xref: /aosp_15_r20/external/google-breakpad/src/common/md5.cc (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1 /*
2  * written by Colin Plumb in 1993, no copyright is claimed.
3  * This code is in the public domain; do with it what you wish.
4  *
5  * Equivalent code is available from RSA Data Security, Inc.
6  * This code has been tested against that, and is equivalent,
7  * except that you don't need to include two pages of legalese
8  * with every copy.
9  *
10  * To compute the message digest of a chunk of bytes, declare an
11  * MD5Context structure, pass it to MD5Init, call MD5Update as
12  * needed on buffers full of bytes, and then call MD5Final, which
13  * will fill a supplied 16-byte array with the digest.
14  */
15 
16 #ifdef HAVE_CONFIG_H
17 #include <config.h>  // Must come first
18 #endif
19 
20 #include <string.h>
21 
22 #include "common/md5.h"
23 
24 namespace google_breakpad {
25 
26 #ifndef WORDS_BIGENDIAN
27 #define byteReverse(buf, len)   /* Nothing */
28 #else
29 /*
30  * Note: this code is harmless on little-endian machines.
31  */
32 static void byteReverse(unsigned char *buf, unsigned longs)
33 {
34   u32 t;
35   do {
36     t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
37       ((unsigned) buf[1] << 8 | buf[0]);
38     *(u32*) buf = t;
39     buf += 4;
40   } while (--longs);
41 }
42 #endif
43 
44 static void MD5Transform(u32 buf[4], u32 const in[16]);
45 
46 /*
47  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
48  * initialization constants.
49  */
MD5Init(struct MD5Context * ctx)50 void MD5Init(struct MD5Context *ctx)
51 {
52   ctx->buf[0] = 0x67452301;
53   ctx->buf[1] = 0xefcdab89;
54   ctx->buf[2] = 0x98badcfe;
55   ctx->buf[3] = 0x10325476;
56 
57   ctx->bits[0] = 0;
58   ctx->bits[1] = 0;
59 }
60 
61 /*
62  * Update context to reflect the concatenation of another buffer full
63  * of bytes.
64  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,size_t len)65 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, size_t len)
66 {
67   u32 t;
68 
69   /* Update bitcount */
70 
71   t = ctx->bits[0];
72   if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
73     ctx->bits[1]++;         /* Carry from low to high */
74   ctx->bits[1] += len >> 29;
75 
76   t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
77 
78   /* Handle any leading odd-sized chunks */
79 
80   if (t) {
81     unsigned char *p = (unsigned char*) ctx->in + t;
82 
83     t = 64 - t;
84     if (len < t) {
85       memcpy(p, buf, len);
86       return;
87     }
88     memcpy(p, buf, t);
89     byteReverse(ctx->in, 16);
90     MD5Transform(ctx->buf, (u32*) ctx->in);
91     buf += t;
92     len -= t;
93   }
94   /* Process data in 64-byte chunks */
95 
96   while (len >= 64) {
97     memcpy(ctx->in, buf, 64);
98     byteReverse(ctx->in, 16);
99     MD5Transform(ctx->buf, (u32*) ctx->in);
100     buf += 64;
101     len -= 64;
102   }
103 
104   /* Handle any remaining bytes of data. */
105 
106   memcpy(ctx->in, buf, len);
107 }
108 
109 /*
110  * Final wrapup - pad to 64-byte boundary with the bit pattern
111  * 1 0* (64-bit count of bits processed, MSB-first)
112  */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)113 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
114 {
115   unsigned count;
116   unsigned char *p;
117 
118   /* Compute number of bytes mod 64 */
119   count = (ctx->bits[0] >> 3) & 0x3F;
120 
121   /* Set the first char of padding to 0x80.  This is safe since there is
122      always at least one byte free */
123   p = ctx->in + count;
124   *p++ = 0x80;
125 
126   /* Bytes of padding needed to make 64 bytes */
127   count = 64 - 1 - count;
128 
129   /* Pad out to 56 mod 64 */
130   if (count < 8) {
131     /* Two lots of padding:  Pad the first block to 64 bytes */
132     memset(p, 0, count);
133     byteReverse(ctx->in, 16);
134     MD5Transform(ctx->buf, (u32*) ctx->in);
135 
136     /* Now fill the next block with 56 bytes */
137     memset(ctx->in, 0, 56);
138   } else {
139     /* Pad block to 56 bytes */
140     memset(p, 0, count - 8);
141   }
142   byteReverse(ctx->in, 14);
143 
144   /* Append length in bits and transform */
145   memcpy(&ctx->in[14], &ctx->bits[0], sizeof(u32));
146   memcpy(&ctx->in[15], &ctx->bits[1], sizeof(u32));
147 
148   MD5Transform(ctx->buf, (u32*) ctx->in);
149   byteReverse((unsigned char*) ctx->buf, 4);
150   memcpy(digest, ctx->buf, 16);
151   memset(ctx, 0, sizeof(*ctx));        /* In case it's sensitive */
152 }
153 
154 /* The four core functions - F1 is optimized somewhat */
155 
156 /* #define F1(x, y, z) (x & y | ~x & z) */
157 #define F1(x, y, z) (z ^ (x & (y ^ z)))
158 #define F2(x, y, z) F1(z, x, y)
159 #define F3(x, y, z) (x ^ y ^ z)
160 #define F4(x, y, z) (y ^ (x | ~z))
161 
162 /* This is the central step in the MD5 algorithm. */
163 #define MD5STEP(f, w, x, y, z, data, s) \
164   ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
165 
166 /*
167  * The core of the MD5 algorithm, this alters an existing MD5 hash to
168  * reflect the addition of 16 longwords of new data.  MD5Update blocks
169  * the data and converts bytes into longwords for this routine.
170  */
MD5Transform(u32 buf[4],u32 const in[16])171 static void MD5Transform(u32 buf[4], u32 const in[16])
172 {
173   u32 a, b, c, d;
174 
175   a = buf[0];
176   b = buf[1];
177   c = buf[2];
178   d = buf[3];
179 
180   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
181   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
182   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
183   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
184   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
185   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
186   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
187   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
188   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
189   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
190   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
191   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
192   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
193   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
194   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
195   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
196 
197   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
198   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
199   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
200   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
201   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
202   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
203   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
204   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
205   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
206   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
207   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
208   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
209   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
210   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
211   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
212   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
213 
214   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
215   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
216   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
217   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
218   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
219   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
220   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
221   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
222   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
223   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
224   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
225   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
226   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
227   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
228   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
229   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
230 
231   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
232   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
233   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
234   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
235   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
236   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
237   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
238   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
239   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
240   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
241   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
242   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
243   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
244   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
245   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
246   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
247 
248   buf[0] += a;
249   buf[1] += b;
250   buf[2] += c;
251   buf[3] += d;
252 }
253 
254 }  // namespace google_breakpad
255 
256