xref: /aosp_15_r20/external/libjpeg-turbo/simd/arm/aarch64/jchuff-neon.c (revision dfc6aa5c1cfd4bc4e2018dc74aa96e29ee49c6da)
1 /*
2  * jchuff-neon.c - Huffman entropy encoding (64-bit Arm Neon)
3  *
4  * Copyright (C) 2020-2021, Arm Limited.  All Rights Reserved.
5  * Copyright (C) 2020, 2022, D. R. Commander.  All Rights Reserved.
6  *
7  * This software is provided 'as-is', without any express or implied
8  * warranty.  In no event will the authors be held liable for any damages
9  * arising from the use of this software.
10  *
11  * Permission is granted to anyone to use this software for any purpose,
12  * including commercial applications, and to alter it and redistribute it
13  * freely, subject to the following restrictions:
14  *
15  * 1. The origin of this software must not be misrepresented; you must not
16  *    claim that you wrote the original software. If you use this software
17  *    in a product, an acknowledgment in the product documentation would be
18  *    appreciated but is not required.
19  * 2. Altered source versions must be plainly marked as such, and must not be
20  *    misrepresented as being the original software.
21  * 3. This notice may not be removed or altered from any source distribution.
22  *
23  * NOTE: All referenced figures are from
24  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
25  */
26 
27 #define JPEG_INTERNALS
28 #include "../../../jinclude.h"
29 #include "../../../jpeglib.h"
30 #include "../../../jsimd.h"
31 #include "../../../jdct.h"
32 #include "../../../jsimddct.h"
33 #include "../../jsimd.h"
34 #include "../align.h"
35 #include "../jchuff.h"
36 #include "neon-compat.h"
37 
38 #include <limits.h>
39 
40 #include <arm_neon.h>
41 
42 
43 ALIGN(16) static const uint8_t jsimd_huff_encode_one_block_consts[] = {
44     0,   1,   2,   3,  16,  17,  32,  33,
45    18,  19,   4,   5,   6,   7,  20,  21,
46    34,  35,  48,  49, 255, 255,  50,  51,
47    36,  37,  22,  23,   8,   9,  10,  11,
48   255, 255,   6,   7,  20,  21,  34,  35,
49    48,  49, 255, 255,  50,  51,  36,  37,
50    54,  55,  40,  41,  26,  27,  12,  13,
51    14,  15,  28,  29,  42,  43,  56,  57,
52     6,   7,  20,  21,  34,  35,  48,  49,
53    50,  51,  36,  37,  22,  23,   8,   9,
54    26,  27,  12,  13, 255, 255,  14,  15,
55    28,  29,  42,  43,  56,  57, 255, 255,
56    52,  53,  54,  55,  40,  41,  26,  27,
57    12,  13, 255, 255,  14,  15,  28,  29,
58    26,  27,  40,  41,  42,  43,  28,  29,
59    14,  15,  30,  31,  44,  45,  46,  47
60 };
61 
62 /* The AArch64 implementation of the FLUSH() macro triggers a UBSan misaligned
63  * address warning because the macro sometimes writes a 64-bit value to a
64  * non-64-bit-aligned address.  That behavior is technically undefined per
65  * the C specification, but it is supported by the AArch64 architecture and
66  * compilers.
67  */
68 #if defined(__has_feature)
69 #if __has_feature(undefined_behavior_sanitizer)
70 __attribute__((no_sanitize("alignment")))
71 #endif
72 #endif
jsimd_huff_encode_one_block_neon(void * state,JOCTET * buffer,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)73 JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
74                                          JCOEFPTR block, int last_dc_val,
75                                          c_derived_tbl *dctbl,
76                                          c_derived_tbl *actbl)
77 {
78   uint16_t block_diff[DCTSIZE2];
79 
80   /* Load lookup table indices for rows of zig-zag ordering. */
81 #ifdef HAVE_VLD1Q_U8_X4
82   const uint8x16x4_t idx_rows_0123 =
83     vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE);
84   const uint8x16x4_t idx_rows_4567 =
85     vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE);
86 #else
87   /* GCC does not currently support intrinsics vl1dq_<type>_x4(). */
88   const uint8x16x4_t idx_rows_0123 = { {
89     vld1q_u8(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE),
90     vld1q_u8(jsimd_huff_encode_one_block_consts + 2 * DCTSIZE),
91     vld1q_u8(jsimd_huff_encode_one_block_consts + 4 * DCTSIZE),
92     vld1q_u8(jsimd_huff_encode_one_block_consts + 6 * DCTSIZE)
93   } };
94   const uint8x16x4_t idx_rows_4567 = { {
95     vld1q_u8(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE),
96     vld1q_u8(jsimd_huff_encode_one_block_consts + 10 * DCTSIZE),
97     vld1q_u8(jsimd_huff_encode_one_block_consts + 12 * DCTSIZE),
98     vld1q_u8(jsimd_huff_encode_one_block_consts + 14 * DCTSIZE)
99   } };
100 #endif
101 
102   /* Load 8x8 block of DCT coefficients. */
103 #ifdef HAVE_VLD1Q_U8_X4
104   const int8x16x4_t tbl_rows_0123 =
105     vld1q_s8_x4((int8_t *)(block + 0 * DCTSIZE));
106   const int8x16x4_t tbl_rows_4567 =
107     vld1q_s8_x4((int8_t *)(block + 4 * DCTSIZE));
108 #else
109   const int8x16x4_t tbl_rows_0123 = { {
110     vld1q_s8((int8_t *)(block + 0 * DCTSIZE)),
111     vld1q_s8((int8_t *)(block + 1 * DCTSIZE)),
112     vld1q_s8((int8_t *)(block + 2 * DCTSIZE)),
113     vld1q_s8((int8_t *)(block + 3 * DCTSIZE))
114   } };
115   const int8x16x4_t tbl_rows_4567 = { {
116     vld1q_s8((int8_t *)(block + 4 * DCTSIZE)),
117     vld1q_s8((int8_t *)(block + 5 * DCTSIZE)),
118     vld1q_s8((int8_t *)(block + 6 * DCTSIZE)),
119     vld1q_s8((int8_t *)(block + 7 * DCTSIZE))
120   } };
121 #endif
122 
123   /* Initialise extra lookup tables. */
124   const int8x16x4_t tbl_rows_2345 = { {
125     tbl_rows_0123.val[2], tbl_rows_0123.val[3],
126     tbl_rows_4567.val[0], tbl_rows_4567.val[1]
127   } };
128   const int8x16x3_t tbl_rows_567 =
129     { { tbl_rows_4567.val[1], tbl_rows_4567.val[2], tbl_rows_4567.val[3] } };
130 
131   /* Shuffle coefficients into zig-zag order. */
132   int16x8_t row0 =
133     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[0]));
134   int16x8_t row1 =
135     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[1]));
136   int16x8_t row2 =
137     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_0123.val[2]));
138   int16x8_t row3 =
139     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[3]));
140   int16x8_t row4 =
141     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[0]));
142   int16x8_t row5 =
143     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_4567.val[1]));
144   int16x8_t row6 =
145     vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[2]));
146   int16x8_t row7 =
147     vreinterpretq_s16_s8(vqtbl3q_s8(tbl_rows_567, idx_rows_4567.val[3]));
148 
149   /* Compute DC coefficient difference value (F.1.1.5.1). */
150   row0 = vsetq_lane_s16(block[0] - last_dc_val, row0, 0);
151   /* Initialize AC coefficient lanes not reachable by lookup tables. */
152   row1 =
153     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[0]),
154                                   0), row1, 2);
155   row2 =
156     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]),
157                                   4), row2, 0);
158   row2 =
159     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]),
160                                   0), row2, 5);
161   row5 =
162     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]),
163                                   7), row5, 2);
164   row5 =
165     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]),
166                                   3), row5, 7);
167   row6 =
168     vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[3]),
169                                   7), row6, 5);
170 
171   /* DCT block is now in zig-zag order; start Huffman encoding process. */
172 
173   /* Construct bitmap to accelerate encoding of AC coefficients.  A set bit
174    * means that the corresponding coefficient != 0.
175    */
176   uint16x8_t row0_ne_0 = vtstq_s16(row0, row0);
177   uint16x8_t row1_ne_0 = vtstq_s16(row1, row1);
178   uint16x8_t row2_ne_0 = vtstq_s16(row2, row2);
179   uint16x8_t row3_ne_0 = vtstq_s16(row3, row3);
180   uint16x8_t row4_ne_0 = vtstq_s16(row4, row4);
181   uint16x8_t row5_ne_0 = vtstq_s16(row5, row5);
182   uint16x8_t row6_ne_0 = vtstq_s16(row6, row6);
183   uint16x8_t row7_ne_0 = vtstq_s16(row7, row7);
184 
185   uint8x16_t row10_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row1_ne_0),
186                                     vreinterpretq_u8_u16(row0_ne_0));
187   uint8x16_t row32_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row3_ne_0),
188                                     vreinterpretq_u8_u16(row2_ne_0));
189   uint8x16_t row54_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row5_ne_0),
190                                     vreinterpretq_u8_u16(row4_ne_0));
191   uint8x16_t row76_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row7_ne_0),
192                                     vreinterpretq_u8_u16(row6_ne_0));
193 
194   /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
195   const uint8x16_t bitmap_mask =
196     vreinterpretq_u8_u64(vdupq_n_u64(0x0102040810204080));
197 
198   uint8x16_t bitmap_rows_10 = vandq_u8(row10_ne_0, bitmap_mask);
199   uint8x16_t bitmap_rows_32 = vandq_u8(row32_ne_0, bitmap_mask);
200   uint8x16_t bitmap_rows_54 = vandq_u8(row54_ne_0, bitmap_mask);
201   uint8x16_t bitmap_rows_76 = vandq_u8(row76_ne_0, bitmap_mask);
202 
203   uint8x16_t bitmap_rows_3210 = vpaddq_u8(bitmap_rows_32, bitmap_rows_10);
204   uint8x16_t bitmap_rows_7654 = vpaddq_u8(bitmap_rows_76, bitmap_rows_54);
205   uint8x16_t bitmap_rows_76543210 = vpaddq_u8(bitmap_rows_7654,
206                                               bitmap_rows_3210);
207   uint8x8_t bitmap_all = vpadd_u8(vget_low_u8(bitmap_rows_76543210),
208                                   vget_high_u8(bitmap_rows_76543210));
209 
210   /* Shift left to remove DC bit. */
211   bitmap_all =
212     vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap_all), 1));
213   /* Count bits set (number of non-zero coefficients) in bitmap. */
214   unsigned int non_zero_coefficients = vaddv_u8(vcnt_u8(bitmap_all));
215   /* Move bitmap to 64-bit scalar register. */
216   uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
217 
218   /* Set up state and bit buffer for output bitstream. */
219   working_state *state_ptr = (working_state *)state;
220   int free_bits = state_ptr->cur.free_bits;
221   size_t put_buffer = state_ptr->cur.put_buffer;
222 
223   /* Encode DC coefficient. */
224 
225   /* For negative coeffs: diff = abs(coeff) -1 = ~abs(coeff) */
226   int16x8_t abs_row0 = vabsq_s16(row0);
227   int16x8_t row0_lz = vclzq_s16(abs_row0);
228   uint16x8_t row0_mask = vshlq_u16(vcltzq_s16(row0), vnegq_s16(row0_lz));
229   uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
230   /* Find nbits required to specify sign and amplitude of coefficient. */
231   unsigned int lz = vgetq_lane_u16(vreinterpretq_u16_s16(row0_lz), 0);
232   unsigned int nbits = 16 - lz;
233   /* Emit Huffman-coded symbol and additional diff bits. */
234   unsigned int diff = vgetq_lane_u16(row0_diff, 0);
235   PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)
236 
237   /* Encode AC coefficients. */
238 
239   unsigned int r = 0;  /* r = run length of zeros */
240   unsigned int i = 1;  /* i = number of coefficients encoded */
241   /* Code and size information for a run length of 16 zero coefficients */
242   const unsigned int code_0xf0 = actbl->ehufco[0xf0];
243   const unsigned int size_0xf0 = actbl->ehufsi[0xf0];
244 
245   /* The most efficient method of computing nbits and diff depends on the
246    * number of non-zero coefficients.  If the bitmap is not too sparse (> 8
247    * non-zero AC coefficients), it is beneficial to do all of the work using
248    * Neon; else we do some of the work using Neon and the rest on demand using
249    * scalar code.
250    */
251   if (non_zero_coefficients > 8) {
252     uint8_t block_nbits[DCTSIZE2];
253 
254     int16x8_t abs_row1 = vabsq_s16(row1);
255     int16x8_t abs_row2 = vabsq_s16(row2);
256     int16x8_t abs_row3 = vabsq_s16(row3);
257     int16x8_t abs_row4 = vabsq_s16(row4);
258     int16x8_t abs_row5 = vabsq_s16(row5);
259     int16x8_t abs_row6 = vabsq_s16(row6);
260     int16x8_t abs_row7 = vabsq_s16(row7);
261     int16x8_t row1_lz = vclzq_s16(abs_row1);
262     int16x8_t row2_lz = vclzq_s16(abs_row2);
263     int16x8_t row3_lz = vclzq_s16(abs_row3);
264     int16x8_t row4_lz = vclzq_s16(abs_row4);
265     int16x8_t row5_lz = vclzq_s16(abs_row5);
266     int16x8_t row6_lz = vclzq_s16(abs_row6);
267     int16x8_t row7_lz = vclzq_s16(abs_row7);
268     /* Narrow leading zero count to 8 bits. */
269     uint8x16_t row01_lz = vuzp1q_u8(vreinterpretq_u8_s16(row0_lz),
270                                     vreinterpretq_u8_s16(row1_lz));
271     uint8x16_t row23_lz = vuzp1q_u8(vreinterpretq_u8_s16(row2_lz),
272                                     vreinterpretq_u8_s16(row3_lz));
273     uint8x16_t row45_lz = vuzp1q_u8(vreinterpretq_u8_s16(row4_lz),
274                                     vreinterpretq_u8_s16(row5_lz));
275     uint8x16_t row67_lz = vuzp1q_u8(vreinterpretq_u8_s16(row6_lz),
276                                     vreinterpretq_u8_s16(row7_lz));
277     /* Compute nbits needed to specify magnitude of each coefficient. */
278     uint8x16_t row01_nbits = vsubq_u8(vdupq_n_u8(16), row01_lz);
279     uint8x16_t row23_nbits = vsubq_u8(vdupq_n_u8(16), row23_lz);
280     uint8x16_t row45_nbits = vsubq_u8(vdupq_n_u8(16), row45_lz);
281     uint8x16_t row67_nbits = vsubq_u8(vdupq_n_u8(16), row67_lz);
282     /* Store nbits. */
283     vst1q_u8(block_nbits + 0 * DCTSIZE, row01_nbits);
284     vst1q_u8(block_nbits + 2 * DCTSIZE, row23_nbits);
285     vst1q_u8(block_nbits + 4 * DCTSIZE, row45_nbits);
286     vst1q_u8(block_nbits + 6 * DCTSIZE, row67_nbits);
287     /* Mask bits not required to specify sign and amplitude of diff. */
288     uint16x8_t row1_mask = vshlq_u16(vcltzq_s16(row1), vnegq_s16(row1_lz));
289     uint16x8_t row2_mask = vshlq_u16(vcltzq_s16(row2), vnegq_s16(row2_lz));
290     uint16x8_t row3_mask = vshlq_u16(vcltzq_s16(row3), vnegq_s16(row3_lz));
291     uint16x8_t row4_mask = vshlq_u16(vcltzq_s16(row4), vnegq_s16(row4_lz));
292     uint16x8_t row5_mask = vshlq_u16(vcltzq_s16(row5), vnegq_s16(row5_lz));
293     uint16x8_t row6_mask = vshlq_u16(vcltzq_s16(row6), vnegq_s16(row6_lz));
294     uint16x8_t row7_mask = vshlq_u16(vcltzq_s16(row7), vnegq_s16(row7_lz));
295     /* diff = abs(coeff) ^ sign(coeff) [no-op for positive coefficients] */
296     uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1),
297                                      row1_mask);
298     uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2),
299                                      row2_mask);
300     uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3),
301                                      row3_mask);
302     uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4),
303                                      row4_mask);
304     uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5),
305                                      row5_mask);
306     uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6),
307                                      row6_mask);
308     uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7),
309                                      row7_mask);
310     /* Store diff bits. */
311     vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
312     vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
313     vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
314     vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
315     vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
316     vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
317     vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
318     vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
319 
320     while (bitmap != 0) {
321       r = BUILTIN_CLZLL(bitmap);
322       i += r;
323       bitmap <<= r;
324       nbits = block_nbits[i];
325       diff = block_diff[i];
326       while (r > 15) {
327         /* If run length > 15, emit special run-length-16 codes. */
328         PUT_BITS(code_0xf0, size_0xf0)
329         r -= 16;
330       }
331       /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
332       unsigned int rs = (r << 4) + nbits;
333       PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
334       i++;
335       bitmap <<= 1;
336     }
337   } else if (bitmap != 0) {
338     uint16_t block_abs[DCTSIZE2];
339     /* Compute and store absolute value of coefficients. */
340     int16x8_t abs_row1 = vabsq_s16(row1);
341     int16x8_t abs_row2 = vabsq_s16(row2);
342     int16x8_t abs_row3 = vabsq_s16(row3);
343     int16x8_t abs_row4 = vabsq_s16(row4);
344     int16x8_t abs_row5 = vabsq_s16(row5);
345     int16x8_t abs_row6 = vabsq_s16(row6);
346     int16x8_t abs_row7 = vabsq_s16(row7);
347     vst1q_u16(block_abs + 0 * DCTSIZE, vreinterpretq_u16_s16(abs_row0));
348     vst1q_u16(block_abs + 1 * DCTSIZE, vreinterpretq_u16_s16(abs_row1));
349     vst1q_u16(block_abs + 2 * DCTSIZE, vreinterpretq_u16_s16(abs_row2));
350     vst1q_u16(block_abs + 3 * DCTSIZE, vreinterpretq_u16_s16(abs_row3));
351     vst1q_u16(block_abs + 4 * DCTSIZE, vreinterpretq_u16_s16(abs_row4));
352     vst1q_u16(block_abs + 5 * DCTSIZE, vreinterpretq_u16_s16(abs_row5));
353     vst1q_u16(block_abs + 6 * DCTSIZE, vreinterpretq_u16_s16(abs_row6));
354     vst1q_u16(block_abs + 7 * DCTSIZE, vreinterpretq_u16_s16(abs_row7));
355     /* Compute diff bits (without nbits mask) and store. */
356     uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1),
357                                      vcltzq_s16(row1));
358     uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2),
359                                      vcltzq_s16(row2));
360     uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3),
361                                      vcltzq_s16(row3));
362     uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4),
363                                      vcltzq_s16(row4));
364     uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5),
365                                      vcltzq_s16(row5));
366     uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6),
367                                      vcltzq_s16(row6));
368     uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7),
369                                      vcltzq_s16(row7));
370     vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
371     vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
372     vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
373     vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
374     vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
375     vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
376     vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
377     vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
378 
379     /* Same as above but must mask diff bits and compute nbits on demand. */
380     while (bitmap != 0) {
381       r = BUILTIN_CLZLL(bitmap);
382       i += r;
383       bitmap <<= r;
384       lz = BUILTIN_CLZ(block_abs[i]);
385       nbits = 32 - lz;
386       diff = ((unsigned int)block_diff[i] << lz) >> lz;
387       while (r > 15) {
388         /* If run length > 15, emit special run-length-16 codes. */
389         PUT_BITS(code_0xf0, size_0xf0)
390         r -= 16;
391       }
392       /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
393       unsigned int rs = (r << 4) + nbits;
394       PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
395       i++;
396       bitmap <<= 1;
397     }
398   }
399 
400   /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
401    * The value of RS for the EOB code is 0.
402    */
403   if (i != 64) {
404     PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
405   }
406 
407   state_ptr->cur.put_buffer = put_buffer;
408   state_ptr->cur.free_bits = free_bits;
409 
410   return buffer;
411 }
412