xref: /aosp_15_r20/external/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Tal Hadad <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_EULERSYSTEM_H
11 #define EIGEN_EULERSYSTEM_H
12 
13 namespace Eigen
14 {
15   // Forward declarations
16   template <typename _Scalar, class _System>
17   class EulerAngles;
18 
19   namespace internal
20   {
21     // TODO: Add this trait to the Eigen internal API?
22     template <int Num, bool IsPositive = (Num > 0)>
23     struct Abs
24     {
25       enum { value = Num };
26     };
27 
28     template <int Num>
29     struct Abs<Num, false>
30     {
31       enum { value = -Num };
32     };
33 
34     template <int Axis>
35     struct IsValidAxis
36     {
37       enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
38     };
39 
40     template<typename System,
41             typename Other,
42             int OtherRows=Other::RowsAtCompileTime,
43             int OtherCols=Other::ColsAtCompileTime>
44     struct eulerangles_assign_impl;
45   }
46 
47   #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
48 
49   /** \brief Representation of a fixed signed rotation axis for EulerSystem.
50     *
51     * \ingroup EulerAngles_Module
52     *
53     * Values here represent:
54     *  - The axis of the rotation: X, Y or Z.
55     *  - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
56     *
57     * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
58     *
59     * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
60     */
61   enum EulerAxis
62   {
63     EULER_X = 1, /*!< the X axis */
64     EULER_Y = 2, /*!< the Y axis */
65     EULER_Z = 3  /*!< the Z axis */
66   };
67 
68   /** \class EulerSystem
69     *
70     * \ingroup EulerAngles_Module
71     *
72     * \brief Represents a fixed Euler rotation system.
73     *
74     * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
75     *
76     * You can use this class to get two things:
77     *  - Build an Euler system, and then pass it as a template parameter to EulerAngles.
78     *  - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
79     *
80     * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
81     * This meta-class store constantly those signed axes. (see \ref EulerAxis)
82     *
83     * ### Types of Euler systems ###
84     *
85     * All and only valid 3 dimension Euler rotation over standard
86     *  signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
87     *  - all axes X, Y, Z in each valid order (see below what order is valid)
88     *  - rotation over the axis is supported both over the positive and negative directions.
89     *  - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
90     *
91     * Since EulerSystem support both positive and negative directions,
92     *  you may call this rotation distinction in other names:
93     *  - _right handed_ or _left handed_
94     *  - _counterclockwise_ or _clockwise_
95     *
96     * Notice all axed combination are valid, and would trigger a static assertion.
97     * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
98     * This yield two and only two classes:
99     *  - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
100     *  - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
101     *     and the second is different, e.g. {X,Y,X}
102     *
103     * ### Intrinsic vs extrinsic Euler systems ###
104     *
105     * Only intrinsic Euler systems are supported for simplicity.
106     *  If you want to use extrinsic Euler systems,
107     *   just use the equal intrinsic opposite order for axes and angles.
108     *  I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
109     *
110     * ### Convenient user typedefs ###
111     *
112     * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
113     *  in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
114     *
115     * ### Additional reading ###
116     *
117     * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
118     *
119     * \tparam _AlphaAxis the first fixed EulerAxis
120     *
121     * \tparam _BetaAxis the second fixed EulerAxis
122     *
123     * \tparam _GammaAxis the third fixed EulerAxis
124     */
125   template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
126   class EulerSystem
127   {
128     public:
129     // It's defined this way and not as enum, because I think
130     //  that enum is not guerantee to support negative numbers
131 
132     /** The first rotation axis */
133     static const int AlphaAxis = _AlphaAxis;
134 
135     /** The second rotation axis */
136     static const int BetaAxis = _BetaAxis;
137 
138     /** The third rotation axis */
139     static const int GammaAxis = _GammaAxis;
140 
141     enum
142     {
143       AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
144       BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
145       GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
146 
147       IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
148       IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
149       IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
150 
151       // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
152       // by Z, or Z is followed by X; otherwise it is odd.
153       IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
154       IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
155 
156       IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
157     };
158 
159     private:
160 
161     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
162       ALPHA_AXIS_IS_INVALID);
163 
164     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
165       BETA_AXIS_IS_INVALID);
166 
167     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
168       GAMMA_AXIS_IS_INVALID);
169 
170     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
171       ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
172 
173     EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
174       BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
175 
176     static const int
177       // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
178       // They are used in this class converters.
179       // They are always different from each other, and their possible values are: 0, 1, or 2.
180       I_ = AlphaAxisAbs - 1,
181       J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
182       K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
183     ;
184 
185     // TODO: Get @mat parameter in form that avoids double evaluation.
186     template <typename Derived>
187     static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
188     {
189       using std::atan2;
190       using std::sqrt;
191 
192       typedef typename Derived::Scalar Scalar;
193 
194       const Scalar plusMinus = IsEven? 1 : -1;
195       const Scalar minusPlus = IsOdd?  1 : -1;
196 
197       const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
198       res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
199 
200       // There is a singularity when cos(beta) == 0
201       if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
202         res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
203         res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
204       }
205       else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1
206         Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma
207         Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma)
208         Scalar alphaPlusMinusGamma = atan2(spos, cpos);
209         res[0] = alphaPlusMinusGamma;
210         res[2] = 0;
211       }
212       else {// cos(beta) == 0 and sin(beta) == -1
213         Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma)
214         Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_);               // 2*cos(alpha + minusPlus*gamma)
215         Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
216         res[0] = alphaMinusPlusBeta;
217         res[2] = 0;
218       }
219     }
220 
221     template <typename Derived>
222     static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
223                                     const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
224     {
225       using std::atan2;
226       using std::sqrt;
227 
228       typedef typename Derived::Scalar Scalar;
229 
230       const Scalar plusMinus = IsEven? 1 : -1;
231       const Scalar minusPlus = IsOdd?  1 : -1;
232 
233       const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
234 
235       res[1] = atan2(Rsum, mat(I_, I_));
236 
237       // There is a singularity when sin(beta) == 0
238       if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
239         res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
240         res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
241       }
242       else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1
243         Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma)
244         Scalar cpos = mat(J_, J_) + mat(K_, K_);                         // 2*cos(alpha + gamma)
245         res[0] = atan2(spos, cpos);
246         res[2] = 0;
247       }
248       else {// sin(beta) == 0 and cos(beta) == -1
249         Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma)
250         Scalar cneg = mat(J_, J_) - mat(K_, K_);                         // 2*cos(alpha - gamma)
251         res[0] = atan2(sneg, cneg);
252         res[2] = 0;
253       }
254     }
255 
256     template<typename Scalar>
257     static void CalcEulerAngles(
258       EulerAngles<Scalar, EulerSystem>& res,
259       const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
260     {
261       CalcEulerAngles_imp(
262         res.angles(), mat,
263         typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
264 
265       if (IsAlphaOpposite)
266         res.alpha() = -res.alpha();
267 
268       if (IsBetaOpposite)
269         res.beta() = -res.beta();
270 
271       if (IsGammaOpposite)
272         res.gamma() = -res.gamma();
273     }
274 
275     template <typename _Scalar, class _System>
276     friend class Eigen::EulerAngles;
277 
278     template<typename System,
279             typename Other,
280             int OtherRows,
281             int OtherCols>
282     friend struct internal::eulerangles_assign_impl;
283   };
284 
285 #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
286   /** \ingroup EulerAngles_Module */ \
287   typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
288 
289   EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
290   EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
291   EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
292   EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
293 
294   EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
295   EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
296   EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
297   EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
298 
299   EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
300   EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
301   EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
302   EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
303 }
304 
305 #endif // EIGEN_EULERSYSTEM_H
306