1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Mark Borgerding mark a borgerding net 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 namespace Eigen { 11 12 namespace internal { 13 14 // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft 15 // Copyright 2003-2009 Mark Borgerding 16 17 template <typename _Scalar> 18 struct kiss_cpx_fft 19 { 20 typedef _Scalar Scalar; 21 typedef std::complex<Scalar> Complex; 22 std::vector<Complex> m_twiddles; 23 std::vector<int> m_stageRadix; 24 std::vector<int> m_stageRemainder; 25 std::vector<Complex> m_scratchBuf; 26 bool m_inverse; 27 make_twiddleskiss_cpx_fft28 inline void make_twiddles(int nfft, bool inverse) 29 { 30 using numext::sin; 31 using numext::cos; 32 m_inverse = inverse; 33 m_twiddles.resize(nfft); 34 double phinc = 0.25 * double(EIGEN_PI) / nfft; 35 Scalar flip = inverse ? Scalar(1) : Scalar(-1); 36 m_twiddles[0] = Complex(Scalar(1), Scalar(0)); 37 if ((nfft&1)==0) 38 m_twiddles[nfft/2] = Complex(Scalar(-1), Scalar(0)); 39 int i=1; 40 for (;i*8<nfft;++i) 41 { 42 Scalar c = Scalar(cos(i*8*phinc)); 43 Scalar s = Scalar(sin(i*8*phinc)); 44 m_twiddles[i] = Complex(c, s*flip); 45 m_twiddles[nfft-i] = Complex(c, -s*flip); 46 } 47 for (;i*4<nfft;++i) 48 { 49 Scalar c = Scalar(cos((2*nfft-8*i)*phinc)); 50 Scalar s = Scalar(sin((2*nfft-8*i)*phinc)); 51 m_twiddles[i] = Complex(s, c*flip); 52 m_twiddles[nfft-i] = Complex(s, -c*flip); 53 } 54 for (;i*8<3*nfft;++i) 55 { 56 Scalar c = Scalar(cos((8*i-2*nfft)*phinc)); 57 Scalar s = Scalar(sin((8*i-2*nfft)*phinc)); 58 m_twiddles[i] = Complex(-s, c*flip); 59 m_twiddles[nfft-i] = Complex(-s, -c*flip); 60 } 61 for (;i*2<nfft;++i) 62 { 63 Scalar c = Scalar(cos((4*nfft-8*i)*phinc)); 64 Scalar s = Scalar(sin((4*nfft-8*i)*phinc)); 65 m_twiddles[i] = Complex(-c, s*flip); 66 m_twiddles[nfft-i] = Complex(-c, -s*flip); 67 } 68 } 69 factorizekiss_cpx_fft70 void factorize(int nfft) 71 { 72 //start factoring out 4's, then 2's, then 3,5,7,9,... 73 int n= nfft; 74 int p=4; 75 do { 76 while (n % p) { 77 switch (p) { 78 case 4: p = 2; break; 79 case 2: p = 3; break; 80 default: p += 2; break; 81 } 82 if (p*p>n) 83 p=n;// impossible to have a factor > sqrt(n) 84 } 85 n /= p; 86 m_stageRadix.push_back(p); 87 m_stageRemainder.push_back(n); 88 if ( p > 5 ) 89 m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic 90 }while(n>1); 91 } 92 93 template <typename _Src> 94 inline workkiss_cpx_fft95 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride) 96 { 97 int p = m_stageRadix[stage]; 98 int m = m_stageRemainder[stage]; 99 Complex * Fout_beg = xout; 100 Complex * Fout_end = xout + p*m; 101 102 if (m>1) { 103 do{ 104 // recursive call: 105 // DFT of size m*p performed by doing 106 // p instances of smaller DFTs of size m, 107 // each one takes a decimated version of the input 108 work(stage+1, xout , xin, fstride*p,in_stride); 109 xin += fstride*in_stride; 110 }while( (xout += m) != Fout_end ); 111 }else{ 112 do{ 113 *xout = *xin; 114 xin += fstride*in_stride; 115 }while(++xout != Fout_end ); 116 } 117 xout=Fout_beg; 118 119 // recombine the p smaller DFTs 120 switch (p) { 121 case 2: bfly2(xout,fstride,m); break; 122 case 3: bfly3(xout,fstride,m); break; 123 case 4: bfly4(xout,fstride,m); break; 124 case 5: bfly5(xout,fstride,m); break; 125 default: bfly_generic(xout,fstride,m,p); break; 126 } 127 } 128 129 inline bfly2kiss_cpx_fft130 void bfly2( Complex * Fout, const size_t fstride, int m) 131 { 132 for (int k=0;k<m;++k) { 133 Complex t = Fout[m+k] * m_twiddles[k*fstride]; 134 Fout[m+k] = Fout[k] - t; 135 Fout[k] += t; 136 } 137 } 138 139 inline bfly4kiss_cpx_fft140 void bfly4( Complex * Fout, const size_t fstride, const size_t m) 141 { 142 Complex scratch[6]; 143 int negative_if_inverse = m_inverse * -2 +1; 144 for (size_t k=0;k<m;++k) { 145 scratch[0] = Fout[k+m] * m_twiddles[k*fstride]; 146 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2]; 147 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3]; 148 scratch[5] = Fout[k] - scratch[1]; 149 150 Fout[k] += scratch[1]; 151 scratch[3] = scratch[0] + scratch[2]; 152 scratch[4] = scratch[0] - scratch[2]; 153 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse ); 154 155 Fout[k+2*m] = Fout[k] - scratch[3]; 156 Fout[k] += scratch[3]; 157 Fout[k+m] = scratch[5] + scratch[4]; 158 Fout[k+3*m] = scratch[5] - scratch[4]; 159 } 160 } 161 162 inline bfly3kiss_cpx_fft163 void bfly3( Complex * Fout, const size_t fstride, const size_t m) 164 { 165 size_t k=m; 166 const size_t m2 = 2*m; 167 Complex *tw1,*tw2; 168 Complex scratch[5]; 169 Complex epi3; 170 epi3 = m_twiddles[fstride*m]; 171 172 tw1=tw2=&m_twiddles[0]; 173 174 do{ 175 scratch[1]=Fout[m] * *tw1; 176 scratch[2]=Fout[m2] * *tw2; 177 178 scratch[3]=scratch[1]+scratch[2]; 179 scratch[0]=scratch[1]-scratch[2]; 180 tw1 += fstride; 181 tw2 += fstride*2; 182 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() ); 183 scratch[0] *= epi3.imag(); 184 *Fout += scratch[3]; 185 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); 186 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() ); 187 ++Fout; 188 }while(--k); 189 } 190 191 inline bfly5kiss_cpx_fft192 void bfly5( Complex * Fout, const size_t fstride, const size_t m) 193 { 194 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; 195 size_t u; 196 Complex scratch[13]; 197 Complex * twiddles = &m_twiddles[0]; 198 Complex *tw; 199 Complex ya,yb; 200 ya = twiddles[fstride*m]; 201 yb = twiddles[fstride*2*m]; 202 203 Fout0=Fout; 204 Fout1=Fout0+m; 205 Fout2=Fout0+2*m; 206 Fout3=Fout0+3*m; 207 Fout4=Fout0+4*m; 208 209 tw=twiddles; 210 for ( u=0; u<m; ++u ) { 211 scratch[0] = *Fout0; 212 213 scratch[1] = *Fout1 * tw[u*fstride]; 214 scratch[2] = *Fout2 * tw[2*u*fstride]; 215 scratch[3] = *Fout3 * tw[3*u*fstride]; 216 scratch[4] = *Fout4 * tw[4*u*fstride]; 217 218 scratch[7] = scratch[1] + scratch[4]; 219 scratch[10] = scratch[1] - scratch[4]; 220 scratch[8] = scratch[2] + scratch[3]; 221 scratch[9] = scratch[2] - scratch[3]; 222 223 *Fout0 += scratch[7]; 224 *Fout0 += scratch[8]; 225 226 scratch[5] = scratch[0] + Complex( 227 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ), 228 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real()) 229 ); 230 231 scratch[6] = Complex( 232 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()), 233 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag()) 234 ); 235 236 *Fout1 = scratch[5] - scratch[6]; 237 *Fout4 = scratch[5] + scratch[6]; 238 239 scratch[11] = scratch[0] + 240 Complex( 241 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()), 242 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real()) 243 ); 244 245 scratch[12] = Complex( 246 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()), 247 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag()) 248 ); 249 250 *Fout2=scratch[11]+scratch[12]; 251 *Fout3=scratch[11]-scratch[12]; 252 253 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; 254 } 255 } 256 257 /* perform the butterfly for one stage of a mixed radix FFT */ 258 inline bfly_generickiss_cpx_fft259 void bfly_generic( 260 Complex * Fout, 261 const size_t fstride, 262 int m, 263 int p 264 ) 265 { 266 int u,k,q1,q; 267 Complex * twiddles = &m_twiddles[0]; 268 Complex t; 269 int Norig = static_cast<int>(m_twiddles.size()); 270 Complex * scratchbuf = &m_scratchBuf[0]; 271 272 for ( u=0; u<m; ++u ) { 273 k=u; 274 for ( q1=0 ; q1<p ; ++q1 ) { 275 scratchbuf[q1] = Fout[ k ]; 276 k += m; 277 } 278 279 k=u; 280 for ( q1=0 ; q1<p ; ++q1 ) { 281 int twidx=0; 282 Fout[ k ] = scratchbuf[0]; 283 for (q=1;q<p;++q ) { 284 twidx += static_cast<int>(fstride) * k; 285 if (twidx>=Norig) twidx-=Norig; 286 t=scratchbuf[q] * twiddles[twidx]; 287 Fout[ k ] += t; 288 } 289 k += m; 290 } 291 } 292 } 293 }; 294 295 template <typename _Scalar> 296 struct kissfft_impl 297 { 298 typedef _Scalar Scalar; 299 typedef std::complex<Scalar> Complex; 300 clearkissfft_impl301 void clear() 302 { 303 m_plans.clear(); 304 m_realTwiddles.clear(); 305 } 306 307 inline fwdkissfft_impl308 void fwd( Complex * dst,const Complex *src,int nfft) 309 { 310 get_plan(nfft,false).work(0, dst, src, 1,1); 311 } 312 313 inline fwd2kissfft_impl314 void fwd2( Complex * dst,const Complex *src,int n0,int n1) 315 { 316 EIGEN_UNUSED_VARIABLE(dst); 317 EIGEN_UNUSED_VARIABLE(src); 318 EIGEN_UNUSED_VARIABLE(n0); 319 EIGEN_UNUSED_VARIABLE(n1); 320 } 321 322 inline inv2kissfft_impl323 void inv2( Complex * dst,const Complex *src,int n0,int n1) 324 { 325 EIGEN_UNUSED_VARIABLE(dst); 326 EIGEN_UNUSED_VARIABLE(src); 327 EIGEN_UNUSED_VARIABLE(n0); 328 EIGEN_UNUSED_VARIABLE(n1); 329 } 330 331 // real-to-complex forward FFT 332 // perform two FFTs of src even and src odd 333 // then twiddle to recombine them into the half-spectrum format 334 // then fill in the conjugate symmetric half 335 inline fwdkissfft_impl336 void fwd( Complex * dst,const Scalar * src,int nfft) 337 { 338 if ( nfft&3 ) { 339 // use generic mode for odd 340 m_tmpBuf1.resize(nfft); 341 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1); 342 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst ); 343 }else{ 344 int ncfft = nfft>>1; 345 int ncfft2 = nfft>>2; 346 Complex * rtw = real_twiddles(ncfft2); 347 348 // use optimized mode for even real 349 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft); 350 Complex dc(dst[0].real() + dst[0].imag()); 351 Complex nyquist(dst[0].real() - dst[0].imag()); 352 int k; 353 for ( k=1;k <= ncfft2 ; ++k ) { 354 Complex fpk = dst[k]; 355 Complex fpnk = conj(dst[ncfft-k]); 356 Complex f1k = fpk + fpnk; 357 Complex f2k = fpk - fpnk; 358 Complex tw= f2k * rtw[k-1]; 359 dst[k] = (f1k + tw) * Scalar(.5); 360 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); 361 } 362 dst[0] = dc; 363 dst[ncfft] = nyquist; 364 } 365 } 366 367 // inverse complex-to-complex 368 inline invkissfft_impl369 void inv(Complex * dst,const Complex *src,int nfft) 370 { 371 get_plan(nfft,true).work(0, dst, src, 1,1); 372 } 373 374 // half-complex to scalar 375 inline invkissfft_impl376 void inv( Scalar * dst,const Complex * src,int nfft) 377 { 378 if (nfft&3) { 379 m_tmpBuf1.resize(nfft); 380 m_tmpBuf2.resize(nfft); 381 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() ); 382 for (int k=1;k<(nfft>>1)+1;++k) 383 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]); 384 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft); 385 for (int k=0;k<nfft;++k) 386 dst[k] = m_tmpBuf2[k].real(); 387 }else{ 388 // optimized version for multiple of 4 389 int ncfft = nfft>>1; 390 int ncfft2 = nfft>>2; 391 Complex * rtw = real_twiddles(ncfft2); 392 m_tmpBuf1.resize(ncfft); 393 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() ); 394 for (int k = 1; k <= ncfft / 2; ++k) { 395 Complex fk = src[k]; 396 Complex fnkc = conj(src[ncfft-k]); 397 Complex fek = fk + fnkc; 398 Complex tmp = fk - fnkc; 399 Complex fok = tmp * conj(rtw[k-1]); 400 m_tmpBuf1[k] = fek + fok; 401 m_tmpBuf1[ncfft-k] = conj(fek - fok); 402 } 403 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1); 404 } 405 } 406 407 protected: 408 typedef kiss_cpx_fft<Scalar> PlanData; 409 typedef std::map<int,PlanData> PlanMap; 410 411 PlanMap m_plans; 412 std::map<int, std::vector<Complex> > m_realTwiddles; 413 std::vector<Complex> m_tmpBuf1; 414 std::vector<Complex> m_tmpBuf2; 415 416 inline PlanKeykissfft_impl417 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); } 418 419 inline get_plankissfft_impl420 PlanData & get_plan(int nfft, bool inverse) 421 { 422 // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles 423 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ]; 424 if ( pd.m_twiddles.size() == 0 ) { 425 pd.make_twiddles(nfft,inverse); 426 pd.factorize(nfft); 427 } 428 return pd; 429 } 430 431 inline real_twiddleskissfft_impl432 Complex * real_twiddles(int ncfft2) 433 { 434 using std::acos; 435 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there 436 if ( (int)twidref.size() != ncfft2 ) { 437 twidref.resize(ncfft2); 438 int ncfft= ncfft2<<1; 439 Scalar pi = acos( Scalar(-1) ); 440 for (int k=1;k<=ncfft2;++k) 441 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) ); 442 } 443 return &twidref[0]; 444 } 445 }; 446 447 } // end namespace internal 448 449 } // end namespace Eigen 450