xref: /aosp_15_r20/external/armnn/src/armnn/layers/DepthwiseConvolution2dLayer.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017,2022 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "DepthwiseConvolution2dLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/TypesUtils.hpp>
10 
11 #include <armnnUtils/DataLayoutIndexed.hpp>
12 
13 #include <armnn/backends/TensorHandle.hpp>
14 #include <armnn/backends/WorkloadFactory.hpp>
15 
16 #include <string>
17 
18 using namespace armnnUtils;
19 
20 namespace armnn
21 {
22 
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor & param,const char * name)23 DepthwiseConvolution2dLayer::DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor& param,
24                                                          const char* name)
25     : LayerWithParameters(param.GetNumInputs(), 1, LayerType::DepthwiseConvolution2d, param, name)
26 {
27 }
28 
SerializeLayerParameters(ParameterStringifyFunction & fn) const29 void DepthwiseConvolution2dLayer::SerializeLayerParameters(ParameterStringifyFunction& fn) const
30 {
31     const std::vector<TensorShape>& inputShapes =
32     {
33         GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
34         GetInputSlot(1).GetConnection()->GetTensorInfo().GetShape()
35     };
36     const TensorShape filterShape = inputShapes[1];
37     unsigned int inputChannels = filterShape[1];
38     unsigned int filterWidth = filterShape[3];
39     unsigned int filterHeight = filterShape[2];
40     unsigned int depthMultiplier = filterShape[0];
41 
42     fn("FilterWidth",std::to_string(filterWidth));
43     fn("FilterHeight",std::to_string(filterHeight));
44     fn("DepthMultiplier",std::to_string(depthMultiplier));
45     fn("InputChannels",std::to_string(inputChannels));
46 
47     LayerWithParameters<DepthwiseConvolution2dDescriptor>::SerializeLayerParameters(fn);
48 }
49 
CreateWorkload(const IWorkloadFactory & factory) const50 std::unique_ptr<IWorkload> DepthwiseConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
51 {
52     DepthwiseConvolution2dQueueDescriptor descriptor;
53     SetAdditionalInfo(descriptor);
54 
55     return factory.CreateWorkload(LayerType::DepthwiseConvolution2d, descriptor, PrepInfoAndDesc(descriptor));
56 }
57 
Clone(Graph & graph) const58 DepthwiseConvolution2dLayer* DepthwiseConvolution2dLayer::Clone(Graph& graph) const
59 {
60     auto layer      = CloneBase<DepthwiseConvolution2dLayer>(graph, m_Param, GetName());
61     return std::move(layer);
62 }
63 
64 std::vector<TensorShape>
InferOutputShapes(const std::vector<TensorShape> & inputShapes) const65 DepthwiseConvolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
66 {
67     ARMNN_ASSERT(inputShapes.size() == 2);
68     const TensorShape& inputShape  = inputShapes[0];
69     const TensorShape& filterShape = inputShapes[1];
70 
71     ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 4, "Convolutions will always have 4D input.");
72 
73     ARMNN_ASSERT( m_Param.m_StrideX > 0);
74     ARMNN_ASSERT( m_Param.m_StrideY > 0);
75 
76     DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
77 
78     unsigned int inputBatchSize = inputShape[0];
79     unsigned int inputHeight    = inputShape[dataLayoutIndex.GetHeightIndex()];
80     unsigned int inputWidth     = inputShape[dataLayoutIndex.GetWidthIndex()];
81 
82     // Expected filter shape: [ 1, H, W, O ] - This shape does NOT depend on the data layout
83     // Namely: [ 1, filter height, filter width, output channels ]
84 
85     unsigned int filterHeight = filterShape[1];
86     unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
87     unsigned int readHeight   = (inputHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
88     unsigned int outputHeight = 1 + (readHeight / m_Param.m_StrideY);
89 
90     unsigned int filterWidth = filterShape[2];
91     unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
92     unsigned int readWidth   = (inputWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
93     unsigned int outputWidth = 1 + (readWidth / m_Param.m_StrideX);
94 
95     unsigned int outputChannels  = filterShape[3];
96     unsigned int outputBatchSize = inputBatchSize;
97 
98     TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
99                               TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
100                               TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
101 
102     return std::vector<TensorShape>{ tensorShape };
103 }
104 
ValidateTensorShapesFromInputs()105 void DepthwiseConvolution2dLayer::ValidateTensorShapesFromInputs()
106 {
107     VerifyLayerConnections(m_Param.GetNumInputs(), CHECK_LOCATION());
108 
109     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
110 
111     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
112 
113     ARMNN_ASSERT_MSG(GetInputSlot(1).GetConnection(),
114                      "DepthwiseConvolution2dLayer: Weights data should not be null.");
115 
116     auto inferredShapes = InferOutputShapes({
117         GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
118         GetInputSlot(1).GetConnection()->GetTensorInfo().GetShape()
119     });
120 
121     ARMNN_ASSERT(inferredShapes.size() == 1);
122 
123     ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "DepthwiseConvolution2dLayer");
124 }
125 
GetConstantTensorsByRef() const126 Layer::ImmutableConstantTensors DepthwiseConvolution2dLayer::GetConstantTensorsByRef() const
127 {
128     Layer::ImmutableConstantTensors tensors = GetConnectedConstantAsInputTensors();
129     return tensors;
130 }
131 
ExecuteStrategy(IStrategy & strategy) const132 void DepthwiseConvolution2dLayer::ExecuteStrategy(IStrategy& strategy) const
133 {
134     strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
135 }
136 
137 } // namespace armnn
138