xref: /aosp_15_r20/external/armnn/src/armnn/layers/ReduceLayer.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020 Samsung Electronics Co Ltd and Contributors. All rights reserved.
3 // Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
4 // SPDX-License-Identifier: MIT
5 //
6 
7 #include "ReduceLayer.hpp"
8 #include "LayerCloneBase.hpp"
9 
10 #include <armnn/TypesUtils.hpp>
11 
12 #include <armnn/backends/WorkloadData.hpp>
13 #include <armnn/backends/WorkloadFactory.hpp>
14 
15 namespace armnn
16 {
17 
ReduceLayer(const ReduceDescriptor & param,const char * name)18 ReduceLayer::ReduceLayer(const ReduceDescriptor& param, const char* name)
19     : LayerWithParameters(1, 1, LayerType::Reduce, param, name)
20 {
21 }
22 
CreateWorkload(const IWorkloadFactory & factory) const23 std::unique_ptr<IWorkload> ReduceLayer::CreateWorkload(const IWorkloadFactory& factory) const
24 {
25     ReduceQueueDescriptor descriptor;
26     descriptor.m_Parameters.m_vAxis           = m_Param.m_vAxis;
27     descriptor.m_Parameters.m_KeepDims        = m_Param.m_KeepDims;
28     descriptor.m_Parameters.m_ReduceOperation = m_Param.m_ReduceOperation;
29     SetAdditionalInfo(descriptor);
30 
31     return factory.CreateWorkload(LayerType::Reduce, descriptor, PrepInfoAndDesc(descriptor));
32 }
33 
Clone(Graph & graph) const34 ReduceLayer* ReduceLayer::Clone(Graph& graph) const
35 {
36     auto layer =  CloneBase<ReduceLayer>(graph, m_Param, GetName());
37     layer->m_Param.m_vAxis           = m_Param.m_vAxis;
38     layer->m_Param.m_KeepDims        = m_Param.m_KeepDims;
39     layer->m_Param.m_ReduceOperation = m_Param.m_ReduceOperation;
40 
41     return std::move(layer);
42 }
43 
ValidateTensorShapesFromInputs()44 void ReduceLayer::ValidateTensorShapesFromInputs()
45 {
46     VerifyLayerConnections(1, CHECK_LOCATION());
47 
48     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
49 
50     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
51 
52     const TensorInfo& input = GetInputSlot(0).GetConnection()->GetTensorInfo();
53 
54     ARMNN_ASSERT_MSG(input.GetNumDimensions() > 0 && input.GetNumDimensions() <= 4,
55                      "ReduceLayer: Reduce supports up to 4D input.");
56 
57     std::vector<TensorShape> inferredShapes = InferOutputShapes( {input.GetShape() });
58 
59     ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "ReduceLayer");
60 }
61 
InferOutputShapes(const std::vector<TensorShape> & inputShapes) const62 std::vector<TensorShape> ReduceLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
63 {
64     ARMNN_ASSERT(inputShapes.size() == 1);
65     const TensorShape& input = inputShapes[0];
66 
67     ARMNN_ASSERT_MSG(input.GetNumDimensions() > 0 && input.GetNumDimensions() <= 4,
68                      "ReduceLayer: Reduce supports up to 4D input.");
69 
70     unsigned int rank = input.GetNumDimensions();
71     unsigned int outputRank = 0;
72 
73     // Calculate output dimension
74     if (m_Param.m_KeepDims)
75     {
76         outputRank = rank;
77     }
78     else if (m_Param.m_vAxis.empty())
79     {
80         outputRank = 1;
81     }
82     else if (m_Param.m_vAxis.size() > input.GetNumDimensions())
83     {
84         throw LayerValidationException("ReduceLayer: Dimensions to reduce can not be bigger than input dimensions");
85     }
86     else
87     {
88         outputRank = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(m_Param.m_vAxis.size());
89         if (outputRank == 0)
90         {
91             outputRank = 1;
92         }
93     }
94 
95     std::vector<unsigned int> dimSizes(outputRank, 1);
96     if (!m_Param.m_vAxis.empty())
97     {
98         // Skip the dimension that has been reduced unless keepDims is true.
99         unsigned int outputIndex = 0;
100         for (unsigned int i = 0; i < input.GetNumDimensions(); ++i)
101         {
102             if (std::find(m_Param.m_vAxis.begin(), m_Param.m_vAxis.end(), i) == m_Param.m_vAxis.end())
103             {
104                 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input[i]);
105                 ++outputIndex;
106             }
107             else if (m_Param.m_KeepDims)
108             {
109                 dimSizes[outputIndex] = 1;
110                 ++outputIndex;
111             }
112         }
113     }
114     return std::vector<TensorShape>({ TensorShape(outputRank, dimSizes.data()) });
115 }
116 
ExecuteStrategy(IStrategy & strategy) const117 void ReduceLayer::ExecuteStrategy(IStrategy& strategy) const
118 {
119     strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
120 }
121 
122 } // namespace armnn
123