pc_factor = 2;
1595       }
1596       oversub_pc_lines = late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0;
1597       shader->ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) |
1598                                 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1599       shader->ngg.vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(es_enable_prim_id);
1600       shader->ngg.spi_shader_pgm_rsrc3_gs =
1601          ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) |
1602                         S_00B21C_WAVE_LIMIT(0x3F),
1603                         C_00B21C_CU_EN, 0, &sscreen->info);
1604       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64);
1605       shader->ngg.spi_vs_out_config =
1606          S_0286C4_VS_EXPORT_COUNT(MAX2(shader->info.nr_param_exports, 1) - 1) |
1607          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1608 
1609       if (sscreen->info.gfx_level >= GFX11) {
1610          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1611             ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) |
1612                            S_00B204_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
1613                            C_00B204_CU_EN_GFX11, 16, &sscreen->info);
1614       } else {
1615          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1616             ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff),
1617                            C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1618       }
1619    }
1620 
1621    if (sscreen->info.gfx_level >= GFX11) {
1622       /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1623       unsigned max_prim_grp_size = sscreen->info.gfx_level >= GFX12 ? 256 : 252;
1624       unsigned prim_amp_factor = gs_stage == MESA_SHADER_GEOMETRY ?
1625                                     gs_sel->info.base.gs.vertices_out : 1;
1626 
1627       shader->ge_cntl = S_03096C_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1628                         S_03096C_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1629                         S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) |
1630                         S_03096C_PRIM_GRP_SIZE_GFX11(
1631                            CLAMP(max_prim_grp_size / MAX2(prim_amp_factor, 1), 1, 256));
1632    } else {
1633       shader->ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(shader->ngg.max_gsprims) |
1634                         S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts) |
1635                         S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1636 
1637       shader->ngg.vgt_gs_onchip_cntl =
1638          S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1639          S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1640          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1641 
1642       /* On gfx10, the GE only checks against the maximum number of ES verts after
1643        * allocating a full GS primitive. So we need to ensure that whenever
1644        * this check passes, there is enough space for a full primitive without
1645        * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256
1646        * if we have enough LDS.
1647        *
1648        * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0.
1649        */
1650       if ((sscreen->info.gfx_level == GFX10) &&
1651           (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1652           shader->ngg.hw_max_esverts != 256 &&
1653           shader->ngg.hw_max_esverts > 5) {
1654          /* This could be based on the input primitive type. 5 is the worst case
1655           * for primitive types with adjacency.
1656           */
1657          shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1658          shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1659       }
1660    }
1661 
1662    if (window_space) {
1663       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1664    } else {
1665       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) |
1666                                    S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1667                                    S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1668                                    S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1669    }
1670 
1671    if (sscreen->info.gfx_level >= GFX12) {
1672       shader->ngg.vgt_shader_stages_en =
1673          S_028A98_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1674          S_028A98_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader)) |
1675          S_028A98_GS_W32_EN(shader->wave_size == 32) |
1676          S_028A98_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader));
1677    } else {
1678       shader->ngg.vgt_shader_stages_en =
1679          S_028B54_ES_EN(es_stage == MESA_SHADER_TESS_EVAL ?
1680                            V_028B54_ES_STAGE_DS : V_028B54_ES_STAGE_REAL) |
1681          S_028B54_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1682          S_028B54_PRIMGEN_EN(1) |
1683          S_028B54_PRIMGEN_PASSTHRU_EN(gfx10_is_ngg_passthrough(shader)) |
1684          S_028B54_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader) &&
1685                                           sscreen->info.family >= CHIP_NAVI23) |
1686          S_028B54_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader)) |
1687          S_028B54_GS_W32_EN(shader->wave_size == 32) |
1688          S_028B54_MAX_PRIMGRP_IN_WAVE(2);
1689    }
1690 
1691    ac_pm4_finalize(&pm4->base);
1692 }
1693 
si_emit_shader_vs(struct si_context * sctx,unsigned index)1694 static void si_emit_shader_vs(struct si_context *sctx, unsigned index)
1695 {
1696    struct si_shader *shader = sctx->queued.named.vs;
1697 
1698    radeon_begin(&sctx->gfx_cs);
1699    radeon_opt_set_context_reg(R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1700                               shader->vs.vgt_gs_mode);
1701    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1702                               shader->vs.vgt_primitiveid_en);
1703 
1704    if (sctx->gfx_level <= GFX8) {
1705       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1706                                  shader->vs.vgt_reuse_off);
1707    }
1708 
1709    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1710                               shader->vs.spi_vs_out_config);
1711 
1712    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1713                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1714                               shader->vs.spi_shader_pos_format);
1715 
1716    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1717                               shader->vs.pa_cl_vte_cntl);
1718 
1719    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1720       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1721                                  shader->vgt_tf_param);
1722 
1723    if (shader->vgt_vertex_reuse_block_cntl)
1724       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1725                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1726                                  shader->vgt_vertex_reuse_block_cntl);
1727 
1728    /* Required programming for tessellation. (legacy pipeline only) */
1729    if (sctx->gfx_level >= GFX10 && shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1730       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL,
1731                                  SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1732                                  S_028A44_ES_VERTS_PER_SUBGRP(250) |
1733                                  S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1734                                  S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1735    }
1736 
1737    radeon_end_update_context_roll();
1738 
1739    /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1740    if (sctx->gfx_level >= GFX10) {
1741       radeon_begin_again(&sctx->gfx_cs);
1742       radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1743                                  shader->vs.ge_pc_alloc);
1744       radeon_end();
1745    }
1746 }
1747 
1748 /**
1749  * Compute the state for \p shader, which will run as a vertex shader on the
1750  * hardware.
1751  *
1752  * If \p gs is non-NULL, it points to the geometry shader for which this shader
1753  * is the copy shader.
1754  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)1755 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1756                          struct si_shader_selector *gs)
1757 {
1758    const struct si_shader_info *info = &shader->selector->info;
1759    struct si_pm4_state *pm4;
1760    unsigned num_user_sgprs, vgpr_comp_cnt;
1761    uint64_t va;
1762    unsigned nparams, oc_lds_en;
1763    bool window_space = shader->selector->stage == MESA_SHADER_VERTEX ?
1764                           info->base.vs.window_space_position : 0;
1765    bool enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || info->uses_primid;
1766 
1767    assert(sscreen->info.gfx_level < GFX11);
1768 
1769    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_vs);
1770    if (!pm4)
1771       return;
1772 
1773    /* We always write VGT_GS_MODE in the VS state, because every switch
1774     * between different shader pipelines involving a different GS or no
1775     * GS at all involves a switch of the VS (different GS use different
1776     * copy shaders). On the other hand, when the API switches from a GS to
1777     * no GS and then back to the same GS used originally, the GS state is
1778     * not sent again.
1779     */
1780    if (!gs) {
1781       unsigned mode = V_028A40_GS_OFF;
1782 
1783       /* PrimID needs GS scenario A. */
1784       if (enable_prim_id)
1785          mode = V_028A40_GS_SCENARIO_A;
1786 
1787       shader->vs.vgt_gs_mode = S_028A40_MODE(mode);
1788       shader->vs.vgt_primitiveid_en = enable_prim_id;
1789    } else {
1790       shader->vs.vgt_gs_mode =
1791          ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.gfx_level);
1792       shader->vs.vgt_primitiveid_en = 0;
1793    }
1794 
1795    if (sscreen->info.gfx_level <= GFX8) {
1796       /* Reuse needs to be set off if we write oViewport. */
1797       shader->vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1798    }
1799 
1800    va = shader->bo->gpu_address;
1801 
1802    if (gs) {
1803       vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1804       num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1805    } else if (shader->selector->stage == MESA_SHADER_VERTEX) {
1806       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1807 
1808       if (info->base.vs.blit_sgprs_amd) {
1809          num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1810       } else {
1811          num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1812       }
1813    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1814       vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1815       num_user_sgprs = SI_TES_NUM_USER_SGPR;
1816    } else
1817       unreachable("invalid shader selector type");
1818 
1819    /* VS is required to export at least one param. */
1820    nparams = MAX2(shader->info.nr_param_exports, 1);
1821    shader->vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1822 
1823    if (sscreen->info.gfx_level >= GFX10) {
1824       shader->vs.spi_vs_out_config |=
1825          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1826    }
1827 
1828    shader->vs.spi_shader_pos_format =
1829       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1830       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1831                                                                   : V_02870C_SPI_SHADER_NONE) |
1832       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1833                                                                   : V_02870C_SPI_SHADER_NONE) |
1834       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1835                                                                   : V_02870C_SPI_SHADER_NONE);
1836    unsigned late_alloc_wave64, cu_mask;
1837    ac_compute_late_alloc(&sscreen->info, false, false,
1838                          shader->config.scratch_bytes_per_wave > 0,
1839                          &late_alloc_wave64, &cu_mask);
1840 
1841    shader->vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) |
1842                             S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1843    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false);
1844 
1845    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1846 
1847    if (sscreen->info.gfx_level >= GFX7) {
1848       ac_pm4_set_reg_idx3(&pm4->base, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
1849                           ac_apply_cu_en(S_00B118_CU_EN(cu_mask) |
1850                                          S_00B118_WAVE_LIMIT(0x3F),
1851                                          C_00B118_CU_EN, 0, &sscreen->info));
1852       ac_pm4_set_reg(&pm4->base, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
1853    }
1854 
1855    ac_pm4_set_reg(&pm4->base, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1856    ac_pm4_set_reg(&pm4->base, R_00B124_SPI_SHADER_PGM_HI_VS,
1857                   S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8));
1858 
1859    uint32_t rsrc1 =
1860       S_00B128_VGPRS(si_shader_encode_vgprs(shader)) |
1861       S_00B128_SGPRS(si_shader_encode_sgprs(shader)) |
1862       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1863       S_00B128_DX10_CLAMP(1) |
1864       S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1865       S_00B128_FLOAT_MODE(shader->config.float_mode);
1866    uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1867                     S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1868 
1869    if (sscreen->info.gfx_level >= GFX10)
1870       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1871    else if (sscreen->info.gfx_level == GFX9)
1872       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1873 
1874    if (si_shader_uses_streamout(shader)) {
1875       rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->info.base.xfb_stride[0]) |
1876                S_00B12C_SO_BASE1_EN(!!shader->selector->info.base.xfb_stride[1]) |
1877                S_00B12C_SO_BASE2_EN(!!shader->selector->info.base.xfb_stride[2]) |
1878                S_00B12C_SO_BASE3_EN(!!shader->selector->info.base.xfb_stride[3]) |
1879                S_00B12C_SO_EN(1);
1880    }
1881 
1882    ac_pm4_set_reg(&pm4->base, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1883    ac_pm4_set_reg(&pm4->base, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1884 
1885    if (window_space)
1886       shader->vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1887    else
1888       shader->vs.pa_cl_vte_cntl =
1889          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1890          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1891          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1892 
1893    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1894       si_set_tesseval_regs(sscreen, shader->selector, shader);
1895 
1896    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
1897    ac_pm4_finalize(&pm4->base);
1898 }
1899 
si_get_spi_shader_col_format(struct si_shader * shader)1900 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1901 {
1902    unsigned spi_shader_col_format = shader->key.ps.part.epilog.spi_shader_col_format;
1903    unsigned value = 0, num_mrts = 0;
1904    unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1905 
1906    /* Remove holes in spi_shader_col_format. */
1907    for (i = 0; i < num_targets; i++) {
1908       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1909 
1910       if (spi_format) {
1911          value |= spi_format << (num_mrts * 4);
1912          num_mrts++;
1913       }
1914    }
1915 
1916    return value;
1917 }
1918 
gfx6_emit_shader_ps(struct si_context * sctx,unsigned index)1919 static void gfx6_emit_shader_ps(struct si_context *sctx, unsigned index)
1920 {
1921    struct si_shader *shader = sctx->queued.named.ps;
1922 
1923    radeon_begin(&sctx->gfx_cs);
1924    radeon_opt_set_context_reg2(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1925                                shader->ps.spi_ps_input_ena,
1926                                shader->ps.spi_ps_input_addr);
1927    radeon_opt_set_context_reg(R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1928                               shader->ps.spi_baryc_cntl);
1929    radeon_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1930                               shader->ps.spi_ps_in_control);
1931    radeon_opt_set_context_reg2(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1932                                shader->ps.spi_shader_z_format,
1933                                shader->ps.spi_shader_col_format);
1934    radeon_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1935                               shader->ps.cb_shader_mask);
1936    radeon_end_update_context_roll();
1937 }
1938 
gfx11_dgpu_emit_shader_ps(struct si_context * sctx,unsigned index)1939 static void gfx11_dgpu_emit_shader_ps(struct si_context *sctx, unsigned index)
1940 {
1941    struct si_shader *shader = sctx->queued.named.ps;
1942 
1943    radeon_begin(&sctx->gfx_cs);
1944    gfx11_begin_packed_context_regs();
1945    gfx11_opt_set_context_reg(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1946                              shader->ps.spi_ps_input_ena);
1947    gfx11_opt_set_context_reg(R_0286D0_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
1948                              shader->ps.spi_ps_input_addr);
1949    gfx11_opt_set_context_reg(R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1950                              shader->ps.spi_baryc_cntl);
1951    gfx11_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1952                              shader->ps.spi_ps_in_control);
1953    gfx11_opt_set_context_reg(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1954                              shader->ps.spi_shader_z_format);
1955    gfx11_opt_set_context_reg(R_028714_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
1956                              shader->ps.spi_shader_col_format);
1957    gfx11_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1958                              shader->ps.cb_shader_mask);
1959    gfx11_end_packed_context_regs();
1960    radeon_end(); /* don't track context rolls on GFX11 */
1961 }
1962 
gfx12_emit_shader_ps(struct si_context * sctx,unsigned index)1963 static void gfx12_emit_shader_ps(struct si_context *sctx, unsigned index)
1964 {
1965    struct si_shader *shader = sctx->queued.named.ps;
1966 
1967    radeon_begin(&sctx->gfx_cs);
1968    gfx12_begin_context_regs();
1969    gfx12_opt_set_context_reg(R_028640_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1970                              shader->ps.spi_ps_in_control);
1971    gfx12_opt_set_context_reg(R_028650_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1972                              shader->ps.spi_shader_z_format);
1973    gfx12_opt_set_context_reg(R_028654_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
1974                              shader->ps.spi_shader_col_format);
1975    gfx12_opt_set_context_reg(R_028658_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1976                              shader->ps.spi_baryc_cntl);
1977    gfx12_opt_set_context_reg(R_02865C_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1978                              shader->ps.spi_ps_input_ena);
1979    gfx12_opt_set_context_reg(R_028660_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
1980                              shader->ps.spi_ps_input_addr);
1981    gfx12_opt_set_context_reg(R_028854_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1982                              shader->ps.cb_shader_mask);
1983    gfx12_opt_set_context_reg(R_028BBC_PA_SC_HISZ_CONTROL, SI_TRACKED_PA_SC_HISZ_CONTROL,
1984                              shader->ps.pa_sc_hisz_control);
1985    gfx12_end_context_regs();
1986    radeon_end(); /* don't track context rolls on GFX12 */
1987 }
1988 
si_shader_ps(struct si_screen * sscreen,struct si_shader * shader)1989 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1990 {
1991    struct si_shader_info *info = &shader->selector->info;
1992    const unsigned input_ena = shader->config.spi_ps_input_ena;
1993 
1994    /* we need to enable at least one of them, otherwise we hang the GPU */
1995    assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1996           G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1997           G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1998           G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1999    /* POS_W_FLOAT_ENA requires one of the perspective weights. */
2000    assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
2001           G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
2002           G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
2003 
2004    /* Validate interpolation optimization flags (read as implications). */
2005    assert(!shader->key.ps.part.prolog.bc_optimize_for_persp ||
2006           (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2007    assert(!shader->key.ps.part.prolog.bc_optimize_for_linear ||
2008           (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2009    assert(!shader->key.ps.part.prolog.force_persp_center_interp ||
2010           (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2011    assert(!shader->key.ps.part.prolog.force_linear_center_interp ||
2012           (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2013    assert(!shader->key.ps.part.prolog.force_persp_sample_interp ||
2014           (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2015    assert(!shader->key.ps.part.prolog.force_linear_sample_interp ||
2016           (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2017 
2018    /* color_two_side always enables FRONT_FACE. Since st/mesa disables two-side colors if the back
2019     * face is culled, the only case when both color_two_side and force_front_face_input can be set
2020     * is when the front face is culled (which means force_front_face_input == -1).
2021     */
2022    assert(!shader->key.ps.opt.force_front_face_input || !G_0286CC_FRONT_FACE_ENA(input_ena) ||
2023           (shader->key.ps.part.prolog.color_two_side &&
2024            shader->key.ps.opt.force_front_face_input == -1));
2025 
2026    /* Validate cases when the optimizations are off (read as implications). */
2027    assert(shader->key.ps.part.prolog.bc_optimize_for_persp ||
2028           !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
2029    assert(shader->key.ps.part.prolog.bc_optimize_for_linear ||
2030           !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
2031 
2032    /* DB_SHADER_CONTROL */
2033    shader->ps.db_shader_control = S_02880C_Z_EXPORT_ENABLE(info->writes_z) |
2034                                   S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(info->writes_stencil) |
2035                                   S_02880C_MASK_EXPORT_ENABLE(shader->ps.writes_samplemask) |
2036                                   S_02880C_KILL_ENABLE(si_shader_uses_discard(shader));
2037    if (sscreen->info.gfx_level >= GFX12)
2038       shader->ps.pa_sc_hisz_control = S_028BBC_ROUND(2); /* required minimum value */
2039 
2040    switch (info->base.fs.depth_layout) {
2041    case FRAG_DEPTH_LAYOUT_GREATER:
2042       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2043       if (sscreen->info.gfx_level >= GFX12)
2044          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_GREATER_THAN_Z);
2045       break;
2046    case FRAG_DEPTH_LAYOUT_LESS:
2047       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2048       if (sscreen->info.gfx_level >= GFX12)
2049          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_LESS_THAN_Z);
2050       break;
2051    default:;
2052    }
2053 
2054    /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2055     *
2056     *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2057     * --|-----------|------------|------------|--------------------|-------------------|-------------
2058     * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
2059     * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
2060     * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
2061     * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
2062     * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
2063     *
2064     * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2065     * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2066     *
2067     * Don't use ReZ without profiling !!!
2068     *
2069     * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2070     * shaders.
2071     */
2072    if (info->base.fs.early_fragment_tests) {
2073       /* Cases 3, 4. */
2074       shader->ps.db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2075                                       S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2076                                       S_02880C_EXEC_ON_NOOP(info->base.writes_memory);
2077    } else if (info->base.writes_memory) {
2078       /* Case 2. */
2079       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2080                                       S_02880C_EXEC_ON_HIER_FAIL(1);
2081    } else {
2082       /* Case 1. */
2083       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2084    }
2085 
2086    if (info->base.fs.post_depth_coverage)
2087       shader->ps.db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2088 
2089    /* Bug workaround for smoothing (overrasterization) on GFX6. */
2090    if (sscreen->info.gfx_level == GFX6 && shader->key.ps.mono.poly_line_smoothing) {
2091       shader->ps.db_shader_control &= C_02880C_Z_ORDER;
2092       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z);
2093    }
2094 
2095    if (sscreen->info.has_rbplus && !sscreen->info.rbplus_allowed)
2096       shader->ps.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
2097 
2098    /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
2099     * Possible values:
2100     * 0 -> Position = pixel center
2101     * 1 -> Position = pixel centroid
2102     * 2 -> Position = at sample position
2103     *
2104     * From GLSL 4.5 specification, section 7.1:
2105     *   "The variable gl_FragCoord is available as an input variable from
2106     *    within fragment shaders and it holds the window relative coordinates
2107     *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
2108     *    value can be for any location within the pixel, or one of the
2109     *    fragment samples. The use of centroid does not further restrict
2110     *    this value to be inside the current primitive."
2111     *
2112     * Meaning that centroid has no effect and we can return anything within
2113     * the pixel. Thus, return the value at sample position, because that's
2114     * the most accurate one shaders can get.
2115     */
2116    shader->ps.spi_baryc_cntl = S_0286E0_POS_FLOAT_LOCATION(2) |
2117                                S_0286E0_POS_FLOAT_ULC(info->base.fs.pixel_center_integer) |
2118                                S_0286E0_FRONT_FACE_ALL_BITS(1);
2119    shader->ps.spi_shader_col_format = si_get_spi_shader_col_format(shader);
2120    shader->ps.cb_shader_mask = ac_get_cb_shader_mask(shader->key.ps.part.epilog.spi_shader_col_format);
2121    shader->ps.spi_ps_input_ena = shader->config.spi_ps_input_ena;
2122    shader->ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
2123    shader->ps.num_interp = si_get_ps_num_interp(shader);
2124    shader->ps.spi_shader_z_format =
2125       ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, shader->ps.writes_samplemask,
2126                                  shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz);
2127 
2128    /* Ensure that some export memory is always allocated, for two reasons:
2129     *
2130     * 1) Correctness: The hardware ignores the EXEC mask if no export
2131     *    memory is allocated, so KILL and alpha test do not work correctly
2132     *    without this.
2133     * 2) Performance: Every shader needs at least a NULL export, even when
2134     *    it writes no color/depth output. The NULL export instruction
2135     *    stalls without this setting.
2136     *
2137     * Don't add this to CB_SHADER_MASK.
2138     *
2139     * GFX10 supports pixel shaders without exports by setting both
2140     * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
2141     * instructions if any are present.
2142     *
2143     * RB+ depth-only rendering requires SPI_SHADER_32_R.
2144     */
2145    bool has_mrtz = info->writes_z || info->writes_stencil || shader->ps.writes_samplemask;
2146 
2147    if (!shader->ps.spi_shader_col_format) {
2148       if (shader->key.ps.part.epilog.rbplus_depth_only_opt) {
2149          shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2150       } else if (!has_mrtz) {
2151          if (sscreen->info.gfx_level >= GFX10) {
2152             if (G_02880C_KILL_ENABLE(shader->ps.db_shader_control))
2153                shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2154          } else {
2155             shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2156          }
2157       }
2158    }
2159 
2160    if (sscreen->info.gfx_level >= GFX12) {
2161       shader->ps.spi_ps_in_control = S_028640_PARAM_GEN(shader->key.ps.mono.point_smoothing) |
2162                                      S_028640_PS_W32_EN(shader->wave_size == 32);
2163       shader->ps.spi_gs_out_config_ps = S_00B0C4_NUM_INTERP(shader->ps.num_interp);
2164    } else {
2165       /* Enable PARAM_GEN for point smoothing.
2166        * Gfx11 workaround when there are no PS inputs but LDS is used.
2167        */
2168       bool param_gen = shader->key.ps.mono.point_smoothing ||
2169                        (sscreen->info.gfx_level == GFX11 && !shader->ps.num_interp &&
2170                         shader->config.lds_size);
2171 
2172       shader->ps.spi_ps_in_control = S_0286D8_NUM_INTERP(shader->ps.num_interp) |
2173                                      S_0286D8_PARAM_GEN(param_gen) |
2174                                      S_0286D8_PS_W32_EN(shader->wave_size == 32);
2175    }
2176 
2177    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
2178    if (!pm4)
2179       return;
2180 
2181    if (sscreen->info.gfx_level >= GFX12)
2182       pm4->atom.emit = gfx12_emit_shader_ps;
2183    else if (sscreen->info.has_set_context_pairs_packed)
2184       pm4->atom.emit = gfx11_dgpu_emit_shader_ps;
2185    else
2186       pm4->atom.emit = gfx6_emit_shader_ps;
2187 
2188    /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */
2189    if (sscreen->dpbb_allowed &&
2190        (sscreen->pbb_context_states_per_bin > 1 ||
2191         sscreen->pbb_persistent_states_per_bin > 1)) {
2192       ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
2193       ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2194    }
2195 
2196    if (sscreen->info.gfx_level >= GFX12) {
2197       ac_pm4_set_reg(&pm4->base, R_00B01C_SPI_SHADER_PGM_RSRC4_PS,
2198                      S_00B01C_WAVE_LIMIT_GFX12(0x3FF) |
2199                      S_00B01C_LDS_GROUP_SIZE_GFX12(1) |
2200                      S_00B01C_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
2201    } else if (sscreen->info.gfx_level >= GFX11) {
2202       unsigned cu_mask_ps = ac_gfx103_get_cu_mask_ps(&sscreen->info);
2203 
2204       ac_pm4_set_reg_idx3(&pm4->base, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
2205                           ac_apply_cu_en(S_00B004_CU_EN(cu_mask_ps >> 16) |
2206                                          S_00B004_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
2207                                          C_00B004_CU_EN, 16, &sscreen->info));
2208    }
2209 
2210    uint64_t va = shader->bo->gpu_address;
2211    ac_pm4_set_reg(&pm4->base, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
2212    ac_pm4_set_reg(&pm4->base, R_00B024_SPI_SHADER_PGM_HI_PS,
2213                   S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8));
2214 
2215    ac_pm4_set_reg(&pm4->base, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
2216                   S_00B028_VGPRS(si_shader_encode_vgprs(shader)) |
2217                   S_00B028_SGPRS(si_shader_encode_sgprs(shader)) |
2218                   S_00B028_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
2219                   S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) |
2220                   S_00B028_FLOAT_MODE(shader->config.float_mode));
2221    ac_pm4_set_reg(&pm4->base, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
2222                   S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
2223                   S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
2224                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
2225    ac_pm4_finalize(&pm4->base);
2226 }
2227 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)2228 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
2229 {
2230    assert(shader->wave_size);
2231 
2232    switch (shader->selector->stage) {
2233    case MESA_SHADER_VERTEX:
2234       if (shader->key.ge.as_ls)
2235          si_shader_ls(sscreen, shader);
2236       else if (shader->key.ge.as_es)
2237          si_shader_es(sscreen, shader);
2238       else if (shader->key.ge.as_ngg)
2239          gfx10_shader_ngg(sscreen, shader);
2240       else
2241          si_shader_vs(sscreen, shader, NULL);
2242       break;
2243    case MESA_SHADER_TESS_CTRL:
2244       si_shader_hs(sscreen, shader);
2245       break;
2246    case MESA_SHADER_TESS_EVAL:
2247       if (shader->key.ge.as_es)
2248          si_shader_es(sscreen, shader);
2249       else if (shader->key.ge.as_ngg)
2250          gfx10_shader_ngg(sscreen, shader);
2251       else
2252          si_shader_vs(sscreen, shader, NULL);
2253       break;
2254    case MESA_SHADER_GEOMETRY:
2255       if (shader->key.ge.as_ngg) {
2256          gfx10_shader_ngg(sscreen, shader);
2257       } else {
2258          /* VS must be initialized first because GS uses its fields. */
2259          si_shader_vs(sscreen, shader->gs_copy_shader, shader->selector);
2260          si_shader_gs(sscreen, shader);
2261       }
2262       break;
2263    case MESA_SHADER_FRAGMENT:
2264       si_shader_ps(sscreen, shader);
2265       break;
2266    default:
2267       assert(0);
2268    }
2269 
2270    assert(!(sscreen->debug_flags & DBG(SQTT)) || shader->pm4.base.spi_shader_pgm_lo_reg != 0);
2271 }
2272 
si_clear_vs_key_inputs(union si_shader_key * key)2273 static void si_clear_vs_key_inputs(union si_shader_key *key)
2274 {
2275    key->ge.mono.instance_divisor_is_one = 0;
2276    key->ge.mono.instance_divisor_is_fetched = 0;
2277    key->ge.mono.vs_fetch_opencode = 0;
2278    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2279 }
2280 
si_vs_key_update_inputs(struct si_context * sctx)2281 void si_vs_key_update_inputs(struct si_context *sctx)
2282 {
2283    struct si_shader_selector *vs = sctx->shader.vs.cso;
2284    struct si_vertex_elements *elts = sctx->vertex_elements;
2285    union si_shader_key *key = &sctx->shader.vs.key;
2286 
2287    if (!vs)
2288       return;
2289 
2290    if (vs->info.base.vs.blit_sgprs_amd) {
2291       si_clear_vs_key_inputs(key);
2292       key->ge.opt.prefer_mono = 0;
2293       sctx->uses_nontrivial_vs_inputs = false;
2294       return;
2295    }
2296 
2297    bool uses_nontrivial_vs_inputs = false;
2298 
2299    if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched)
2300       uses_nontrivial_vs_inputs = true;
2301 
2302    key->ge.mono.instance_divisor_is_one = elts->instance_divisor_is_one;
2303    key->ge.mono.instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
2304    key->ge.opt.prefer_mono = elts->instance_divisor_is_fetched;
2305 
2306    unsigned count_mask = (1 << vs->info.num_inputs) - 1;
2307    unsigned fix = elts->fix_fetch_always & count_mask;
2308    unsigned opencode = elts->fix_fetch_opencode & count_mask;
2309 
2310    if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
2311       uint32_t mask = elts->fix_fetch_unaligned & count_mask;
2312       while (mask) {
2313          unsigned i = u_bit_scan(&mask);
2314          unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
2315          unsigned vbidx = elts->vertex_buffer_index[i];
2316          const struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
2317          unsigned align_mask = (1 << log_hw_load_size) - 1;
2318          if (vb->buffer_offset & align_mask) {
2319             fix |= 1 << i;
2320             opencode |= 1 << i;
2321          }
2322       }
2323    }
2324 
2325    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2326 
2327    while (fix) {
2328       unsigned i = u_bit_scan(&fix);
2329       uint8_t fix_fetch = elts->fix_fetch[i];
2330 
2331       key->ge.mono.vs_fix_fetch[i].bits = fix_fetch;
2332       if (fix_fetch)
2333          uses_nontrivial_vs_inputs = true;
2334    }
2335    key->ge.mono.vs_fetch_opencode = opencode;
2336    if (opencode)
2337       uses_nontrivial_vs_inputs = true;
2338 
2339    sctx->uses_nontrivial_vs_inputs = uses_nontrivial_vs_inputs;
2340 
2341    /* draw_vertex_state (display lists) requires that all VS input lowering is disabled
2342     * because its vertex elements never need any lowering.
2343     *
2344     * We just computed the key because we needed to set uses_nontrivial_vs_inputs, so that we know
2345     * whether the VS should be updated when we switch from draw_vertex_state to draw_vbo. Now
2346     * clear the VS input bits for draw_vertex_state. This should happen rarely because VS inputs
2347     * don't usually need any lowering.
2348     */
2349    if (uses_nontrivial_vs_inputs && sctx->force_trivial_vs_inputs)
2350       si_clear_vs_key_inputs(key);
2351 }
2352 
si_get_vs_key_inputs(struct si_context * sctx,union si_shader_key * key)2353 static void si_get_vs_key_inputs(struct si_context *sctx, union si_shader_key *key)
2354 {
2355    key->ge.mono.instance_divisor_is_one = sctx->shader.vs.key.ge.mono.instance_divisor_is_one;
2356    key->ge.mono.instance_divisor_is_fetched = sctx->shader.vs.key.ge.mono.instance_divisor_is_fetched;
2357    key->ge.mono.vs_fetch_opencode = sctx->shader.vs.key.ge.mono.vs_fetch_opencode;
2358    memcpy(key->ge.mono.vs_fix_fetch, sctx->shader.vs.key.ge.mono.vs_fix_fetch,
2359           sizeof(key->ge.mono.vs_fix_fetch));
2360 }
2361 
si_update_ps_inputs_read_or_disabled(struct si_context * sctx)2362 void si_update_ps_inputs_read_or_disabled(struct si_context *sctx)
2363 {
2364    struct si_shader_selector *ps = sctx->shader.ps.cso;
2365 
2366    /* Find out if PS is disabled. */
2367    bool ps_disabled = true;
2368    if (ps) {
2369       bool ps_modifies_zs = ps->info.base.fs.uses_discard ||
2370                             ps->info.writes_z ||
2371                             ps->info.writes_stencil ||
2372                             ps->info.writes_samplemask ||
2373                             sctx->queued.named.blend->alpha_to_coverage ||
2374                             sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS ||
2375                             sctx->queued.named.rasterizer->poly_stipple_enable ||
2376                             sctx->queued.named.rasterizer->point_smooth;
2377 
2378       ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
2379                     (!ps_modifies_zs && !ps->info.base.writes_memory &&
2380                      !si_any_colorbuffer_written(sctx));
2381    }
2382 
2383    uint64_t ps_inputs_read_or_disabled;
2384 
2385    if (ps_disabled) {
2386       ps_inputs_read_or_disabled = 0;
2387    } else {
2388       uint64_t inputs_read = ps->info.inputs_read;
2389 
2390       if (ps->info.colors_read && sctx->queued.named.rasterizer->two_side) {
2391          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL0))
2392             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC0);
2393 
2394          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL1))
2395             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC1);
2396       }
2397 
2398       ps_inputs_read_or_disabled = inputs_read;
2399    }
2400 
2401    if (sctx->ps_inputs_read_or_disabled != ps_inputs_read_or_disabled) {
2402       sctx->ps_inputs_read_or_disabled = ps_inputs_read_or_disabled;
2403       sctx->do_update_shaders = true;
2404    }
2405 }
2406 
si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context * sctx)2407 void si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context *sctx)
2408 {
2409    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
2410    struct si_shader_selector *ps = sctx->shader.ps.cso;
2411 
2412    if (!hw_vs->cso || !ps)
2413       return;
2414 
2415    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2416    union si_shader_key *vs_key = &hw_vs->key; /* could also be TES or GS before PS */
2417    union si_shader_key *ps_key = &sctx->shader.ps.key;
2418 
2419    bool old_kill_pointsize = vs_key->ge.opt.kill_pointsize;
2420    bool old_color_two_side = ps_key->ps.part.prolog.color_two_side;
2421    bool old_poly_stipple = ps_key->ps.part.prolog.poly_stipple;
2422    bool old_poly_line_smoothing = ps_key->ps.mono.poly_line_smoothing;
2423    bool old_point_smoothing = ps_key->ps.mono.point_smoothing;
2424    int old_force_front_face_input = ps_key->ps.opt.force_front_face_input;
2425 
2426    if (sctx->current_rast_prim == MESA_PRIM_POINTS) {
2427       vs_key->ge.opt.kill_pointsize = 0;
2428       ps_key->ps.part.prolog.color_two_side = 0;
2429       ps_key->ps.part.prolog.poly_stipple = 0;
2430       ps_key->ps.mono.poly_line_smoothing = 0;
2431       ps_key->ps.mono.point_smoothing = rs->point_smooth;
2432       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2433    } else if (util_prim_is_lines(sctx->current_rast_prim)) {
2434       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize;
2435       ps_key->ps.part.prolog.color_two_side = 0;
2436       ps_key->ps.part.prolog.poly_stipple = 0;
2437       ps_key->ps.mono.poly_line_smoothing = rs->line_smooth && sctx->framebuffer.nr_samples <= 1;
2438       ps_key->ps.mono.point_smoothing = 0;
2439       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2440    } else {
2441       /* Triangles. */
2442       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize &&
2443                                       !rs->polygon_mode_is_points;
2444       ps_key->ps.part.prolog.color_two_side = rs->two_side && ps->info.colors_read;
2445       ps_key->ps.part.prolog.poly_stipple = rs->poly_stipple_enable;
2446       ps_key->ps.mono.poly_line_smoothing = rs->poly_smooth && sctx->framebuffer.nr_samples <= 1;
2447       ps_key->ps.mono.point_smoothing = 0;
2448       ps_key->ps.opt.force_front_face_input = rs->force_front_face_input &&
2449                                               ps->info.uses_frontface;
2450    }
2451 
2452    if (vs_key->ge.opt.kill_pointsize != old_kill_pointsize ||
2453        ps_key->ps.part.prolog.color_two_side != old_color_two_side ||
2454        ps_key->ps.part.prolog.poly_stipple != old_poly_stipple ||
2455        ps_key->ps.mono.poly_line_smoothing != old_poly_line_smoothing ||
2456        ps_key->ps.mono.point_smoothing != old_point_smoothing ||
2457        ps_key->ps.opt.force_front_face_input != old_force_front_face_input)
2458       sctx->do_update_shaders = true;
2459 }
2460 
si_get_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2461 static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2462                                   union si_shader_key *key)
2463 {
2464    key->ge.opt.kill_clip_distances = vs->info.clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable;
2465 
2466    /* Find out which VS outputs aren't used by the PS. */
2467    uint64_t outputs_written = vs->info.outputs_written_before_ps;
2468    uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled;
2469 
2470    key->ge.opt.kill_layer = vs->info.writes_layer &&
2471                             sctx->framebuffer.state.layers <= 1;
2472    key->ge.opt.kill_outputs = ~linked & outputs_written;
2473    key->ge.opt.ngg_culling = sctx->ngg_culling;
2474    key->ge.mono.u.vs_export_prim_id = vs->stage != MESA_SHADER_GEOMETRY &&
2475                                       sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid;
2476    key->ge.opt.remove_streamout = vs->info.enabled_streamout_buffer_mask &&
2477                                   !sctx->streamout.enabled_mask;
2478    if (sctx->gfx_level >= GFX12)
2479       key->ge.mono.remove_streamout = key->ge.opt.remove_streamout;
2480 }
2481 
si_clear_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2482 static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2483                                     union si_shader_key *key)
2484 {
2485    key->ge.opt.kill_clip_distances = 0;
2486    key->ge.opt.kill_outputs = 0;
2487    key->ge.opt.remove_streamout = 0;
2488    key->ge.opt.ngg_culling = 0;
2489    key->ge.mono.u.vs_export_prim_id = 0;
2490    key->ge.mono.remove_streamout = 0;
2491 }
2492 
si_ps_key_update_framebuffer(struct si_context * sctx)2493 void si_ps_key_update_framebuffer(struct si_context *sctx)
2494 {
2495    struct si_shader_selector *sel = sctx->shader.ps.cso;
2496    union si_shader_key *key = &sctx->shader.ps.key;
2497 
2498    if (!sel)
2499       return;
2500 
2501    if (sel->info.color0_writes_all_cbufs &&
2502        sel->info.colors_written == 0x1)
2503       key->ps.part.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
2504    else
2505       key->ps.part.epilog.last_cbuf = 0;
2506 
2507    /* ps_uses_fbfetch is true only if the color buffer is bound. */
2508    if (sctx->ps_uses_fbfetch) {
2509       struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
2510       struct pipe_resource *tex = cb0->texture;
2511 
2512       /* 1D textures are allocated and used as 2D on GFX9. */
2513       key->ps.mono.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
2514       key->ps.mono.fbfetch_is_1D =
2515          sctx->gfx_level != GFX9 &&
2516          (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
2517       key->ps.mono.fbfetch_layered =
2518          tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2519          tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2520          tex->target == PIPE_TEXTURE_3D;
2521    } else {
2522       key->ps.mono.fbfetch_msaa = 0;
2523       key->ps.mono.fbfetch_is_1D = 0;
2524       key->ps.mono.fbfetch_layered = 0;
2525    }
2526 }
2527 
si_ps_key_update_framebuffer_blend_rasterizer(struct si_context * sctx)2528 void si_ps_key_update_framebuffer_blend_rasterizer(struct si_context *sctx)
2529 {
2530    struct si_shader_selector *sel = sctx->shader.ps.cso;
2531    if (!sel)
2532       return;
2533 
2534    union si_shader_key *key = &sctx->shader.ps.key;
2535    struct si_state_blend *blend = sctx->queued.named.blend;
2536    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2537    bool alpha_to_coverage = blend->alpha_to_coverage && rs->multisample_enable &&
2538                             sctx->framebuffer.nr_samples >= 2;
2539    unsigned need_src_alpha_4bit = blend->need_src_alpha_4bit;
2540 
2541    /* Old key data for comparison. */
2542    struct si_ps_epilog_bits old_epilog;
2543    memcpy(&old_epilog, &key->ps.part.epilog, sizeof(old_epilog));
2544    bool old_prefer_mono = key->ps.opt.prefer_mono;
2545 #ifndef NDEBUG
2546    struct si_shader_key_ps old_key;
2547    memcpy(&old_key, &key->ps, sizeof(old_key));
2548 #endif
2549 
2550    key->ps.part.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
2551    key->ps.part.epilog.alpha_to_coverage_via_mrtz =
2552       sctx->gfx_level >= GFX11 && alpha_to_coverage &&
2553       (sel->info.writes_z || sel->info.writes_stencil || sel->info.writes_samplemask);
2554 
2555    /* Remove the gl_SampleMask fragment shader output if MSAA is disabled.
2556     * This is required for correctness and it's also an optimization.
2557     */
2558    key->ps.part.epilog.kill_samplemask = sel->info.writes_samplemask &&
2559                                          (sctx->framebuffer.nr_samples <= 1 ||
2560                                           !rs->multisample_enable);
2561 
2562    /* If alpha-to-coverage isn't exported via MRTZ, set that we need to export alpha
2563     * through MRT0.
2564     */
2565    if (alpha_to_coverage && !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2566       need_src_alpha_4bit |= 0xf;
2567 
2568    /* Select the shader color format based on whether
2569     * blending or alpha are needed.
2570     */
2571    key->ps.part.epilog.spi_shader_col_format =
2572       (blend->blend_enable_4bit & need_src_alpha_4bit &
2573        sctx->framebuffer.spi_shader_col_format_blend_alpha) |
2574       (blend->blend_enable_4bit & ~need_src_alpha_4bit &
2575        sctx->framebuffer.spi_shader_col_format_blend) |
2576       (~blend->blend_enable_4bit & need_src_alpha_4bit &
2577        sctx->framebuffer.spi_shader_col_format_alpha) |
2578       (~blend->blend_enable_4bit & ~need_src_alpha_4bit &
2579        sctx->framebuffer.spi_shader_col_format);
2580    key->ps.part.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
2581 
2582    key->ps.part.epilog.dual_src_blend_swizzle = sctx->gfx_level >= GFX11 &&
2583                                                 blend->dual_src_blend &&
2584                                                 (sel->info.colors_written_4bit & 0xff) == 0xff;
2585 
2586    /* The output for dual source blending should have
2587     * the same format as the first output.
2588     */
2589    if (blend->dual_src_blend) {
2590       key->ps.part.epilog.spi_shader_col_format |=
2591          (key->ps.part.epilog.spi_shader_col_format & 0xf) << 4;
2592    }
2593 
2594    /* If alpha-to-coverage is enabled, we have to export alpha
2595     * even if there is no color buffer.
2596     *
2597     * Gfx11 exports alpha-to-coverage via MRTZ if MRTZ is present.
2598     */
2599    if (!(key->ps.part.epilog.spi_shader_col_format & 0xf) && alpha_to_coverage &&
2600        !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2601       key->ps.part.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
2602 
2603    /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
2604     * to the range supported by the type if a channel has less
2605     * than 16 bits and the export format is 16_ABGR.
2606     */
2607    if (sctx->gfx_level <= GFX7 && sctx->family != CHIP_HAWAII) {
2608       key->ps.part.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
2609       key->ps.part.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
2610    }
2611 
2612    /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
2613    if (!key->ps.part.epilog.last_cbuf) {
2614       key->ps.part.epilog.spi_shader_col_format &= sel->info.colors_written_4bit;
2615       key->ps.part.epilog.color_is_int8 &= sel->info.colors_written;
2616       key->ps.part.epilog.color_is_int10 &= sel->info.colors_written;
2617    }
2618 
2619    /* Enable RB+ for depth-only rendering. Registers must be programmed as follows:
2620     *    CB_COLOR_CONTROL.MODE = CB_DISABLE
2621     *    CB_COLOR0_INFO.FORMAT = COLOR_32
2622     *    CB_COLOR0_INFO.NUMBER_TYPE = NUMBER_FLOAT
2623     *    SPI_SHADER_COL_FORMAT.COL0_EXPORT_FORMAT = SPI_SHADER_32_R
2624     *    SX_PS_DOWNCONVERT.MRT0 = SX_RT_EXPORT_32_R
2625     *
2626     * Also, the following conditions must be met.
2627     */
2628    key->ps.part.epilog.rbplus_depth_only_opt =
2629       sctx->screen->info.rbplus_allowed &&
2630       blend->cb_target_enabled_4bit == 0 && /* implies CB_DISABLE */
2631       !alpha_to_coverage &&
2632       !sel->info.base.writes_memory &&
2633       !key->ps.part.epilog.spi_shader_col_format;
2634 
2635    /* Eliminate shader code computing output values that are unused.
2636     * This enables dead code elimination between shader parts.
2637     * Check if any output is eliminated.
2638     *
2639     * Dual source blending never has color buffer 1 enabled, so ignore it.
2640     *
2641     * On gfx11, pixel shaders that write memory should be compiled with an inlined epilog,
2642     * so that the compiler can see s_endpgm and deallocates VGPRs before memory stores return.
2643     */
2644    if (sel->info.colors_written_4bit &
2645        (blend->dual_src_blend ? 0xffffff0f : 0xffffffff) &
2646        ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit))
2647       key->ps.opt.prefer_mono = 1;
2648    else if (sctx->gfx_level >= GFX11 && sel->info.base.writes_memory)
2649       key->ps.opt.prefer_mono = 1;
2650    else
2651       key->ps.opt.prefer_mono = 0;
2652 
2653    /* Update shaders only if the key changed. */
2654    if (memcmp(&key->ps.part.epilog, &old_epilog, sizeof(old_epilog)) ||
2655        key->ps.opt.prefer_mono != old_prefer_mono) {
2656       sctx->do_update_shaders = true;
2657    } else {
2658       assert(memcmp(&key->ps, &old_key, sizeof(old_key)) == 0);
2659    }
2660 }
2661 
si_ps_key_update_rasterizer(struct si_context * sctx)2662 void si_ps_key_update_rasterizer(struct si_context *sctx)
2663 {
2664    struct si_shader_selector *sel = sctx->shader.ps.cso;
2665    union si_shader_key *key = &sctx->shader.ps.key;
2666    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2667 
2668    if (!sel)
2669       return;
2670 
2671    bool old_flatshade_colors = key->ps.part.prolog.flatshade_colors;
2672    bool old_clamp_color = key->ps.part.epilog.clamp_color;
2673 
2674    key->ps.part.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color;
2675    key->ps.part.epilog.clamp_color = rs->clamp_fragment_color;
2676 
2677    if (key->ps.part.prolog.flatshade_colors != old_flatshade_colors ||
2678        key->ps.part.epilog.clamp_color != old_clamp_color)
2679       sctx->do_update_shaders = true;
2680 }
2681 
si_ps_key_update_dsa(struct si_context * sctx)2682 void si_ps_key_update_dsa(struct si_context *sctx)
2683 {
2684    union si_shader_key *key = &sctx->shader.ps.key;
2685 
2686    key->ps.part.epilog.alpha_func = sctx->queued.named.dsa->alpha_func;
2687 }
2688 
si_ps_key_update_sample_shading(struct si_context * sctx)2689 void si_ps_key_update_sample_shading(struct si_context *sctx)
2690 {
2691    struct si_shader_selector *sel = sctx->shader.ps.cso;
2692    union si_shader_key *key = &sctx->shader.ps.key;
2693 
2694    if (!sel)
2695       return;
2696 
2697    if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask)
2698       key->ps.part.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
2699    else
2700       key->ps.part.prolog.samplemask_log_ps_iter = 0;
2701 }
2702 
si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context * sctx)2703 void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx)
2704 {
2705    struct si_shader_selector *sel = sctx->shader.ps.cso;
2706    union si_shader_key *key = &sctx->shader.ps.key;
2707    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2708 
2709    if (!sel)
2710       return;
2711 
2712    /* Old key data for comparison. */
2713    struct si_ps_prolog_bits old_prolog;
2714    memcpy(&old_prolog, &key->ps.part.prolog, sizeof(old_prolog));
2715    bool old_interpolate_at_sample_force_center = key->ps.mono.interpolate_at_sample_force_center;
2716 
2717    bool uses_persp_center = sel->info.uses_persp_center ||
2718                             (!rs->flatshade && sel->info.uses_persp_center_color);
2719    bool uses_persp_centroid = sel->info.uses_persp_centroid ||
2720                               (!rs->flatshade && sel->info.uses_persp_centroid_color);
2721    bool uses_persp_sample = sel->info.uses_persp_sample ||
2722                             (!rs->flatshade && sel->info.uses_persp_sample_color);
2723 
2724    if (rs->force_persample_interp && rs->multisample_enable &&
2725        sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
2726       key->ps.part.prolog.force_persp_sample_interp =
2727          uses_persp_center || uses_persp_centroid;
2728 
2729       key->ps.part.prolog.force_linear_sample_interp =
2730          sel->info.uses_linear_center || sel->info.uses_linear_centroid;
2731 
2732       key->ps.part.prolog.force_persp_center_interp = 0;
2733       key->ps.part.prolog.force_linear_center_interp = 0;
2734       key->ps.part.prolog.bc_optimize_for_persp = 0;
2735       key->ps.part.prolog.bc_optimize_for_linear = 0;
2736       key->ps.mono.interpolate_at_sample_force_center = 0;
2737    } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
2738       key->ps.part.prolog.force_persp_sample_interp = 0;
2739       key->ps.part.prolog.force_linear_sample_interp = 0;
2740       key->ps.part.prolog.force_persp_center_interp = 0;
2741       key->ps.part.prolog.force_linear_center_interp = 0;
2742       key->ps.part.prolog.bc_optimize_for_persp =
2743          uses_persp_center && uses_persp_centroid;
2744       key->ps.part.prolog.bc_optimize_for_linear =
2745          sel->info.uses_linear_center && sel->info.uses_linear_centroid;
2746       key->ps.mono.interpolate_at_sample_force_center = 0;
2747    } else {
2748       key->ps.part.prolog.force_persp_sample_interp = 0;
2749       key->ps.part.prolog.force_linear_sample_interp = 0;
2750 
2751       /* Make sure SPI doesn't compute more than 1 pair
2752        * of (i,j), which is the optimization here. */
2753       key->ps.part.prolog.force_persp_center_interp = uses_persp_center +
2754                                                       uses_persp_centroid +
2755                                                       uses_persp_sample > 1;
2756 
2757       key->ps.part.prolog.force_linear_center_interp = sel->info.uses_linear_center +
2758                                                        sel->info.uses_linear_centroid +
2759                                                        sel->info.uses_linear_sample > 1;
2760       key->ps.part.prolog.bc_optimize_for_persp = 0;
2761       key->ps.part.prolog.bc_optimize_for_linear = 0;
2762       key->ps.mono.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample;
2763    }
2764 
2765    /* Update shaders only if the key changed. */
2766    if (memcmp(&key->ps.part.prolog, &old_prolog, sizeof(old_prolog)) ||
2767        key->ps.mono.interpolate_at_sample_force_center != old_interpolate_at_sample_force_center)
2768       sctx->do_update_shaders = true;
2769 }
2770 
2771 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,union si_shader_key * key)2772 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
2773                                           union si_shader_key *key)
2774 {
2775    struct si_context *sctx = (struct si_context *)ctx;
2776 
2777    switch (sel->stage) {
2778    case MESA_SHADER_VERTEX:
2779       if (!sctx->shader.tes.cso && !sctx->shader.gs.cso)
2780          si_get_vs_key_outputs(sctx, sel, key);
2781       else
2782          si_clear_vs_key_outputs(sctx, sel, key);
2783       break;
2784    case MESA_SHADER_TESS_CTRL:
2785       if (sctx->gfx_level >= GFX9) {
2786          si_get_vs_key_inputs(sctx, key);
2787          key->ge.part.tcs.ls = sctx->shader.vs.cso;
2788       }
2789       break;
2790    case MESA_SHADER_TESS_EVAL:
2791       if (!sctx->shader.gs.cso)
2792          si_get_vs_key_outputs(sctx, sel, key);
2793       else
2794          si_clear_vs_key_outputs(sctx, sel, key);
2795       break;
2796    case MESA_SHADER_GEOMETRY:
2797       if (sctx->gfx_level >= GFX9) {
2798          if (sctx->shader.tes.cso) {
2799             si_clear_vs_key_inputs(key);
2800             key->ge.part.gs.es = sctx->shader.tes.cso;
2801          } else {
2802             si_get_vs_key_inputs(sctx, key);
2803             key->ge.part.gs.es = sctx->shader.vs.cso;
2804          }
2805 
2806          /* Only NGG can eliminate GS outputs, because the code is shared with VS. */
2807          if (sctx->ngg)
2808             si_get_vs_key_outputs(sctx, sel, key);
2809          else
2810             si_clear_vs_key_outputs(sctx, sel, key);
2811       }
2812       break;
2813    case MESA_SHADER_FRAGMENT:
2814       break;
2815    default:
2816       assert(0);
2817    }
2818 }
2819 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)2820 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2821 {
2822    struct si_shader_selector *sel = shader->selector;
2823    struct si_screen *sscreen = sel->screen;
2824    struct ac_llvm_compiler **compiler;
2825    struct util_debug_callback *debug = &shader->compiler_ctx_state.debug;
2826 
2827    if (thread_index >= 0) {
2828       if (low_priority) {
2829          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler_lowp));
2830          compiler = &sscreen->compiler_lowp[thread_index];
2831       } else {
2832          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
2833          compiler = &sscreen->compiler[thread_index];
2834       }
2835       if (!debug->async)
2836          debug = NULL;
2837    } else {
2838       assert(!low_priority);
2839       compiler = &shader->compiler_ctx_state.compiler;
2840    }
2841 
2842    if (!sel->info.base.use_aco_amd && !*compiler)
2843       *compiler = si_create_llvm_compiler(sscreen);
2844 
2845    if (unlikely(!si_create_shader_variant(sscreen, *compiler, shader, debug))) {
2846       PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->stage);
2847       shader->compilation_failed = true;
2848       return;
2849    }
2850 
2851    if (shader->compiler_ctx_state.is_debug_context) {
2852       FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2853       if (f) {
2854          si_shader_dump(sscreen, shader, NULL, f, false);
2855          fclose(f);
2856       }
2857    }
2858 
2859    si_shader_init_pm4_state(sscreen, shader);
2860 }
2861 
si_build_shader_variant_low_priority(void * job,void * gdata,int thread_index)2862 static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index)
2863 {
2864    struct si_shader *shader = (struct si_shader *)job;
2865 
2866    assert(thread_index >= 0);
2867 
2868    si_build_shader_variant(shader, thread_index, true);
2869 }
2870 
2871 /* This should be const, but C++ doesn't allow implicit zero-initialization with const. */
2872 static union si_shader_key zeroed;
2873 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,const union si_shader_key * key,unsigned wave_size)2874 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2875                                        struct si_compiler_ctx_state *compiler_state,
2876                                        const union si_shader_key *key, unsigned wave_size)
2877 {
2878    struct si_shader **mainp = si_get_main_shader_part(sel, key, wave_size);
2879 
2880    if (!*mainp) {
2881       struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2882 
2883       if (!main_part)
2884          return false;
2885 
2886       /* We can leave the fence as permanently signaled because the
2887        * main part becomes visible globally only after it has been
2888        * compiled. */
2889       util_queue_fence_init(&main_part->ready);
2890 
2891       main_part->selector = sel;
2892       if (sel->stage <= MESA_SHADER_GEOMETRY) {
2893          main_part->key.ge.as_es = key->ge.as_es;
2894          main_part->key.ge.as_ls = key->ge.as_ls;
2895          main_part->key.ge.as_ngg = key->ge.as_ngg;
2896       }
2897       main_part->is_monolithic = false;
2898       main_part->wave_size = wave_size;
2899 
2900       if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2901                              &compiler_state->debug)) {
2902          FREE(main_part);
2903          return false;
2904       }
2905       *mainp = main_part;
2906    }
2907    return true;
2908 }
2909 
2910 /* A helper to copy *key to *local_key and return local_key. */
2911 template<typename SHADER_KEY_TYPE>
2912 static ALWAYS_INLINE const SHADER_KEY_TYPE *
use_local_key_copy(const SHADER_KEY_TYPE * key,SHADER_KEY_TYPE * local_key,unsigned key_size)2913 use_local_key_copy(const SHADER_KEY_TYPE *key, SHADER_KEY_TYPE *local_key, unsigned key_size)
2914 {
2915    if (key != local_key)
2916       memcpy(local_key, key, key_size);
2917 
2918    return local_key;
2919 }
2920 
2921 #define NO_INLINE_UNIFORMS false
2922 
2923 /**
2924  * Select a shader variant according to the shader key.
2925  *
2926  * This uses a C++ template to compute the optimal memcmp size at compile time, which is important
2927  * for getting inlined memcmp. The memcmp size depends on the shader key type and whether inlined
2928  * uniforms are enabled.
2929  */
2930 template<bool INLINE_UNIFORMS = true, typename SHADER_KEY_TYPE>
si_shader_select_with_key(struct si_context * sctx,struct si_shader_ctx_state * state,const SHADER_KEY_TYPE * key)2931 static int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state,
2932                                      const SHADER_KEY_TYPE *key)
2933 {
2934    struct si_screen *sscreen = sctx->screen;
2935    struct si_shader_selector *sel = state->cso;
2936    struct si_shader_selector *previous_stage_sel = NULL;
2937    struct si_shader *current = state->current;
2938    struct si_shader *shader = NULL;
2939    const SHADER_KEY_TYPE *zeroed_key = (SHADER_KEY_TYPE*)&zeroed;
2940 
2941    /* "opt" must be the last field and "inlined_uniform_values" must be the last field inside opt.
2942     * If there is padding, insert the padding manually before opt or inside opt.
2943     */
2944    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt) + sizeof(key->opt) == sizeof(*key));
2945    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt.inlined_uniform_values) +
2946                  sizeof(key->opt.inlined_uniform_values) == sizeof(*key));
2947 
2948    const unsigned key_size_no_uniforms = sizeof(*key) - sizeof(key->opt.inlined_uniform_values);
2949    /* Don't compare inlined_uniform_values if uniform inlining is disabled. */
2950    const unsigned key_size = INLINE_UNIFORMS ? sizeof(*key) : key_size_no_uniforms;
2951    const unsigned key_opt_size =
2952       INLINE_UNIFORMS ? sizeof(key->opt) :
2953                         sizeof(key->opt) - sizeof(key->opt.inlined_uniform_values);
2954 
2955    /* si_shader_select_with_key must not modify 'key' because it would affect future shaders.
2956     * If we need to modify it for this specific shader (eg: to disable optimizations), we
2957     * use a copy.
2958     */
2959    SHADER_KEY_TYPE local_key;
2960 
2961    if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) {
2962       /* Disable shader variant optimizations. */
2963       key = use_local_key_copy<SHADER_KEY_TYPE>(key, &local_key, key_size);
2964       memset(&local_key.opt, 0, key_opt_size);
2965    }
2966 
2967 again:
2968    /* Check if we don't need to change anything.
2969     * This path is also used for most shaders that don't need multiple
2970     * variants, it will cost just a computation of the key and this
2971     * test. */
2972    if (likely(current && memcmp(&current->key, key, key_size) == 0)) {
2973       if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2974          if (current->is_optimized) {
2975             key = use_local_key_copy(key, &local_key, key_size);
2976             memset(&local_key.opt, 0, key_opt_size);
2977             goto current_not_ready;
2978          }
2979 
2980          util_queue_fence_wait(&current->ready);
2981       }
2982 
2983       return current->compilation_failed ? -1 : 0;
2984    }
2985 current_not_ready:
2986 
2987    /* This must be done before the mutex is locked, because async GS
2988     * compilation calls this function too, and therefore must enter
2989     * the mutex first.
2990     */
2991    util_queue_fence_wait(&sel->ready);
2992 
2993    simple_mtx_lock(&sel->mutex);
2994 
2995    int variant_count = 0;
2996    const int max_inline_uniforms_variants = 5;
2997 
2998    /* Find the shader variant. */
2999    const unsigned cnt = sel->variants_count;
3000    for (unsigned i = 0; i < cnt; i++) {
3001       const SHADER_KEY_TYPE *iter_key = (const SHADER_KEY_TYPE *)&sel->keys[i];
3002 
3003       if (memcmp(iter_key, key, key_size_no_uniforms) == 0) {
3004          struct si_shader *iter = sel->variants[i];
3005 
3006          /* Check the inlined uniform values separately, and count
3007           * the number of variants based on them.
3008           */
3009          if (key->opt.inline_uniforms &&
3010              memcmp(iter_key->opt.inlined_uniform_values,
3011                     key->opt.inlined_uniform_values,
3012                     MAX_INLINABLE_UNIFORMS * 4) != 0) {
3013             if (variant_count++ > max_inline_uniforms_variants) {
3014                key = use_local_key_copy(key, &local_key, key_size);
3015                /* Too many variants. Disable inlining for this shader. */
3016                local_key.opt.inline_uniforms = 0;
3017                memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4);
3018                simple_mtx_unlock(&sel->mutex);
3019                goto again;
3020             }
3021             continue;
3022          }
3023 
3024          simple_mtx_unlock(&sel->mutex);
3025 
3026          if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
3027             /* If it's an optimized shader and its compilation has
3028              * been started but isn't done, use the unoptimized
3029              * shader so as not to cause a stall due to compilation.
3030              */
3031             if (iter->is_optimized) {
3032                key = use_local_key_copy(key, &local_key, key_size);
3033                memset(&local_key.opt, 0, key_opt_size);
3034                goto again;
3035             }
3036 
3037             util_queue_fence_wait(&iter->ready);
3038          }
3039 
3040          if (iter->compilation_failed) {
3041             return -1; /* skip the draw call */
3042          }
3043 
3044          state->current = sel->variants[i];
3045          return 0;
3046       }
3047    }
3048 
3049    /* Build a new shader. */
3050    shader = CALLOC_STRUCT(si_shader);
3051    if (!shader) {
3052       simple_mtx_unlock(&sel->mutex);
3053       return -ENOMEM;
3054    }
3055 
3056    util_queue_fence_init(&shader->ready);
3057 
3058    if (!sel->info.base.use_aco_amd && !sctx->compiler)
3059       sctx->compiler = si_create_llvm_compiler(sctx->screen);
3060 
3061    shader->selector = sel;
3062    *((SHADER_KEY_TYPE*)&shader->key) = *key;
3063    shader->wave_size = si_determine_wave_size(sscreen, shader);
3064    shader->compiler_ctx_state.compiler = sctx->compiler;
3065    shader->compiler_ctx_state.debug = sctx->debug;
3066    shader->compiler_ctx_state.is_debug_context = sctx->is_debug;
3067 
3068    /* If this is a merged shader, get the first shader's selector. */
3069    if (sscreen->info.gfx_level >= GFX9) {
3070       if (sel->stage == MESA_SHADER_TESS_CTRL)
3071          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.tcs.ls;
3072       else if (sel->stage == MESA_SHADER_GEOMETRY)
3073          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.gs.es;
3074 
3075       /* We need to wait for the previous shader. */
3076       if (previous_stage_sel)
3077          util_queue_fence_wait(&previous_stage_sel->ready);
3078    }
3079 
3080    bool is_pure_monolithic =
3081       sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed_key->mono, sizeof(key->mono)) != 0;
3082 
3083    /* Compile the main shader part if it doesn't exist. This can happen
3084     * if the initial guess was wrong.
3085     */
3086    if (!is_pure_monolithic) {
3087       bool ok = true;
3088 
3089       /* Make sure the main shader part is present. This is needed
3090        * for shaders that can be compiled as VS, LS, or ES, and only
3091        * one of them is compiled at creation.
3092        *
3093        * It is also needed for GS, which can be compiled as non-NGG
3094        * and NGG.
3095        *
3096        * For merged shaders, check that the starting shader's main
3097        * part is present.
3098        */
3099       if (previous_stage_sel) {
3100          union si_shader_key shader1_key = zeroed;
3101 
3102          if (sel->stage == MESA_SHADER_TESS_CTRL) {
3103             shader1_key.ge.as_ls = 1;
3104          } else if (sel->stage == MESA_SHADER_GEOMETRY) {
3105             shader1_key.ge.as_es = 1;
3106             shader1_key.ge.as_ngg = ((struct si_shader_key_ge*)key)->as_ngg; /* for Wave32 vs Wave64 */
3107          } else {
3108             assert(0);
3109          }
3110 
3111          simple_mtx_lock(&previous_stage_sel->mutex);
3112          ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state,
3113                                          &shader1_key, shader->wave_size);
3114          simple_mtx_unlock(&previous_stage_sel->mutex);
3115       }
3116 
3117       if (ok) {
3118          ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state,
3119                                          (union si_shader_key*)key, shader->wave_size);
3120       }
3121 
3122       if (!ok) {
3123          FREE(shader);
3124          simple_mtx_unlock(&sel->mutex);
3125          return -ENOMEM; /* skip the draw call */
3126       }
3127    }
3128 
3129    if (sel->variants_count == sel->variants_max_count) {
3130       sel->variants_max_count += 2;
3131       sel->variants = (struct si_shader**)
3132          realloc(sel->variants, sel->variants_max_count * sizeof(struct si_shader*));
3133       sel->keys = (union si_shader_key*)
3134          realloc(sel->keys, sel->variants_max_count * sizeof(union si_shader_key));
3135    }
3136 
3137    /* Keep the reference to the 1st shader of merged shaders, so that
3138     * Gallium can't destroy it before we destroy the 2nd shader.
3139     *
3140     * Set sctx = NULL, because it's unused if we're not releasing
3141     * the shader, and we don't have any sctx here.
3142     */
3143    si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
3144 
3145    /* Monolithic-only shaders don't make a distinction between optimized
3146     * and unoptimized. */
3147    shader->is_monolithic =
3148       is_pure_monolithic || memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3149 
3150    shader->is_optimized = !is_pure_monolithic &&
3151                           memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3152 
3153    /* If it's an optimized shader, compile it asynchronously. */
3154    if (shader->is_optimized) {
3155       /* Compile it asynchronously. */
3156       util_queue_add_job(&sscreen->shader_compiler_queue_opt_variants, shader, &shader->ready,
3157                          si_build_shader_variant_low_priority, NULL, 0);
3158 
3159       /* Add only after the ready fence was reset, to guard against a
3160        * race with si_bind_XX_shader. */
3161       sel->variants[sel->variants_count] = shader;
3162       sel->keys[sel->variants_count] = shader->key;
3163       sel->variants_count++;
3164 
3165       /* Use the default (unoptimized) shader for now. */
3166       key = use_local_key_copy(key, &local_key, key_size);
3167       memset(&local_key.opt, 0, key_opt_size);
3168       simple_mtx_unlock(&sel->mutex);
3169 
3170       if (sscreen->options.sync_compile)
3171          util_queue_fence_wait(&shader->ready);
3172 
3173       goto again;
3174    }
3175 
3176    /* Reset the fence before adding to the variant list. */
3177    util_queue_fence_reset(&shader->ready);
3178 
3179    sel->variants[sel->variants_count] = shader;
3180    sel->keys[sel->variants_count] = shader->key;
3181    sel->variants_count++;
3182 
3183    simple_mtx_unlock(&sel->mutex);
3184 
3185    assert(!shader->is_optimized);
3186    si_build_shader_variant(shader, -1, false);
3187 
3188    util_queue_fence_signal(&shader->ready);
3189 
3190    if (!shader->compilation_failed)
3191       state->current = shader;
3192 
3193    return shader->compilation_failed ? -1 : 0;
3194 }
3195 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state)3196 int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state)
3197 {
3198    struct si_context *sctx = (struct si_context *)ctx;
3199 
3200    si_shader_selector_key(ctx, state->cso, &state->key);
3201 
3202    if (state->cso->stage == MESA_SHADER_FRAGMENT) {
3203       if (state->key.ps.opt.inline_uniforms)
3204          return si_shader_select_with_key(sctx, state, &state->key.ps);
3205       else
3206          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ps);
3207    } else {
3208       if (state->key.ge.opt.inline_uniforms) {
3209          return si_shader_select_with_key(sctx, state, &state->key.ge);
3210       } else {
3211          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ge);
3212       }
3213    }
3214 }
3215 
si_parse_next_shader_property(const struct si_shader_info * info,union si_shader_key * key)3216 static void si_parse_next_shader_property(const struct si_shader_info *info,
3217                                           union si_shader_key *key)
3218 {
3219    gl_shader_stage next_shader = info->base.next_stage;
3220 
3221    switch (info->base.stage) {
3222    case MESA_SHADER_VERTEX:
3223       switch (next_shader) {
3224       case MESA_SHADER_GEOMETRY:
3225          key->ge.as_es = 1;
3226          break;
3227       case MESA_SHADER_TESS_CTRL:
3228       case MESA_SHADER_TESS_EVAL:
3229          key->ge.as_ls = 1;
3230          break;
3231       default:
3232          /* If POSITION isn't written, it can only be a HW VS
3233           * if streamout is used. If streamout isn't used,
3234           * assume that it's a HW LS. (the next shader is TCS)
3235           * This heuristic is needed for separate shader objects.
3236           */
3237          if (!info->writes_position && !info->enabled_streamout_buffer_mask)
3238             key->ge.as_ls = 1;
3239       }
3240       break;
3241 
3242    case MESA_SHADER_TESS_EVAL:
3243       if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
3244          key->ge.as_es = 1;
3245       break;
3246 
3247    default:;
3248    }
3249 }
3250 
3251 /**
3252  * Compile the main shader part or the monolithic shader as part of
3253  * si_shader_selector initialization. Since it can be done asynchronously,
3254  * there is no way to report compile failures to applications.
3255  */
si_init_shader_selector_async(void * job,void * gdata,int thread_index)3256 static void si_init_shader_selector_async(void *job, void *gdata, int thread_index)
3257 {
3258    struct si_shader_selector *sel = (struct si_shader_selector *)job;
3259    struct si_screen *sscreen = sel->screen;
3260    struct ac_llvm_compiler **compiler;
3261    struct util_debug_callback *debug = &sel->compiler_ctx_state.debug;
3262 
3263    assert(!debug->debug_message || debug->async);
3264    assert(thread_index >= 0);
3265    assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
3266    compiler = &sscreen->compiler[thread_index];
3267 
3268    if (!sel->info.base.use_aco_amd && !*compiler)
3269       *compiler = si_create_llvm_compiler(sscreen);
3270 
3271    /* Serialize NIR to save memory. Monolithic shader variants
3272     * have to deserialize NIR before compilation.
3273     */
3274    if (sel->nir) {
3275       struct blob blob;
3276       size_t size;
3277 
3278       blob_init(&blob);
3279       /* true = remove optional debugging data to increase
3280        * the likehood of getting more shader cache hits.
3281        * It also drops variable names, so we'll save more memory.
3282        * If NIR debug prints are used we don't strip to get more
3283        * useful logs.
3284        */
3285       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
3286       blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
3287       sel->nir_size = size;
3288    }
3289 
3290    /* Compile the main shader part for use with a prolog and/or epilog.
3291     * If this fails, the driver will try to compile a monolithic shader
3292     * on demand.
3293     */
3294    if (!sscreen->use_monolithic_shaders) {
3295       struct si_shader *shader = CALLOC_STRUCT(si_shader);
3296       unsigned char ir_sha1_cache_key[20];
3297 
3298       if (!shader) {
3299          fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
3300          return;
3301       }
3302 
3303       /* We can leave the fence signaled because use of the default
3304        * main part is guarded by the selector's ready fence. */
3305       util_queue_fence_init(&shader->ready);
3306 
3307       shader->selector = sel;
3308       shader->is_monolithic = false;
3309       si_parse_next_shader_property(&sel->info, &shader->key);
3310 
3311       if (sel->stage <= MESA_SHADER_GEOMETRY &&
3312           sscreen->use_ngg && (!sel->info.enabled_streamout_buffer_mask ||
3313                                sscreen->info.gfx_level >= GFX11) &&
3314           ((sel->stage == MESA_SHADER_VERTEX && !shader->key.ge.as_ls) ||
3315            sel->stage == MESA_SHADER_TESS_EVAL || sel->stage == MESA_SHADER_GEOMETRY))
3316          shader->key.ge.as_ngg = 1;
3317 
3318       shader->wave_size = si_determine_wave_size(sscreen, shader);
3319 
3320       if (sel->nir) {
3321          if (sel->stage <= MESA_SHADER_GEOMETRY) {
3322             si_get_ir_cache_key(sel, shader->key.ge.as_ngg, shader->key.ge.as_es,
3323                                 shader->wave_size, ir_sha1_cache_key);
3324          } else {
3325             si_get_ir_cache_key(sel, false, false, shader->wave_size, ir_sha1_cache_key);
3326          }
3327       }
3328 
3329       /* Try to load the shader from the shader cache. */
3330       simple_mtx_lock(&sscreen->shader_cache_mutex);
3331 
3332       if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
3333          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3334          si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
3335       } else {
3336          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3337 
3338          /* Compile the shader if it hasn't been loaded from the cache. */
3339          if (!si_compile_shader(sscreen, *compiler, shader, debug)) {
3340             fprintf(stderr,
3341                "radeonsi: can't compile a main shader part (type: %s, name: %s).\n"
3342                "This is probably a driver bug, please report "
3343                "it to https://gitlab.freedesktop.org/mesa/mesa/-/issues.\n",
3344                gl_shader_stage_name(shader->selector->stage),
3345                shader->selector->info.base.name);
3346             FREE(shader);
3347             return;
3348          }
3349 
3350          simple_mtx_lock(&sscreen->shader_cache_mutex);
3351          si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
3352          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3353       }
3354 
3355       *si_get_main_shader_part(sel, &shader->key, shader->wave_size) = shader;
3356 
3357       /* Unset "outputs_written" flags for outputs converted to
3358        * DEFAULT_VAL, so that later inter-shader optimizations don't
3359        * try to eliminate outputs that don't exist in the final
3360        * shader.
3361        *
3362        * This is only done if non-monolithic shaders are enabled.
3363        */
3364       if ((sel->stage == MESA_SHADER_VERTEX ||
3365            sel->stage == MESA_SHADER_TESS_EVAL ||
3366            sel->stage == MESA_SHADER_GEOMETRY) &&
3367           !shader->key.ge.as_ls && !shader->key.ge.as_es) {
3368          unsigned i;
3369 
3370          for (i = 0; i < sel->info.num_outputs; i++) {
3371             unsigned semantic = sel->info.output_semantic[i];
3372             unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic];
3373 
3374             /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */
3375             if (G_028644_OFFSET(ps_input_cntl) != 0x20)
3376                continue;
3377 
3378             unsigned id;
3379 
3380             /* Remove the output from the mask. */
3381             if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
3382                 semantic != VARYING_SLOT_POS &&
3383                 semantic != VARYING_SLOT_PSIZ &&
3384                 semantic != VARYING_SLOT_CLIP_VERTEX &&
3385                 semantic != VARYING_SLOT_EDGE &&
3386                 semantic != VARYING_SLOT_LAYER) {
3387                id = si_shader_io_get_unique_index(semantic);
3388                sel->info.outputs_written_before_ps &= ~(1ull << id);
3389             }
3390          }
3391       }
3392    }
3393 
3394    /* Free NIR. We only keep serialized NIR after this point. */
3395    if (sel->nir) {
3396       ralloc_free(sel->nir);
3397       sel->nir = NULL;
3398    }
3399 }
3400 
si_schedule_initial_compile(struct si_context * sctx,gl_shader_stage stage,struct util_queue_fence * ready_fence,struct si_compiler_ctx_state * compiler_ctx_state,void * job,util_queue_execute_func execute)3401 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
3402                                  struct util_queue_fence *ready_fence,
3403                                  struct si_compiler_ctx_state *compiler_ctx_state, void *job,
3404                                  util_queue_execute_func execute)
3405 {
3406    util_queue_fence_init(ready_fence);
3407 
3408    struct util_async_debug_callback async_debug;
3409    bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
3410                 si_can_dump_shader(sctx->screen, stage, SI_DUMP_ALWAYS);
3411 
3412    if (debug) {
3413       u_async_debug_init(&async_debug);
3414       compiler_ctx_state->debug = async_debug.base;
3415    }
3416 
3417    util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
3418 
3419    if (debug) {
3420       util_queue_fence_wait(ready_fence);
3421       u_async_debug_drain(&async_debug, &sctx->debug);
3422       u_async_debug_cleanup(&async_debug);
3423    }
3424 
3425    if (sctx->screen->options.sync_compile)
3426       util_queue_fence_wait(ready_fence);
3427 }
3428 
3429 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(struct si_screen * sscreen,const struct si_shader_info * info,uint64_t * const_and_shader_buffers,uint64_t * samplers_and_images)3430 void si_get_active_slot_masks(struct si_screen *sscreen, const struct si_shader_info *info,
3431                               uint64_t *const_and_shader_buffers, uint64_t *samplers_and_images)
3432 {
3433    unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
3434 
3435    num_shaderbufs = info->base.num_ssbos;
3436    num_constbufs = info->base.num_ubos;
3437    /* two 8-byte images share one 16-byte slot */
3438    num_images = align(info->base.num_images, 2);
3439    num_msaa_images = align(BITSET_LAST_BIT(info->base.msaa_images), 2);
3440    num_samplers = BITSET_LAST_BIT(info->base.textures_used);
3441 
3442    /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
3443    start = si_get_shaderbuf_slot(num_shaderbufs - 1);
3444    *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
3445 
3446    /* The layout is:
3447     *   - fmask[last] ... fmask[0]     go to [15-last .. 15]
3448     *   - image[last] ... image[0]     go to [31-last .. 31]
3449     *   - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
3450     *
3451     * FMASKs for images are placed separately, because MSAA images are rare,
3452     * and so we can benefit from a better cache hit rate if we keep image
3453     * descriptors together.
3454     */
3455    if (sscreen->info.gfx_level < GFX11 && num_msaa_images)
3456       num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
3457 
3458    start = si_get_image_slot(num_images - 1) / 2;
3459    *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
3460 }
3461 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)3462 static void *si_create_shader_selector(struct pipe_context *ctx,
3463                                        const struct pipe_shader_state *state)
3464 {
3465    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3466    struct si_context *sctx = (struct si_context *)ctx;
3467    struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
3468 
3469    if (!sel)
3470       return NULL;
3471 
3472    sel->screen = sscreen;
3473    sel->compiler_ctx_state.debug = sctx->debug;
3474    sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
3475    sel->variants_max_count = 2;
3476    sel->keys = (union si_shader_key *)
3477       realloc(NULL, sel->variants_max_count * sizeof(union si_shader_key));
3478    sel->variants = (struct si_shader **)
3479       realloc(NULL, sel->variants_max_count * sizeof(struct si_shader *));
3480 
3481    if (state->type == PIPE_SHADER_IR_TGSI) {
3482       sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
3483    } else {
3484       assert(state->type == PIPE_SHADER_IR_NIR);
3485       sel->nir = (nir_shader*)state->ir.nir;
3486    }
3487 
3488    si_nir_scan_shader(sscreen, sel->nir, &sel->info);
3489 
3490    sel->stage = sel->nir->info.stage;
3491    const enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->stage);
3492    sel->pipe_shader_type = type;
3493    sel->const_and_shader_buf_descriptors_index =
3494       si_const_and_shader_buffer_descriptors_idx(type);
3495    sel->sampler_and_images_descriptors_index =
3496       si_sampler_and_image_descriptors_idx(type);
3497 
3498    if (si_can_dump_shader(sscreen, sel->stage, SI_DUMP_INIT_NIR))
3499       nir_print_shader(sel->nir, stderr);
3500 
3501    p_atomic_inc(&sscreen->num_shaders_created);
3502    si_get_active_slot_masks(sscreen, &sel->info, &sel->active_const_and_shader_buffers,
3503                             &sel->active_samplers_and_images);
3504 
3505    switch (sel->stage) {
3506    case MESA_SHADER_GEOMETRY:
3507       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3508       sel->rast_prim = (enum mesa_prim)sel->info.base.gs.output_primitive;
3509       if (util_rast_prim_is_triangles(sel->rast_prim))
3510          sel->rast_prim = MESA_PRIM_TRIANGLES;
3511 
3512       /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tessellation so
3513        * we can't split workgroups. Disable ngg if any of the following conditions is true:
3514        * - num_invocations * gs.vertices_out > 256
3515        * - LDS usage is too high
3516        */
3517       sel->tess_turns_off_ngg = sscreen->info.gfx_level >= GFX10 &&
3518                                 sscreen->info.gfx_level <= GFX10_3 &&
3519                                 (sel->info.base.gs.invocations * sel->info.base.gs.vertices_out > 256 ||
3520                                  sel->info.base.gs.invocations * sel->info.base.gs.vertices_out *
3521                                  (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
3522       break;
3523 
3524    case MESA_SHADER_VERTEX:
3525    case MESA_SHADER_TESS_EVAL:
3526       if (sel->stage == MESA_SHADER_TESS_EVAL) {
3527          if (sel->info.base.tess.point_mode)
3528             sel->rast_prim = MESA_PRIM_POINTS;
3529          else if (sel->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
3530             sel->rast_prim = MESA_PRIM_LINE_STRIP;
3531          else
3532             sel->rast_prim = MESA_PRIM_TRIANGLES;
3533       } else {
3534          sel->rast_prim = MESA_PRIM_TRIANGLES;
3535       }
3536       break;
3537    default:;
3538    }
3539 
3540    bool ngg_culling_allowed =
3541       sscreen->info.gfx_level >= GFX10 &&
3542       sscreen->use_ngg_culling &&
3543       sel->info.writes_position &&
3544       !sel->info.writes_viewport_index && /* cull only against viewport 0 */
3545       !sel->info.base.writes_memory &&
3546       /* NGG GS supports culling with streamout because it culls after streamout. */
3547       (sel->stage == MESA_SHADER_GEOMETRY || !sel->info.enabled_streamout_buffer_mask) &&
3548       (sel->stage != MESA_SHADER_GEOMETRY || sel->info.num_stream_output_components[0]) &&
3549       (sel->stage != MESA_SHADER_VERTEX ||
3550        (!sel->info.base.vs.blit_sgprs_amd &&
3551         !sel->info.base.vs.window_space_position));
3552 
3553    sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */
3554 
3555    if (ngg_culling_allowed) {
3556       if (sel->stage == MESA_SHADER_VERTEX) {
3557          if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL))
3558             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3559          else
3560             sel->ngg_cull_vert_threshold = 128;
3561       } else if (sel->stage == MESA_SHADER_TESS_EVAL ||
3562                  sel->stage == MESA_SHADER_GEOMETRY) {
3563          if (sel->rast_prim != MESA_PRIM_POINTS)
3564             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3565       }
3566    }
3567 
3568    (void)simple_mtx_init(&sel->mutex, mtx_plain);
3569 
3570    si_schedule_initial_compile(sctx, sel->stage, &sel->ready, &sel->compiler_ctx_state,
3571                                sel, si_init_shader_selector_async);
3572    return sel;
3573 }
3574 
si_create_shader(struct pipe_context * ctx,const struct pipe_shader_state * state)3575 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
3576 {
3577    struct si_context *sctx = (struct si_context *)ctx;
3578    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3579    bool cache_hit;
3580    struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
3581       ctx, &sscreen->live_shader_cache, state, &cache_hit);
3582 
3583    if (sel && cache_hit && sctx->debug.debug_message) {
3584       for (unsigned i = 0; i < 2; i++) {
3585          if (sel->main_shader_part[i])
3586             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part[i], &sctx->debug);
3587          if (sel->main_shader_part_ls[i])
3588             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls[i], &sctx->debug);
3589          if (sel->main_shader_part_ngg[i])
3590             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg[i], &sctx->debug);
3591          if (sel->main_shader_part_ngg_es[i])
3592             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es[i], &sctx->debug);
3593       }
3594 
3595       if (sel->main_shader_part_es)
3596          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
3597    }
3598    return sel;
3599 }
3600 
si_update_streamout_state(struct si_context * sctx)3601 static void si_update_streamout_state(struct si_context *sctx)
3602 {
3603    struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
3604 
3605    if (!shader_with_so)
3606       return;
3607 
3608    sctx->streamout.enabled_stream_buffers_mask = shader_with_so->info.enabled_streamout_buffer_mask;
3609    sctx->streamout.stride_in_dw = shader_with_so->info.base.xfb_stride;
3610 
3611    /* GDS must be allocated when any GDS instructions are used, otherwise it hangs. */
3612    if (sctx->gfx_level >= GFX11 && sctx->gfx_level < GFX12 &&
3613        shader_with_so->info.enabled_streamout_buffer_mask && !sctx->screen->gds_oa) {
3614       /* Gfx11 only uses GDS OA, not GDS memory. */
3615       simple_mtx_lock(&sctx->screen->gds_mutex);
3616       if (!sctx->screen->gds_oa) {
3617          sctx->screen->gds_oa = sctx->ws->buffer_create(sctx->ws, 1, 1, RADEON_DOMAIN_OA,
3618                                                         RADEON_FLAG_DRIVER_INTERNAL);
3619          assert(sctx->screen->gds_oa);
3620       }
3621       simple_mtx_unlock(&sctx->screen->gds_mutex);
3622 
3623       if (sctx->screen->gds_oa)
3624          sctx->ws->cs_add_buffer(&sctx->gfx_cs, sctx->screen->gds_oa, RADEON_USAGE_READWRITE,
3625                                  (enum radeon_bo_domain)0);
3626    }
3627 }
3628 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)3629 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
3630                                 struct si_shader *old_hw_vs_variant,
3631                                 struct si_shader_selector *next_hw_vs,
3632                                 struct si_shader *next_hw_vs_variant)
3633 {
3634    if (next_hw_vs &&
3635        (!old_hw_vs ||
3636         (old_hw_vs->stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
3637         (next_hw_vs->stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
3638         old_hw_vs->info.clipdist_mask != next_hw_vs->info.clipdist_mask ||
3639         old_hw_vs->info.culldist_mask != next_hw_vs->info.culldist_mask || !old_hw_vs_variant ||
3640         !next_hw_vs_variant ||
3641         old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl))
3642       si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3643 }
3644 
si_update_rasterized_prim(struct si_context * sctx)3645 static void si_update_rasterized_prim(struct si_context *sctx)
3646 {
3647    struct si_shader *hw_vs = si_get_vs(sctx)->current;
3648 
3649    if (sctx->shader.gs.cso) {
3650       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3651       si_set_rasterized_prim(sctx, sctx->shader.gs.cso->rast_prim, hw_vs, sctx->ngg);
3652    } else if (sctx->shader.tes.cso) {
3653       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3654       si_set_rasterized_prim(sctx, sctx->shader.tes.cso->rast_prim, hw_vs, sctx->ngg);
3655    } else {
3656       /* The rasterized prim is determined by draw calls. */
3657    }
3658 
3659    /* This must be done unconditionally because it also depends on si_shader fields. */
3660    si_update_ngg_sgpr_state_out_prim(sctx, hw_vs, sctx->ngg);
3661 }
3662 
si_update_common_shader_state(struct si_context * sctx,struct si_shader_selector * sel,enum pipe_shader_type type)3663 static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel,
3664                                           enum pipe_shader_type type)
3665 {
3666    si_set_active_descriptors_for_shader(sctx, sel);
3667 
3668    sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) ||
3669                                   si_shader_uses_bindless_samplers(sctx->shader.gs.cso) ||
3670                                   si_shader_uses_bindless_samplers(sctx->shader.ps.cso) ||
3671                                   si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) ||
3672                                   si_shader_uses_bindless_samplers(sctx->shader.tes.cso);
3673    sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) ||
3674                                 si_shader_uses_bindless_images(sctx->shader.gs.cso) ||
3675                                 si_shader_uses_bindless_images(sctx->shader.ps.cso) ||
3676                                 si_shader_uses_bindless_images(sctx->shader.tcs.cso) ||
3677                                 si_shader_uses_bindless_images(sctx->shader.tes.cso);
3678 
3679    if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY)
3680       sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */
3681 
3682    si_invalidate_inlinable_uniforms(sctx, type);
3683    sctx->do_update_shaders = true;
3684 }
3685 
si_update_last_vgt_stage_state(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant)3686 static void si_update_last_vgt_stage_state(struct si_context *sctx,
3687                                            /* hw_vs refers to the last VGT stage */
3688                                            struct si_shader_selector *old_hw_vs,
3689                                            struct si_shader *old_hw_vs_variant)
3690 {
3691    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
3692 
3693    si_update_vs_viewport_state(sctx);
3694    si_update_streamout_state(sctx);
3695    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, hw_vs->cso, hw_vs->current);
3696    si_update_rasterized_prim(sctx);
3697 
3698    /* Clear kill_pointsize because we only want it to be set in the last shader before PS. */
3699    sctx->shader.vs.key.ge.opt.kill_pointsize = 0;
3700    sctx->shader.tes.key.ge.opt.kill_pointsize = 0;
3701    sctx->shader.gs.key.ge.opt.kill_pointsize = 0;
3702    si_vs_ps_key_update_rast_prim_smooth_stipple(sctx);
3703 }
3704 
si_bind_vs_shader(struct pipe_context * ctx,void * state)3705 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3706 {
3707    struct si_context *sctx = (struct si_context *)ctx;
3708    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3709    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3710    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3711 
3712    if (sctx->shader.vs.cso == sel)
3713       return;
3714 
3715    sctx->shader.vs.cso = sel;
3716    sctx->shader.vs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3717    sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
3718    sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false;
3719 
3720    if (si_update_ngg(sctx))
3721       si_shader_change_notify(sctx);
3722 
3723    si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX);
3724    si_select_draw_vbo(sctx);
3725    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3726    si_vs_key_update_inputs(sctx);
3727 
3728    if (sctx->screen->dpbb_allowed) {
3729       bool force_off = sel && sel->info.options & SI_PROFILE_VS_NO_BINNING;
3730 
3731       if (force_off != sctx->dpbb_force_off_profile_vs) {
3732          sctx->dpbb_force_off_profile_vs = force_off;
3733          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3734       }
3735    }
3736 }
3737 
si_update_tess_uses_prim_id(struct si_context * sctx)3738 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3739 {
3740    sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3741       (sctx->shader.tes.cso && sctx->shader.tes.cso->info.uses_primid) ||
3742       (sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) ||
3743       (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) ||
3744       (sctx->shader.ps.cso && !sctx->shader.gs.cso && sctx->shader.ps.cso->info.uses_primid);
3745 }
3746 
si_update_ngg(struct si_context * sctx)3747 bool si_update_ngg(struct si_context *sctx)
3748 {
3749    if (!sctx->screen->use_ngg) {
3750       assert(!sctx->ngg);
3751       return false;
3752    }
3753 
3754    bool new_ngg = true;
3755 
3756    if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) {
3757       new_ngg = false;
3758    } else if (sctx->gfx_level < GFX11) {
3759       struct si_shader_selector *last = si_get_vs(sctx)->cso;
3760 
3761       if ((last && last->info.enabled_streamout_buffer_mask) ||
3762           sctx->streamout.prims_gen_query_enabled)
3763          new_ngg = false;
3764    }
3765 
3766    if (new_ngg != sctx->ngg) {
3767       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3768        * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3769        * pointers are set.
3770        */
3771       if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) {
3772          sctx->barrier_flags |= SI_BARRIER_EVENT_VGT_FLUSH;
3773          si_mark_atom_dirty(sctx, &sctx->atoms.s.barrier);
3774 
3775          if (sctx->gfx_level == GFX10) {
3776             /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */
3777             si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3778          }
3779       }
3780 
3781       sctx->ngg = new_ngg;
3782       si_select_draw_vbo(sctx);
3783       return true;
3784    }
3785    return false;
3786 }
3787 
si_bind_gs_shader(struct pipe_context * ctx,void * state)3788 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3789 {
3790    struct si_context *sctx = (struct si_context *)ctx;
3791    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3792    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3793    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3794    bool enable_changed = !!sctx->shader.gs.cso != !!sel;
3795    bool ngg_changed;
3796 
3797    if (sctx->shader.gs.cso == sel)
3798       return;
3799 
3800    sctx->shader.gs.cso = sel;
3801    sctx->shader.gs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3802    sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3803 
3804    si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY);
3805    si_select_draw_vbo(sctx);
3806 
3807    ngg_changed = si_update_ngg(sctx);
3808    if (ngg_changed || enable_changed)
3809       si_shader_change_notify(sctx);
3810    if (enable_changed) {
3811       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3812          si_update_tess_uses_prim_id(sctx);
3813    }
3814    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3815 }
3816 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)3817 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3818 {
3819    struct si_context *sctx = (struct si_context *)ctx;
3820    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3821    bool enable_changed = !!sctx->shader.tcs.cso != !!sel;
3822 
3823    /* Note it could happen that user shader sel is same as fixed function shader,
3824     * so we should update this field even sctx->shader.tcs.cso == sel.
3825     */
3826    sctx->is_user_tcs = !!sel;
3827 
3828    if (sctx->shader.tcs.cso == sel)
3829       return;
3830 
3831    sctx->shader.tcs.cso = sel;
3832    sctx->shader.tcs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3833    si_update_tess_uses_prim_id(sctx);
3834    si_update_tess_in_out_patch_vertices(sctx);
3835 
3836    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL);
3837 
3838    if (enable_changed)
3839       sctx->last_tcs = NULL; /* invalidate derived tess state */
3840 }
3841 
si_bind_tes_shader(struct pipe_context * ctx,void * state)3842 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3843 {
3844    struct si_context *sctx = (struct si_context *)ctx;
3845    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3846    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3847    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3848    bool enable_changed = !!sctx->shader.tes.cso != !!sel;
3849 
3850    if (sctx->shader.tes.cso == sel)
3851       return;
3852 
3853    sctx->shader.tes.cso = sel;
3854    sctx->shader.tes.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3855    sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3856    si_update_tess_uses_prim_id(sctx);
3857 
3858    sctx->shader.tcs.key.ge.opt.tes_prim_mode =
3859       sel ? sel->info.base.tess._primitive_mode : 0;
3860 
3861    sctx->shader.tcs.key.ge.opt.tes_reads_tess_factors =
3862       sel ? sel->info.reads_tess_factors : 0;
3863 
3864    if (sel) {
3865       sctx->tcs_offchip_layout &= 0x1fffffff;
3866       sctx->tcs_offchip_layout |=
3867          (sel->info.base.tess._primitive_mode << 29) |
3868          (sel->info.reads_tess_factors << 31);
3869 
3870       si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
3871    }
3872 
3873    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL);
3874    si_select_draw_vbo(sctx);
3875 
3876    bool ngg_changed = si_update_ngg(sctx);
3877    if (ngg_changed || enable_changed)
3878       si_shader_change_notify(sctx);
3879    if (enable_changed)
3880       sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3881    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3882 }
3883 
si_update_vrs_flat_shading(struct si_context * sctx)3884 void si_update_vrs_flat_shading(struct si_context *sctx)
3885 {
3886    if (sctx->gfx_level >= GFX10_3 && sctx->shader.ps.cso) {
3887       struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3888       struct si_shader_info *info = &sctx->shader.ps.cso->info;
3889       bool allow_flat_shading =
3890          info->allow_flat_shading && !sctx->framebuffer.disable_vrs_flat_shading &&
3891          !rs->line_smooth && !rs->poly_smooth && !rs->poly_stipple_enable &&
3892          !rs->point_smooth && (rs->flatshade || !info->uses_interp_color);
3893 
3894       if (sctx->allow_flat_shading != allow_flat_shading) {
3895          sctx->allow_flat_shading = allow_flat_shading;
3896          si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3897       }
3898    }
3899 }
3900 
si_bind_ps_shader(struct pipe_context * ctx,void * state)3901 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3902 {
3903    struct si_context *sctx = (struct si_context *)ctx;
3904    struct si_shader_selector *old_sel = sctx->shader.ps.cso;
3905    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3906 
3907    /* skip if supplied shader is one already in use */
3908    if (old_sel == sel)
3909       return;
3910 
3911    sctx->shader.ps.cso = sel;
3912    sctx->shader.ps.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3913 
3914    si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT);
3915    if (sel) {
3916       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3917          si_update_tess_uses_prim_id(sctx);
3918 
3919       if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3920          si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3921 
3922       if (sctx->screen->info.has_out_of_order_rast &&
3923           (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
3924            old_sel->info.base.fs.early_fragment_tests !=
3925               sel->info.base.fs.early_fragment_tests))
3926          si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3927    }
3928    si_update_ps_colorbuf0_slot(sctx);
3929 
3930    si_ps_key_update_framebuffer(sctx);
3931    si_ps_key_update_framebuffer_blend_rasterizer(sctx);
3932    si_ps_key_update_rasterizer(sctx);
3933    si_ps_key_update_dsa(sctx);
3934    si_ps_key_update_sample_shading(sctx);
3935    si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx);
3936    si_update_ps_inputs_read_or_disabled(sctx);
3937    si_update_vrs_flat_shading(sctx);
3938 
3939    if (sctx->screen->dpbb_allowed) {
3940       bool force_off = sel && sel->info.options & SI_PROFILE_GFX9_GFX10_PS_NO_BINNING &&
3941                        (sctx->gfx_level >= GFX9 && sctx->gfx_level <= GFX10_3);
3942 
3943       if (force_off != sctx->dpbb_force_off_profile_ps) {
3944          sctx->dpbb_force_off_profile_ps = force_off;
3945          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3946       }
3947    }
3948 }
3949 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)3950 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3951 {
3952    if (shader->is_optimized) {
3953       util_queue_drop_job(&sctx->screen->shader_compiler_queue_opt_variants, &shader->ready);
3954    }
3955 
3956    util_queue_fence_destroy(&shader->ready);
3957 
3958    /* If destroyed shaders were not unbound, the next compiled
3959     * shader variant could get the same pointer address and so
3960     * binding it to the same shader stage would be considered
3961     * a no-op, causing random behavior.
3962     */
3963    int state_index = -1;
3964 
3965    switch (shader->selector->stage) {
3966    case MESA_SHADER_VERTEX:
3967       if (shader->key.ge.as_ls) {
3968          if (sctx->gfx_level <= GFX8)
3969             state_index = SI_STATE_IDX(ls);
3970       } else if (shader->key.ge.as_es) {
3971          if (sctx->gfx_level <= GFX8)
3972             state_index = SI_STATE_IDX(es);
3973       } else if (shader->key.ge.as_ngg) {
3974          state_index = SI_STATE_IDX(gs);
3975       } else {
3976          state_index = SI_STATE_IDX(vs);
3977       }
3978       break;
3979    case MESA_SHADER_TESS_CTRL:
3980       state_index = SI_STATE_IDX(hs);
3981       break;
3982    case MESA_SHADER_TESS_EVAL:
3983       if (shader->key.ge.as_es) {
3984          if (sctx->gfx_level <= GFX8)
3985             state_index = SI_STATE_IDX(es);
3986       } else if (shader->key.ge.as_ngg) {
3987          state_index = SI_STATE_IDX(gs);
3988       } else {
3989          state_index = SI_STATE_IDX(vs);
3990       }
3991       break;
3992    case MESA_SHADER_GEOMETRY:
3993       if (shader->is_gs_copy_shader)
3994          state_index = SI_STATE_IDX(vs);
3995       else
3996          state_index = SI_STATE_IDX(gs);
3997       break;
3998    case MESA_SHADER_FRAGMENT:
3999       state_index = SI_STATE_IDX(ps);
4000       break;
4001    default:;
4002    }
4003 
4004    if (shader->gs_copy_shader)
4005       si_delete_shader(sctx, shader->gs_copy_shader);
4006 
4007    si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
4008    si_shader_destroy(shader);
4009    si_pm4_free_state(sctx, &shader->pm4, state_index);
4010 }
4011 
si_destroy_shader_selector(struct pipe_context * ctx,void * cso)4012 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
4013 {
4014    struct si_context *sctx = (struct si_context *)ctx;
4015    struct si_shader_selector *sel = (struct si_shader_selector *)cso;
4016    enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->stage);
4017 
4018    util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
4019 
4020    if (sctx->shaders[type].cso == sel) {
4021       sctx->shaders[type].cso = NULL;
4022       sctx->shaders[type].current = NULL;
4023    }
4024 
4025    for (unsigned i = 0; i < sel->variants_count; i++) {
4026       si_delete_shader(sctx, sel->variants[i]);
4027    }
4028 
4029    for (unsigned i = 0; i < 2; i++) {
4030       if (sel->main_shader_part[i])
4031          si_delete_shader(sctx, sel->main_shader_part[i]);
4032       if (sel->main_shader_part_ls[i])
4033          si_delete_shader(sctx, sel->main_shader_part_ls[i]);
4034       if (sel->main_shader_part_ngg[i])
4035          si_delete_shader(sctx, sel->main_shader_part_ngg[i]);
4036       if (sel->main_shader_part_ngg_es[i])
4037          si_delete_shader(sctx, sel->main_shader_part_ngg_es[i]);
4038    }
4039 
4040    if (sel->main_shader_part_es)
4041       si_delete_shader(sctx, sel->main_shader_part_es);
4042 
4043    free(sel->keys);
4044    free(sel->variants);
4045 
4046    util_queue_fence_destroy(&sel->ready);
4047    simple_mtx_destroy(&sel->mutex);
4048    ralloc_free(sel->nir);
4049    free(sel->nir_binary);
4050    free(sel);
4051 }
4052 
si_delete_shader_selector(struct pipe_context * ctx,void * state)4053 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
4054 {
4055    struct si_context *sctx = (struct si_context *)ctx;
4056    struct si_shader_selector *sel = (struct si_shader_selector *)state;
4057 
4058    si_shader_selector_reference(sctx, &sel, NULL);
4059 }
4060 
4061 /**
4062  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4063  */
si_cs_preamble_add_vgt_flush(struct si_context * sctx,bool tmz)4064 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx, bool tmz)
4065 {
4066    struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4067    bool *has_vgt_flush = tmz ? &sctx->cs_preamble_has_vgt_flush_tmz :
4068                                &sctx->cs_preamble_has_vgt_flush;
4069 
4070    /* We shouldn't get here if registers are shadowed. */
4071    assert(!sctx->shadowing.registers);
4072 
4073    if (*has_vgt_flush)
4074       return;
4075 
4076    /* Done by Vulkan before VGT_FLUSH. */
4077    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4078    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
4079 
4080    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4081    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4082    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
4083    ac_pm4_finalize(&pm4->base);
4084 
4085    *has_vgt_flush = true;
4086 }
4087 
4088 /**
4089  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4090  */
si_emit_vgt_flush(struct radeon_cmdbuf * cs)4091 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
4092 {
4093    radeon_begin(cs);
4094 
4095    /* This is required before VGT_FLUSH. */
4096    radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
4097 
4098    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4099    radeon_event_write(V_028A90_VGT_FLUSH);
4100    radeon_end();
4101 }
4102 
4103 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)4104 bool si_update_gs_ring_buffers(struct si_context *sctx)
4105 {
4106    assert(sctx->gfx_level < GFX11);
4107 
4108    struct si_shader_selector *es =
4109       sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso;
4110    struct si_shader_selector *gs = sctx->shader.gs.cso;
4111 
4112    /* Chip constants. */
4113    unsigned num_se = sctx->screen->info.max_se;
4114    unsigned wave_size = 64;
4115    unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
4116    /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
4117     * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
4118     */
4119    unsigned gs_vertex_reuse = (sctx->gfx_level >= GFX8 ? 32 : 16) * num_se;
4120    unsigned alignment = 256 * num_se;
4121    /* The maximum size is 63.999 MB per SE. */
4122    unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
4123 
4124    /* Calculate the minimum size. */
4125    unsigned min_esgs_ring_size = align(es->info.esgs_vertex_stride * gs_vertex_reuse * wave_size, alignment);
4126 
4127    /* These are recommended sizes, not minimum sizes. */
4128    unsigned esgs_ring_size =
4129       max_gs_waves * 2 * wave_size * es->info.esgs_vertex_stride * gs->info.gs_input_verts_per_prim;
4130    unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->info.max_gsvs_emit_size;
4131 
4132    min_esgs_ring_size = align(min_esgs_ring_size, alignment);
4133    esgs_ring_size = align(esgs_ring_size, alignment);
4134    gsvs_ring_size = align(gsvs_ring_size, alignment);
4135 
4136    esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
4137    gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
4138 
4139    /* Some rings don't have to be allocated if shaders don't use them.
4140     * (e.g. no varyings between ES and GS or GS and VS)
4141     *
4142     * GFX9 doesn't have the ESGS ring.
4143     */
4144    bool update_esgs = sctx->gfx_level <= GFX8 && esgs_ring_size &&
4145                       (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
4146    bool update_gsvs =
4147       gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
4148 
4149    if (!update_esgs && !update_gsvs)
4150       return true;
4151 
4152    if (update_esgs) {
4153       pipe_resource_reference(&sctx->esgs_ring, NULL);
4154       sctx->esgs_ring =
4155          pipe_aligned_buffer_create(sctx->b.screen,
4156                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4157                                     SI_RESOURCE_FLAG_DISCARDABLE,
4158                                     PIPE_USAGE_DEFAULT,
4159                                     esgs_ring_size, sctx->screen->info.pte_fragment_size);
4160       if (!sctx->esgs_ring)
4161          return false;
4162    }
4163 
4164    if (update_gsvs) {
4165       pipe_resource_reference(&sctx->gsvs_ring, NULL);
4166       sctx->gsvs_ring =
4167          pipe_aligned_buffer_create(sctx->b.screen,
4168                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4169                                     SI_RESOURCE_FLAG_DISCARDABLE,
4170                                     PIPE_USAGE_DEFAULT,
4171                                     gsvs_ring_size, sctx->screen->info.pte_fragment_size);
4172       if (!sctx->gsvs_ring)
4173          return false;
4174    }
4175 
4176    /* Set ring bindings. */
4177    if (sctx->esgs_ring) {
4178       assert(sctx->gfx_level <= GFX8);
4179       si_set_ring_buffer(sctx, SI_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
4180                          false, 0, 0, 0);
4181    }
4182    if (sctx->gsvs_ring) {
4183       si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
4184                          false, 0, 0, 0);
4185    }
4186 
4187    if (sctx->shadowing.registers) {
4188       /* These registers will be shadowed, so set them only once. */
4189       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4190 
4191       assert(sctx->gfx_level >= GFX7);
4192 
4193       si_emit_vgt_flush(cs);
4194 
4195       radeon_begin(cs);
4196 
4197       /* Set the GS registers. */
4198       if (sctx->esgs_ring) {
4199          assert(sctx->gfx_level <= GFX8);
4200          radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE,
4201                                 sctx->esgs_ring->width0 / 256);
4202       }
4203       if (sctx->gsvs_ring) {
4204          radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE,
4205                                 sctx->gsvs_ring->width0 / 256);
4206       }
4207       radeon_end();
4208       return true;
4209    }
4210 
4211    /* The codepath without register shadowing. */
4212    for (unsigned tmz = 0; tmz <= 1; tmz++) {
4213       struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4214       uint16_t *gs_ring_state_dw_offset = tmz ? &sctx->gs_ring_state_dw_offset_tmz :
4215                                                 &sctx->gs_ring_state_dw_offset;
4216       unsigned old_ndw = 0;
4217 
4218       si_cs_preamble_add_vgt_flush(sctx, tmz);
4219 
4220       if (!*gs_ring_state_dw_offset) {
4221          /* We are here for the first time. The packets will be added. */
4222          *gs_ring_state_dw_offset = pm4->base.ndw;
4223       } else {
4224          /* We have been here before. Overwrite the previous packets. */
4225          old_ndw = pm4->base.ndw;
4226          pm4->base.ndw = *gs_ring_state_dw_offset;
4227       }
4228 
4229       /* Unallocated rings are written to reserve the space in the pm4
4230        * (to be able to overwrite them later). */
4231       if (sctx->gfx_level >= GFX7) {
4232          if (sctx->gfx_level <= GFX8)
4233             ac_pm4_set_reg(&pm4->base, R_030900_VGT_ESGS_RING_SIZE,
4234                            sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4235          ac_pm4_set_reg(&pm4->base, R_030904_VGT_GSVS_RING_SIZE,
4236                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4237       } else {
4238          ac_pm4_set_reg(&pm4->base, R_0088C8_VGT_ESGS_RING_SIZE,
4239                         sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4240          ac_pm4_set_reg(&pm4->base, R_0088CC_VGT_GSVS_RING_SIZE,
4241                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4242       }
4243       ac_pm4_finalize(&pm4->base);
4244 
4245       if (old_ndw) {
4246          pm4->base.ndw = old_ndw;
4247          pm4->base.last_opcode = 255; /* invalid opcode (we don't save the last opcode) */
4248       }
4249    }
4250 
4251    /* Flush the context to re-emit both cs_preamble states. */
4252    sctx->initial_gfx_cs_size = 0; /* force flush */
4253    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
4254 
4255    return true;
4256 }
4257 
si_shader_lock(struct si_shader * shader)4258 static void si_shader_lock(struct si_shader *shader)
4259 {
4260    simple_mtx_lock(&shader->selector->mutex);
4261    if (shader->previous_stage_sel) {
4262       assert(shader->previous_stage_sel != shader->selector);
4263       simple_mtx_lock(&shader->previous_stage_sel->mutex);
4264    }
4265 }
4266 
si_shader_unlock(struct si_shader * shader)4267 static void si_shader_unlock(struct si_shader *shader)
4268 {
4269    if (shader->previous_stage_sel)
4270       simple_mtx_unlock(&shader->previous_stage_sel->mutex);
4271    simple_mtx_unlock(&shader->selector->mutex);
4272 }
4273 
4274 /**
4275  * @returns 1 if \p sel has been updated to use a new scratch buffer
4276  *          0 if not
4277  *          < 0 if there was a failure
4278  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)4279 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
4280 {
4281    uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
4282 
4283    if (!shader)
4284       return 0;
4285 
4286    /* This shader doesn't need a scratch buffer */
4287    if (shader->config.scratch_bytes_per_wave == 0)
4288       return 0;
4289 
4290    /* Prevent race conditions when updating:
4291     * - si_shader::scratch_va
4292     * - si_shader::binary::code
4293     * - si_shader::previous_stage::binary::code.
4294     */
4295    si_shader_lock(shader);
4296 
4297    /* This shader is already configured to use the current
4298     * scratch buffer. */
4299    if (shader->scratch_va == scratch_va) {
4300       si_shader_unlock(shader);
4301       return 0;
4302    }
4303 
4304    assert(sctx->scratch_buffer);
4305 
4306    /* Replace the shader bo with a new bo that has the relocs applied. */
4307    if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
4308       si_shader_unlock(shader);
4309       return -1;
4310    }
4311 
4312    /* Update the shader state to use the new shader bo. */
4313    si_shader_init_pm4_state(sctx->screen, shader);
4314    shader->scratch_va = scratch_va;
4315 
4316    si_shader_unlock(shader);
4317    return 1;
4318 }
4319 
si_update_scratch_relocs(struct si_context * sctx)4320 static bool si_update_scratch_relocs(struct si_context *sctx)
4321 {
4322    int r;
4323 
4324    /* Update the shaders, so that they are using the latest scratch.
4325     * The scratch buffer may have been changed since these shaders were
4326     * last used, so we still need to try to update them, even if they
4327     * require scratch buffers smaller than the current size.
4328     */
4329    r = si_update_scratch_buffer(sctx, sctx->shader.ps.current);
4330    if (r < 0)
4331       return false;
4332    if (r == 1)
4333       si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
4334 
4335    r = si_update_scratch_buffer(sctx, sctx->shader.gs.current);
4336    if (r < 0)
4337       return false;
4338    if (r == 1)
4339       si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
4340 
4341    r = si_update_scratch_buffer(sctx, sctx->shader.tcs.current);
4342    if (r < 0)
4343       return false;
4344    if (r == 1)
4345       si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current);
4346 
4347    /* VS can be bound as LS, ES, or VS. */
4348    r = si_update_scratch_buffer(sctx, sctx->shader.vs.current);
4349    if (r < 0)
4350       return false;
4351    if (r == 1) {
4352       if (sctx->shader.vs.current->key.ge.as_ls)
4353          si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
4354       else if (sctx->shader.vs.current->key.ge.as_es)
4355          si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
4356       else if (sctx->shader.vs.current->key.ge.as_ngg)
4357          si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
4358       else
4359          si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
4360    }
4361 
4362    /* TES can be bound as ES or VS. */
4363    r = si_update_scratch_buffer(sctx, sctx->shader.tes.current);
4364    if (r < 0)
4365       return false;
4366    if (r == 1) {
4367       if (sctx->shader.tes.current->key.ge.as_es)
4368          si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
4369       else if (sctx->shader.tes.current->key.ge.as_ngg)
4370          si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
4371       else
4372          si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
4373    }
4374 
4375    return true;
4376 }
4377 
si_update_spi_tmpring_size(struct si_context * sctx,unsigned bytes)4378 bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes)
4379 {
4380    unsigned spi_tmpring_size;
4381    ac_get_scratch_tmpring_size(&sctx->screen->info, bytes,
4382                                &sctx->max_seen_scratch_bytes_per_wave, &spi_tmpring_size);
4383 
4384    unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave *
4385                                   sctx->screen->info.max_scratch_waves;
4386 
4387    if (scratch_needed_size > 0) {
4388       if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
4389          /* Create a bigger scratch buffer */
4390          si_resource_reference(&sctx->scratch_buffer, NULL);
4391 
4392          sctx->scratch_buffer = si_aligned_buffer_create(
4393             &sctx->screen->b,
4394             PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4395             SI_RESOURCE_FLAG_DISCARDABLE,
4396             PIPE_USAGE_DEFAULT, scratch_needed_size,
4397             sctx->screen->info.pte_fragment_size);
4398          if (!sctx->scratch_buffer)
4399             return false;
4400       }
4401 
4402       if (!sctx->screen->info.has_scratch_base_registers && !si_update_scratch_relocs(sctx))
4403          return false;
4404    }
4405 
4406    if (spi_tmpring_size != sctx->spi_tmpring_size) {
4407       sctx->spi_tmpring_size = spi_tmpring_size;
4408       si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
4409    }
4410    return true;
4411 }
4412 
si_init_tess_factor_ring(struct si_context * sctx)4413 void si_init_tess_factor_ring(struct si_context *sctx)
4414 {
4415    struct si_screen *sscreen = sctx->screen;
4416    assert(!sctx->has_tessellation);
4417 
4418    if (sctx->has_tessellation)
4419       return;
4420 
4421    simple_mtx_lock(&sscreen->tess_ring_lock);
4422 
4423    if (!sscreen->tess_rings) {
4424       /* The address must be aligned to 2^19, because the shader only
4425        * receives the high 13 bits. Align it to 2MB to match the GPU page size.
4426        */
4427       sscreen->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
4428                                                        PIPE_RESOURCE_FLAG_UNMAPPABLE |
4429                                                        SI_RESOURCE_FLAG_32BIT |
4430                                                        SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4431                                                        SI_RESOURCE_FLAG_DISCARDABLE,
4432                                                        PIPE_USAGE_DEFAULT,
4433                                                        sscreen->hs.tess_offchip_ring_size +
4434                                                        sscreen->hs.tess_factor_ring_size,
4435                                                        2 * 1024 * 1024);
4436       if (!sscreen->tess_rings) {
4437          simple_mtx_unlock(&sscreen->tess_ring_lock);
4438          return;
4439       }
4440 
4441       if (sscreen->info.has_tmz_support) {
4442          sscreen->tess_rings_tmz = pipe_aligned_buffer_create(sctx->b.screen,
4443                                                               PIPE_RESOURCE_FLAG_UNMAPPABLE |
4444                                                               PIPE_RESOURCE_FLAG_ENCRYPTED |
4445                                                               SI_RESOURCE_FLAG_32BIT |
4446                                                               SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4447                                                               SI_RESOURCE_FLAG_DISCARDABLE,
4448                                                               PIPE_USAGE_DEFAULT,
4449                                                               sscreen->hs.tess_offchip_ring_size +
4450                                                               sscreen->hs.tess_factor_ring_size,
4451                                                               2 * 1024 * 1024);
4452       }
4453    }
4454 
4455    simple_mtx_unlock(&sscreen->tess_ring_lock);
4456    sctx->has_tessellation = true;
4457 
4458    si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_ge_ring_state);
4459 }
4460 
si_emit_vgt_pipeline_state(struct si_context * sctx,unsigned index)4461 static void si_emit_vgt_pipeline_state(struct si_context *sctx, unsigned index)
4462 {
4463    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4464 
4465    radeon_begin(cs);
4466    radeon_opt_set_context_reg(sctx->gfx_level >= GFX12 ?
4467                                  R_028A98_VGT_SHADER_STAGES_EN :
4468                                  R_028B54_VGT_SHADER_STAGES_EN,
4469                               SI_TRACKED_VGT_SHADER_STAGES_EN, sctx->vgt_shader_stages_en);
4470    if (sctx->gfx_level == GFX10_3) {
4471       /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
4472       bool has_legacy_tess_gs = G_028B54_HS_EN(sctx->vgt_shader_stages_en) &&
4473                                 G_028B54_GS_EN(sctx->vgt_shader_stages_en) &&
4474                                 !G_028B54_PRIMGEN_EN(sctx->vgt_shader_stages_en); /* !NGG */
4475 
4476       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
4477                                  S_028AB4_REUSE_OFF(has_legacy_tess_gs));
4478    }
4479    radeon_end_update_context_roll();
4480 
4481    if (sctx->gfx_level >= GFX10) {
4482       uint32_t ge_cntl = sctx->ge_cntl;
4483 
4484       if (sctx->gfx_level < GFX11 && sctx->shader.tes.cso) {
4485          /* This must be a multiple of VGT_LS_HS_CONFIG.NUM_PATCHES. */
4486          ge_cntl |= S_03096C_PRIM_GRP_SIZE_GFX10(sctx->num_patches_per_workgroup);
4487       }
4488 
4489       radeon_begin_again(cs);
4490       radeon_opt_set_uconfig_reg(R_03096C_GE_CNTL, SI_TRACKED_GE_CNTL, ge_cntl);
4491       radeon_end();
4492    }
4493 }
4494 
si_emit_scratch_state(struct si_context * sctx,unsigned index)4495 static void si_emit_scratch_state(struct si_context *sctx, unsigned index)
4496 {
4497    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4498 
4499    radeon_begin(cs);
4500    if (sctx->gfx_level >= GFX11) {
4501       radeon_set_context_reg_seq(R_0286E8_SPI_TMPRING_SIZE, 3);
4502       radeon_emit(sctx->spi_tmpring_size);                  /* SPI_TMPRING_SIZE */
4503       radeon_emit(sctx->scratch_buffer->gpu_address >> 8);  /* SPI_GFX_SCRATCH_BASE_LO */
4504       radeon_emit(sctx->scratch_buffer->gpu_address >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
4505    } else {
4506       radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4507    }
4508    radeon_end();
4509 
4510    if (sctx->scratch_buffer) {
4511       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer,
4512                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER);
4513    }
4514 }
4515 
4516 struct si_fixed_func_tcs_shader_key {
4517    uint64_t outputs_written;
4518    uint8_t vertices_out;
4519 };
4520 
4521 DERIVE_HASH_TABLE(si_fixed_func_tcs_shader_key);
4522 
si_set_tcs_to_fixed_func_shader(struct si_context * sctx)4523 bool si_set_tcs_to_fixed_func_shader(struct si_context *sctx)
4524 {
4525    if (!sctx->fixed_func_tcs_shader_cache) {
4526       sctx->fixed_func_tcs_shader_cache = si_fixed_func_tcs_shader_key_table_create(NULL);
4527    }
4528 
4529    struct si_fixed_func_tcs_shader_key key;
4530    key.outputs_written = sctx->shader.vs.cso->info.outputs_written_before_tes_gs;
4531    key.vertices_out = sctx->patch_vertices;
4532 
4533    struct hash_entry *entry = _mesa_hash_table_search(
4534       sctx->fixed_func_tcs_shader_cache, &key);
4535 
4536    struct si_shader_selector *tcs;
4537    if (entry)
4538       tcs = (struct si_shader_selector *)entry->data;
4539    else {
4540       tcs = (struct si_shader_selector *)si_create_passthrough_tcs(sctx);
4541       if (!tcs)
4542          return false;
4543       _mesa_hash_table_insert(sctx->fixed_func_tcs_shader_cache, &key, (void *)tcs);
4544    }
4545 
4546    sctx->shader.tcs.cso = tcs;
4547    return true;
4548 }
4549 
si_update_tess_in_out_patch_vertices(struct si_context * sctx)4550 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx)
4551 {
4552    if (sctx->is_user_tcs) {
4553       struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4554 
4555       bool same_patch_vertices =
4556          sctx->gfx_level >= GFX9 &&
4557          sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out;
4558 
4559       if (sctx->shader.tcs.key.ge.opt.same_patch_vertices != same_patch_vertices) {
4560          sctx->shader.tcs.key.ge.opt.same_patch_vertices = same_patch_vertices;
4561          sctx->do_update_shaders = true;
4562       }
4563    } else {
4564       /* These fields are static for fixed function TCS. So no need to set
4565        * do_update_shaders between fixed-TCS draws. As fixed-TCS to user-TCS
4566        * or opposite, do_update_shaders should already be set by bind state.
4567        */
4568       sctx->shader.tcs.key.ge.opt.same_patch_vertices = sctx->gfx_level >= GFX9;
4569 
4570       /* User may only change patch vertices, needs to update fixed func TCS. */
4571       if (sctx->shader.tcs.cso &&
4572           sctx->shader.tcs.cso->info.base.tess.tcs_vertices_out != sctx->patch_vertices)
4573          sctx->do_update_shaders = true;
4574    }
4575 }
4576 
si_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)4577 static void si_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
4578 {
4579    struct si_context *sctx = (struct si_context *)ctx;
4580 
4581    if (sctx->patch_vertices != patch_vertices) {
4582       sctx->patch_vertices = patch_vertices;
4583       si_update_tess_in_out_patch_vertices(sctx);
4584       if (sctx->shader.tcs.current) {
4585          /* Update the io layout now if possible,
4586           * otherwise make sure it's done by si_update_shaders.
4587           */
4588          if (sctx->has_tessellation)
4589             si_update_tess_io_layout_state(sctx);
4590          else
4591             sctx->do_update_shaders = true;
4592       }
4593 
4594       /* Gfx12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. Make sure
4595        * the register is updated.
4596        */
4597       if (sctx->gfx_level >= GFX12 && sctx->last_prim == MESA_PRIM_PATCHES)
4598          sctx->last_prim = -1;
4599    }
4600 }
4601 
si_shader_lshs_vertex_stride(struct si_shader * ls)4602 unsigned si_shader_lshs_vertex_stride(struct si_shader *ls)
4603 {
4604    unsigned num_slots;
4605 
4606    if (ls->selector->stage == MESA_SHADER_VERTEX && !ls->next_shader) {
4607       assert(ls->key.ge.as_ls);
4608       assert(ls->selector->screen->info.gfx_level <= GFX8 || !ls->is_monolithic);
4609       num_slots = util_last_bit64(ls->selector->info.outputs_written_before_tes_gs);
4610    } else {
4611       struct si_shader *tcs = ls->next_shader ? ls->next_shader : ls;
4612 
4613       assert(tcs->selector->stage == MESA_SHADER_TESS_CTRL);
4614       assert(tcs->selector->screen->info.gfx_level >= GFX9);
4615 
4616       if (tcs->is_monolithic) {
4617          uint64_t lds_inputs_read = tcs->selector->info.base.inputs_read;
4618 
4619          /* Don't allocate LDS for inputs passed via VGPRs. */
4620          if (tcs->key.ge.opt.same_patch_vertices)
4621             lds_inputs_read &= ~tcs->selector->info.tcs_vgpr_only_inputs;
4622 
4623          /* NIR lowering passes pack LS outputs/HS inputs if the usage masks of both are known. */
4624          num_slots = util_bitcount64(lds_inputs_read);
4625       } else {
4626          num_slots = util_last_bit64(tcs->previous_stage_sel->info.outputs_written_before_tes_gs);
4627       }
4628    }
4629 
4630    /* Add 1 dword to reduce LDS bank conflicts, so that each vertex starts on a different LDS
4631     * bank.
4632     */
4633    return num_slots ? num_slots * 16 + 4 : 0;
4634 }
4635 
4636 /**
4637  * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
4638  * LS.LDS_SIZE is shared by all 3 shader stages.
4639  *
4640  * The information about LDS and other non-compile-time parameters is then
4641  * written to userdata SGPRs.
4642  *
4643  * This depends on:
4644  * - patch_vertices
4645  * - VS and the currently selected shader variant (called by si_update_shaders)
4646  * - TCS and the currently selected shader variant (called by si_update_shaders)
4647  * - tess_uses_prim_id (called by si_update_shaders)
4648  * - sh_base[TESS_EVAL] depending on GS on/off (called by si_update_shaders)
4649  */
si_update_tess_io_layout_state(struct si_context * sctx)4650 void si_update_tess_io_layout_state(struct si_context *sctx)
4651 {
4652    struct si_shader *ls_current;
4653    struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4654    unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
4655    bool has_primid_instancing_bug = sctx->gfx_level == GFX6 && sctx->screen->info.max_se == 1;
4656    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4657    uint8_t num_tcs_input_cp = sctx->patch_vertices;
4658 
4659    assert(sctx->shader.tcs.current);
4660 
4661    /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
4662    if (sctx->gfx_level >= GFX9) {
4663       ls_current = sctx->shader.tcs.current;
4664    } else {
4665       ls_current = sctx->shader.vs.current;
4666 
4667       if (!ls_current) {
4668          sctx->do_update_shaders = true;
4669          return;
4670       }
4671    }
4672 
4673    if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
4674        sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
4675        (!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid)))
4676       return;
4677 
4678    sctx->last_ls = ls_current;
4679    sctx->last_tcs = tcs;
4680    sctx->last_tes_sh_base = tes_sh_base;
4681    sctx->last_num_tcs_input_cp = num_tcs_input_cp;
4682    sctx->last_tess_uses_primid = tess_uses_primid;
4683 
4684    /* This calculates how shader inputs and outputs among VS, TCS, and TES
4685     * are laid out in LDS. */
4686    unsigned num_tcs_outputs = util_last_bit64(tcs->info.outputs_written_before_tes_gs);
4687    unsigned num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
4688    unsigned num_tcs_patch_outputs = util_last_bit64(tcs->info.patch_outputs_written);
4689 
4690    unsigned input_vertex_size = si_shader_lshs_vertex_stride(ls_current);
4691    unsigned num_vs_outputs = input_vertex_size / 16;
4692    unsigned output_vertex_size = num_tcs_outputs * 16;
4693    unsigned input_patch_size = num_tcs_input_cp * input_vertex_size;
4694 
4695    unsigned pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
4696    unsigned output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
4697    unsigned lds_per_patch;
4698 
4699    /* Compute the LDS size per patch.
4700     *
4701     * LDS is used to store TCS outputs if they are read, and to store tess
4702     * factors if they are not defined in all invocations.
4703     */
4704    if (tcs->info.base.outputs_read ||
4705        tcs->info.base.patch_outputs_read ||
4706        !tcs->info.tessfactors_are_def_in_all_invocs) {
4707       lds_per_patch = input_patch_size + output_patch_size;
4708    } else {
4709       /* LDS will only store TCS inputs. The offchip buffer will only store TCS outputs. */
4710       lds_per_patch = MAX2(input_patch_size, output_patch_size);
4711    }
4712 
4713    unsigned num_patches =
4714       ac_compute_num_tess_patches(&sctx->screen->info, num_tcs_input_cp,
4715                                   num_tcs_output_cp, output_patch_size,
4716                                   lds_per_patch, ls_current->wave_size,
4717                                   tess_uses_primid);
4718 
4719    if (sctx->num_patches_per_workgroup != num_patches) {
4720       sctx->num_patches_per_workgroup = num_patches;
4721       si_mark_atom_dirty(sctx, &sctx->atoms.s.vgt_pipeline_state);
4722    }
4723 
4724    /* Compute userdata SGPRs. */
4725    assert(num_tcs_input_cp <= 32);
4726    assert(num_tcs_output_cp <= 32);
4727    assert(num_patches <= 128);
4728    assert(num_vs_outputs <= 63);
4729    assert(num_tcs_outputs <= 63);
4730 
4731    uint64_t ring_va =
4732       sctx->ws->cs_is_secure(&sctx->gfx_cs) ?
4733           si_resource(sctx->screen->tess_rings_tmz)->gpu_address :
4734           si_resource(sctx->screen->tess_rings)->gpu_address;
4735    assert((ring_va & u_bit_consecutive(0, 19)) == 0);
4736 
4737    sctx->tes_offchip_ring_va_sgpr = ring_va;
4738    sctx->tcs_offchip_layout &= 0xe0000000;
4739    sctx->tcs_offchip_layout |=
4740       (num_patches - 1) | ((num_tcs_output_cp - 1) << 7) | ((num_tcs_input_cp - 1) << 12) |
4741       (num_vs_outputs << 17) | (num_tcs_outputs << 23);
4742 
4743    /* Compute the LDS size. */
4744    unsigned lds_size = ac_compute_tess_lds_size(&sctx->screen->info, lds_per_patch, num_patches);
4745 
4746    /* We should be able to support in-shader LDS use with LLVM >= 9
4747     * by just adding the lds_sizes together, but it has never
4748     * been tested. */
4749    assert(ls_current->config.lds_size == 0);
4750 
4751    unsigned ls_hs_rsrc2;
4752 
4753    if (sctx->gfx_level >= GFX9) {
4754       ls_hs_rsrc2 = sctx->shader.tcs.current->config.rsrc2;
4755 
4756       if (sctx->gfx_level >= GFX10)
4757          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
4758       else
4759          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
4760    } else {
4761       ls_hs_rsrc2 = sctx->shader.vs.current->config.rsrc2;
4762 
4763       si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
4764       ls_hs_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
4765    }
4766 
4767    sctx->ls_hs_rsrc2 = ls_hs_rsrc2;
4768    sctx->ls_hs_config =
4769          S_028B58_NUM_PATCHES(sctx->num_patches_per_workgroup) |
4770          S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
4771 
4772    if (sctx->gfx_level < GFX12)
4773       sctx->ls_hs_config |= S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp);
4774 
4775    si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
4776 }
4777 
gfx6_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4778 static void gfx6_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4779 {
4780    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4781 
4782    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4783       return;
4784 
4785    radeon_begin(cs);
4786    if (sctx->gfx_level >= GFX12) {
4787       gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4788                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4789 
4790       /* Set userdata SGPRs for merged LS-HS. */
4791       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4792                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4793                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4794                                 sctx->tcs_offchip_layout);
4795       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4796                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4797                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4798                                 sctx->tes_offchip_ring_va_sgpr);
4799    } else if (sctx->screen->info.has_set_sh_pairs_packed) {
4800       gfx11_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4801                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4802 
4803       /* Set userdata SGPRs for merged LS-HS. */
4804       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4805                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4806                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4807                                 sctx->tcs_offchip_layout);
4808       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4809                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4810                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4811                                 sctx->tes_offchip_ring_va_sgpr);
4812    } else if (sctx->gfx_level >= GFX9) {
4813       radeon_opt_set_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4814                             SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4815 
4816       /* Set userdata SGPRs for merged LS-HS. */
4817       radeon_opt_set_sh_reg2(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4818                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4819                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4820                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4821    } else {
4822       /* Due to a hw bug, RSRC2_LS must be written twice with another
4823        * LS register written in between. */
4824       if (sctx->gfx_level == GFX7 && sctx->family != CHIP_HAWAII)
4825          radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, sctx->ls_hs_rsrc2);
4826       radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
4827       radeon_emit(sctx->shader.vs.current->config.rsrc1);
4828       radeon_emit(sctx->ls_hs_rsrc2);
4829 
4830       /* Set userdata SGPRs for TCS. */
4831       radeon_opt_set_sh_reg3(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4832                              GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4833                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4834                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr,
4835                              sctx->current_vs_state);
4836    }
4837 
4838    /* Set userdata SGPRs for TES. */
4839    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4840    assert(tes_sh_base);
4841 
4842    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4843     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4844     * for tessellation and are unused in TES.
4845     */
4846    if (sctx->screen->info.has_set_sh_pairs_packed) {
4847       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4848                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4849                                 sctx->tcs_offchip_layout);
4850       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
4851                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
4852                                 sctx->tes_offchip_ring_va_sgpr);
4853    } else {
4854       bool has_gs = sctx->ngg || sctx->shader.gs.cso;
4855 
4856       radeon_opt_set_sh_reg2(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4857                              has_gs ? SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX
4858                                     : SI_TRACKED_SPI_SHADER_USER_DATA_VS__BASE_VERTEX,
4859                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4860    }
4861    radeon_end();
4862 
4863    radeon_begin_again(cs);
4864    if (sctx->gfx_level >= GFX7) {
4865       radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
4866                                      SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
4867    } else {
4868       radeon_opt_set_context_reg(R_028B58_VGT_LS_HS_CONFIG,
4869                                  SI_TRACKED_VGT_LS_HS_CONFIG, sctx->ls_hs_config);
4870    }
4871    radeon_end_update_context_roll();
4872 }
4873 
gfx12_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4874 static void gfx12_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4875 {
4876    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4877 
4878    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4879       return;
4880 
4881    gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4882                              SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4883    /* Set userdata SGPRs for merged LS-HS. */
4884    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4885                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4886                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4887                              sctx->tcs_offchip_layout);
4888    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4889                              GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4890                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4891                              sctx->tes_offchip_ring_va_sgpr);
4892 
4893    /* Set userdata SGPRs for TES. */
4894    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4895    assert(tes_sh_base);
4896 
4897    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4898     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4899     * for tessellation and are unused in TES.
4900     */
4901    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4902                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4903                              sctx->tcs_offchip_layout);
4904    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
4905                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
4906                              sctx->tes_offchip_ring_va_sgpr);
4907 
4908    radeon_begin(cs);
4909    radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
4910                                   SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
4911    radeon_end(); /* don't track context rolls on GFX12 */
4912 }
4913 
si_init_screen_live_shader_cache(struct si_screen * sscreen)4914 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
4915 {
4916    util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
4917                                si_destroy_shader_selector);
4918 }
4919 
4920 template<int NUM_INTERP>
si_emit_spi_map(struct si_context * sctx,unsigned index)4921 static void si_emit_spi_map(struct si_context *sctx, unsigned index)
4922 {
4923    struct si_shader *ps = sctx->shader.ps.current;
4924    struct si_shader *vs = si_get_vs(sctx)->current;
4925    unsigned spi_ps_input_cntl[NUM_INTERP];
4926 
4927    STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32);
4928 
4929    if (sctx->gfx_level >= GFX12) {
4930       gfx12_opt_push_gfx_sh_reg(R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS,
4931                                 SI_TRACKED_SPI_SHADER_GS_OUT_CONFIG_PS,
4932                                 vs->ngg.spi_vs_out_config | ps->ps.spi_gs_out_config_ps);
4933    }
4934 
4935    if (!NUM_INTERP)
4936       return;
4937 
4938    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
4939 
4940    for (unsigned i = 0; i < NUM_INTERP; i++) {
4941       union si_input_info input = ps->info.ps_inputs[i];
4942       unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic];
4943       bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20;
4944 
4945       if (non_default_val) {
4946          if (input.interpolate == INTERP_MODE_FLAT ||
4947              (input.interpolate == INTERP_MODE_COLOR && rs->flatshade))
4948             ps_input_cntl |= S_028644_FLAT_SHADE(1);
4949 
4950          if (input.fp16_lo_hi_valid) {
4951             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4952                              S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */
4953                              S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2));
4954          }
4955       }
4956 
4957       if (input.semantic == VARYING_SLOT_PNTC ||
4958           (input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 &&
4959            rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) {
4960          /* Overwrite the whole value (except OFFSET) for sprite coordinates. */
4961          ps_input_cntl &= ~C_028644_OFFSET;
4962          ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
4963          if (input.fp16_lo_hi_valid & 0x1) {
4964             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4965                              S_028644_ATTR0_VALID(1);
4966          }
4967       }
4968 
4969       spi_ps_input_cntl[i] = ps_input_cntl;
4970    }
4971 
4972    /* Performance notes:
4973     *    Dota 2: Only ~16% of SPI map updates set different values.
4974     *    Talos: Only ~9% of SPI map updates set different values.
4975     */
4976    if (sctx->gfx_level >= GFX12) {
4977       radeon_begin(&sctx->gfx_cs);
4978       radeon_opt_set_context_regn(R_028664_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
4979                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
4980       radeon_end(); /* don't track context rolls on GFX12 */
4981    } else {
4982       radeon_begin(&sctx->gfx_cs);
4983       radeon_opt_set_context_regn(R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
4984                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
4985       radeon_end_update_context_roll();
4986    }
4987 }
4988 
si_emit_spi_ge_ring_state(struct si_context * sctx,unsigned index)4989 static void si_emit_spi_ge_ring_state(struct si_context *sctx, unsigned index)
4990 {
4991    struct si_screen *sscreen = sctx->screen;
4992 
4993    if (sctx->has_tessellation) {
4994       struct pipe_resource *tf_ring =
4995          sctx->ws->cs_is_secure(&sctx->gfx_cs) ? sscreen->tess_rings_tmz : sscreen->tess_rings;
4996       uint64_t factor_va = si_resource(tf_ring)->gpu_address +
4997                            sscreen->hs.tess_offchip_ring_size;
4998 
4999       unsigned tf_ring_size_field = sscreen->hs.tess_factor_ring_size / 4;
5000       if (sctx->gfx_level >= GFX11)
5001          tf_ring_size_field /= sscreen->info.max_se;
5002 
5003       assert((tf_ring_size_field & C_030938_SIZE) == 0);
5004 
5005       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(tf_ring),
5006                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RINGS);
5007 
5008       radeon_begin(&sctx->gfx_cs);
5009       /* Required before writing tessellation config registers. */
5010       radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
5011       radeon_event_write(V_028A90_VGT_FLUSH);
5012 
5013       if (sctx->gfx_level >= GFX7) {
5014          radeon_set_uconfig_reg_seq(R_030938_VGT_TF_RING_SIZE, 3);
5015          radeon_emit(S_030938_SIZE(tf_ring_size_field)); /* R_030938_VGT_TF_RING_SIZE */
5016          radeon_emit(sscreen->hs.hs_offchip_param);      /* R_03093C_VGT_HS_OFFCHIP_PARAM */
5017          radeon_emit(factor_va >> 8);                    /* R_030940_VGT_TF_MEMORY_BASE */
5018 
5019          if (sctx->gfx_level >= GFX12)
5020             radeon_set_uconfig_reg(R_03099C_VGT_TF_MEMORY_BASE_HI, S_03099C_BASE_HI(factor_va >> 40));
5021          else if (sctx->gfx_level >= GFX10)
5022             radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(factor_va >> 40));
5023          else if (sctx->gfx_level == GFX9)
5024             radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(factor_va >> 40));
5025       } else {
5026          radeon_set_config_reg(R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size_field));
5027          radeon_set_config_reg(R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
5028          radeon_set_config_reg(R_0089B0_VGT_HS_OFFCHIP_PARAM, sscreen->hs.hs_offchip_param);
5029       }
5030       radeon_end();
5031    }
5032 
5033    if (sctx->gfx_level >= GFX11) {
5034       /* We must wait for idle using an EOP event before changing the attribute ring registers.
5035        * Use the bottom-of-pipe EOP event, but use the PWS TS counter instead of the counter
5036        * in memory.
5037        */
5038       si_cp_release_acquire_mem_pws(sctx, &sctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0,
5039                                     V_580_CP_ME, 0);
5040 
5041       uint64_t attr_address = sscreen->attribute_pos_prim_ring->gpu_address;
5042       assert((attr_address >> 32) == sscreen->info.address32_hi);
5043 
5044       radeon_begin(&sctx->gfx_cs);
5045       radeon_set_uconfig_reg_seq(R_031110_SPI_GS_THROTTLE_CNTL1, 4);
5046       radeon_emit(0x12355123);      /* SPI_GS_THROTTLE_CNTL1 */
5047       radeon_emit(0x1544D);         /* SPI_GS_THROTTLE_CNTL2 */
5048       radeon_emit(attr_address >> 16); /* SPI_ATTRIBUTE_RING_BASE */
5049       radeon_emit(S_03111C_MEM_SIZE((sscreen->info.attribute_ring_size_per_se >> 16) - 1) |
5050                   S_03111C_BIG_PAGE(sscreen->info.discardable_allows_big_page) |
5051                   S_03111C_L1_POLICY(1)); /* SPI_ATTRIBUTE_RING_SIZE */
5052 
5053       if (sctx->gfx_level >= GFX12) {
5054          uint64_t pos_address = attr_address + sscreen->info.pos_ring_offset;
5055          uint64_t prim_address = attr_address + sscreen->info.prim_ring_offset;
5056 
5057          /* When one of these 4 registers is updated, all 4 must be updated. */
5058          radeon_set_uconfig_reg_seq(R_0309A0_GE_POS_RING_BASE, 4);
5059          radeon_emit(pos_address >> 16);              /* R_0309A0_GE_POS_RING_BASE */
5060          radeon_emit(S_0309A4_MEM_SIZE(sscreen->info.pos_ring_size_per_se >> 5)); /* R_0309A4_GE_POS_RING_SIZE */
5061          radeon_emit(prim_address >> 16);             /* R_0309A8_GE_PRIM_RING_BASE */
5062          radeon_emit(S_0309AC_MEM_SIZE(sscreen->info.prim_ring_size_per_se >> 5) |
5063                      S_0309AC_SCOPE(gfx12_scope_device) |
5064                      S_0309AC_PAF_TEMPORAL(gfx12_store_high_temporal_stay_dirty) |
5065                      S_0309AC_PAB_TEMPORAL(gfx12_load_last_use_discard) |
5066                      S_0309AC_SPEC_DATA_READ(gfx12_spec_read_auto) |
5067                      S_0309AC_FORCE_SE_SCOPE(1) |
5068                      S_0309AC_PAB_NOFILL(1));         /* R_0309AC_GE_PRIM_RING_SIZE */
5069       }
5070       radeon_end();
5071    }
5072 }
5073 
si_init_shader_functions(struct si_context * sctx)5074 void si_init_shader_functions(struct si_context *sctx)
5075 {
5076    sctx->atoms.s.vgt_pipeline_state.emit = si_emit_vgt_pipeline_state;
5077    sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
5078    sctx->atoms.s.spi_ge_ring_state.emit = si_emit_spi_ge_ring_state;
5079 
5080    if (sctx->gfx_level >= GFX12)
5081       sctx->atoms.s.tess_io_layout.emit = gfx12_emit_tess_io_layout_state;
5082    else
5083       sctx->atoms.s.tess_io_layout.emit = gfx6_emit_tess_io_layout_state;
5084 
5085    sctx->b.create_vs_state = si_create_shader;
5086    sctx->b.create_tcs_state = si_create_shader;
5087    sctx->b.create_tes_state = si_create_shader;
5088    sctx->b.create_gs_state = si_create_shader;
5089    sctx->b.create_fs_state = si_create_shader;
5090 
5091    sctx->b.bind_vs_state = si_bind_vs_shader;
5092    sctx->b.bind_tcs_state = si_bind_tcs_shader;
5093    sctx->b.bind_tes_state = si_bind_tes_shader;
5094    sctx->b.bind_gs_state = si_bind_gs_shader;
5095    sctx->b.bind_fs_state = si_bind_ps_shader;
5096 
5097    sctx->b.delete_vs_state = si_delete_shader_selector;
5098    sctx->b.delete_tcs_state = si_delete_shader_selector;
5099    sctx->b.delete_tes_state = si_delete_shader_selector;
5100    sctx->b.delete_gs_state = si_delete_shader_selector;
5101    sctx->b.delete_fs_state = si_delete_shader_selector;
5102 
5103    sctx->b.set_patch_vertices = si_set_patch_vertices;
5104 
5105    /* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys.
5106     * It improves performance for viewperf/snx.
5107     */
5108    sctx->emit_spi_map[0] = si_emit_spi_map<0>;
5109    sctx->emit_spi_map[1] = si_emit_spi_map<1>;
5110    sctx->emit_spi_map[2] = si_emit_spi_map<2>;
5111    sctx->emit_spi_map[3] = si_emit_spi_map<3>;
5112    sctx->emit_spi_map[4] = si_emit_spi_map<4>;
5113    sctx->emit_spi_map[5] = si_emit_spi_map<5>;
5114    sctx->emit_spi_map[6] = si_emit_spi_map<6>;
5115    sctx->emit_spi_map[7] = si_emit_spi_map<7>;
5116    sctx->emit_spi_map[8] = si_emit_spi_map<8>;
5117    sctx->emit_spi_map[9] = si_emit_spi_map<9>;
5118    sctx->emit_spi_map[10] = si_emit_spi_map<10>;
5119    sctx->emit_spi_map[11] = si_emit_spi_map<11>;
5120    sctx->emit_spi_map[12] = si_emit_spi_map<12>;
5121    sctx->emit_spi_map[13] = si_emit_spi_map<13>;
5122    sctx->emit_spi_map[14] = si_emit_spi_map<14>;
5123    sctx->emit_spi_map[15] = si_emit_spi_map<15>;
5124    sctx->emit_spi_map[16] = si_emit_spi_map<16>;
5125    sctx->emit_spi_map[17] = si_emit_spi_map<17>;
5126    sctx->emit_spi_map[18] = si_emit_spi_map<18>;
5127    sctx->emit_spi_map[19] = si_emit_spi_map<19>;
5128    sctx->emit_spi_map[20] = si_emit_spi_map<20>;
5129    sctx->emit_spi_map[21] = si_emit_spi_map<21>;
5130    sctx->emit_spi_map[22] = si_emit_spi_map<22>;
5131    sctx->emit_spi_map[23] = si_emit_spi_map<23>;
5132    sctx->emit_spi_map[24] = si_emit_spi_map<24>;
5133    sctx->emit_spi_map[25] = si_emit_spi_map<25>;
5134    sctx->emit_spi_map[26] = si_emit_spi_map<26>;
5135    sctx->emit_spi_map[27] = si_emit_spi_map<27>;
5136    sctx->emit_spi_map[28] = si_emit_spi_map<28>;
5137    sctx->emit_spi_map[29] = si_emit_spi_map<29>;
5138    sctx->emit_spi_map[30] = si_emit_spi_map<30>;
5139    sctx->emit_spi_map[31] = si_emit_spi_map<31>;
5140    sctx->emit_spi_map[32] = si_emit_spi_map<32>;
5141 }
5142