xref: /aosp_15_r20/external/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2012 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 /*
11 NOTE: these functions have been adapted from the LDL library:
12 
13 LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved.
14 
15 The author of LDL, Timothy A. Davis., has executed a license with Google LLC
16 to permit distribution of this code and derivative works as part of Eigen under
17 the Mozilla Public License v. 2.0, as stated at the top of this file.
18  */
19 
20 #ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
21 #define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
22 
23 namespace Eigen {
24 
25 template<typename Derived>
analyzePattern_preordered(const CholMatrixType & ap,bool doLDLT)26 void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
27 {
28   const StorageIndex size = StorageIndex(ap.rows());
29   m_matrix.resize(size, size);
30   m_parent.resize(size);
31   m_nonZerosPerCol.resize(size);
32 
33   ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
34 
35   for(StorageIndex k = 0; k < size; ++k)
36   {
37     /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
38     m_parent[k] = -1;             /* parent of k is not yet known */
39     tags[k] = k;                  /* mark node k as visited */
40     m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */
41     for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
42     {
43       StorageIndex i = it.index();
44       if(i < k)
45       {
46         /* follow path from i to root of etree, stop at flagged node */
47         for(; tags[i] != k; i = m_parent[i])
48         {
49           /* find parent of i if not yet determined */
50           if (m_parent[i] == -1)
51             m_parent[i] = k;
52           m_nonZerosPerCol[i]++;        /* L (k,i) is nonzero */
53           tags[i] = k;                  /* mark i as visited */
54         }
55       }
56     }
57   }
58 
59   /* construct Lp index array from m_nonZerosPerCol column counts */
60   StorageIndex* Lp = m_matrix.outerIndexPtr();
61   Lp[0] = 0;
62   for(StorageIndex k = 0; k < size; ++k)
63     Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
64 
65   m_matrix.resizeNonZeros(Lp[size]);
66 
67   m_isInitialized     = true;
68   m_info              = Success;
69   m_analysisIsOk      = true;
70   m_factorizationIsOk = false;
71 }
72 
73 
74 template<typename Derived>
75 template<bool DoLDLT>
factorize_preordered(const CholMatrixType & ap)76 void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
77 {
78   using std::sqrt;
79 
80   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
81   eigen_assert(ap.rows()==ap.cols());
82   eigen_assert(m_parent.size()==ap.rows());
83   eigen_assert(m_nonZerosPerCol.size()==ap.rows());
84 
85   const StorageIndex size = StorageIndex(ap.rows());
86   const StorageIndex* Lp = m_matrix.outerIndexPtr();
87   StorageIndex* Li = m_matrix.innerIndexPtr();
88   Scalar* Lx = m_matrix.valuePtr();
89 
90   ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
91   ei_declare_aligned_stack_constructed_variable(StorageIndex,  pattern, size, 0);
92   ei_declare_aligned_stack_constructed_variable(StorageIndex,  tags, size, 0);
93 
94   bool ok = true;
95   m_diag.resize(DoLDLT ? size : 0);
96 
97   for(StorageIndex k = 0; k < size; ++k)
98   {
99     // compute nonzero pattern of kth row of L, in topological order
100     y[k] = Scalar(0);                     // Y(0:k) is now all zero
101     StorageIndex top = size;               // stack for pattern is empty
102     tags[k] = k;                    // mark node k as visited
103     m_nonZerosPerCol[k] = 0;        // count of nonzeros in column k of L
104     for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
105     {
106       StorageIndex i = it.index();
107       if(i <= k)
108       {
109         y[i] += numext::conj(it.value());            /* scatter A(i,k) into Y (sum duplicates) */
110         Index len;
111         for(len = 0; tags[i] != k; i = m_parent[i])
112         {
113           pattern[len++] = i;     /* L(k,i) is nonzero */
114           tags[i] = k;            /* mark i as visited */
115         }
116         while(len > 0)
117           pattern[--top] = pattern[--len];
118       }
119     }
120 
121     /* compute numerical values kth row of L (a sparse triangular solve) */
122 
123     RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset;    // get D(k,k), apply the shift function, and clear Y(k)
124     y[k] = Scalar(0);
125     for(; top < size; ++top)
126     {
127       Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */
128       Scalar yi = y[i];             /* get and clear Y(i) */
129       y[i] = Scalar(0);
130 
131       /* the nonzero entry L(k,i) */
132       Scalar l_ki;
133       if(DoLDLT)
134         l_ki = yi / numext::real(m_diag[i]);
135       else
136         yi = l_ki = yi / Lx[Lp[i]];
137 
138       Index p2 = Lp[i] + m_nonZerosPerCol[i];
139       Index p;
140       for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
141         y[Li[p]] -= numext::conj(Lx[p]) * yi;
142       d -= numext::real(l_ki * numext::conj(yi));
143       Li[p] = k;                          /* store L(k,i) in column form of L */
144       Lx[p] = l_ki;
145       ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */
146     }
147     if(DoLDLT)
148     {
149       m_diag[k] = d;
150       if(d == RealScalar(0))
151       {
152         ok = false;                         /* failure, D(k,k) is zero */
153         break;
154       }
155     }
156     else
157     {
158       Index p = Lp[k] + m_nonZerosPerCol[k]++;
159       Li[p] = k ;                /* store L(k,k) = sqrt (d) in column k */
160       if(d <= RealScalar(0)) {
161         ok = false;              /* failure, matrix is not positive definite */
162         break;
163       }
164       Lx[p] = sqrt(d) ;
165     }
166   }
167 
168   m_info = ok ? Success : NumericalIssue;
169   m_factorizationIsOk = true;
170 }
171 
172 } // end namespace Eigen
173 
174 #endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
175