xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/common/batchnormalization_layer.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2017-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26#if defined(DATA_TYPE) && defined(EPSILON)
27/** OpenCL kernel to fuse the weights of convolution or depthwise convolution layer with batch normalization when the data layout is either NCHW or NHWC
28 *
29 * @note The input weights tensor is assumed 4D with the OFMs in the fourth dimension
30 * @note Data type should be passed at compile time using the -DDATA_TYPE, e.g. -DDATA_TYPE=float
31 * @note The third dimension of the input tensor should be passed at compile time when weights belong to a convolution layer using -DDIM2=size. e.g. -DDIM2=16.
32 *       For depthwise convolution weight do not pass DIM2
33 * @note Data layout NHWC should be passed at compile time with -DNHWC. For data layout NCHW it is not required to pass any parameter
34 * @note Batch normalization epsilon parameter should be passed at compile time using -DEPSILON=value. e.g. -DEPSILON=0.001f
35 *
36 * @param[in]  w_ptr                                 Pointer to the weights tensor. Supported data types: F16/F32
37 * @param[in]  w_stride_x                            Stride of the weights tensor in X dimension (in bytes)
38 * @param[in]  w_step_x                              w_stride_x * number of elements along X processed per workitem(in bytes)
39 * @param[in]  w_stride_y                            Stride of the weights tensor in Y dimension (in bytes)
40 * @param[in]  w_step_y                              w_stride_y * number of elements along Y processed per workitem(in bytes)
41 * @param[in]  w_stride_z                            Stride of the weights tensor in Z dimension (in bytes)
42 * @param[in]  w_step_z                              w_stride_z * number of elements along Z processed per workitem(in bytes)
43 * @param[in]  w_offset_first_element_in_bytes       The offset of the first element in the weights tensor
44 * @param[in]  b_ptr                                 (Optional) Pointer to the bias tensor. Supported data types: same as @p w_ptr
45 * @param[in]  b_stride_x                            (Optional) Stride of the bias tensor in X dimension (in bytes)
46 * @param[in]  b_step_x                              (Optional) b_stride_x * number of elements along X processed per workitem(in bytes)
47 * @param[in]  b_stride_y                            (Optional) Stride of the bias tensor in Y dimension (in bytes)
48 * @param[in]  b_step_y                              (Optional) b_stride_y * number of elements along Y processed per workitem(in bytes)
49 * @param[in]  b_stride_z                            (Optional) Stride of the bias tensor in Z dimension (in bytes)
50 * @param[in]  b_step_z                              (Optional) b_stride_z * number of elements along Z processed per workitem(in bytes)
51 * @param[in]  b_offset_first_element_in_bytes       (Optional) The offset of the first element in the bias tensor
52 * @param[in]  mean_ptr                              Pointer to the mean source tensor. Supported data types: same as @p w_ptr
53 * @param[in]  mean_stride_x                         Stride of the mean source tensor in X dimension (in bytes)
54 * @param[in]  mean_step_x                           mean_stride_x * number of elements along X processed per workitem(in bytes)
55 * @param[in]  mean_offset_first_element_in_bytes    The offset of the first element in the mean source tensor
56 * @param[in]  var_ptr                               Pointer to the var tensor. Supported data types: same as @p w_ptr
57 * @param[in]  var_stride_x                          Stride of the var tensor in X dimension (in bytes)
58 * @param[in]  var_step_x                            var_stride_x * number of elements along X processed per workitem(in bytes)
59 * @param[in]  var_offset_first_element_in_bytes     The offset of the first element in the var source tensor
60 * @param[out] w_fused_ptr                           (Optional) Pointer to the destination weights tensors. Supported data types: same as @p w_ptr
61 * @param[in]  w_fused_stride_x                      (Optional) Stride of the destination weights tensor in X dimension (in bytes)
62 * @param[in]  w_fused_step_x                        (Optional) w_fused_stride_x * number of elements along X processed per workitem(in bytes)
63 * @param[in]  w_fused_stride_y                      (Optional) Stride of the destination weights tensor in Y dimension (in bytes)
64 * @param[in]  w_fused_step_y                        (Optional) w_fused_stride_y * number of elements along Y processed per workitem(in bytes)
65 * @param[in]  w_fused_stride_z                      (Optional) Stride of the destination weights tensor in Z dimension (in bytes)
66 * @param[in]  w_fused_step_z                        (Optional) w_fused_stride_z * number of elements along Z processed per workitem(in bytes)
67 * @param[in]  w_fused_offset_first_element_in_bytes (Optional) The offset of the first element in the destination weights tensor
68 * @param[in]  b_fused_ptr                           (Optional) Pointer to the destination bias tensor. Supported data types: same as @p w_ptr
69 * @param[in]  b_fused_stride_x                      (Optional) Stride of the destination bias tensor in X dimension (in bytes)
70 * @param[in]  b_fused_step_x                        (Optional) b_fused_stride_x * number of elements along X processed per workitem(in bytes)
71 * @param[in]  b_fused_offset_first_element_in_bytes (Optional) The offset of the first element in the destination bias tensor
72 * @param[in]  beta_ptr                              (Optional) Pointer to the beta source tensor. Supported data types: same as @p w_ptr
73 * @param[in]  beta_stride_x                         (Optional) Stride of the beta source tensor in X dimension (in bytes)
74 * @param[in]  beta_step_x                           (Optional) beta_stride_x * number of elements along X processed per workitem(in bytes)
75 * @param[in]  beta_offset_first_element_in_bytes    (Optional) The offset of the first element in the beta source tensor
76 * @param[in]  gamma_ptr                             (Optional) Pointer to the gamma source tensor. Supported data types: same as @p w_ptr
77 * @param[in]  gamma_stride_x                        (Optional) Stride of the gamma source tensor in X dimension (in bytes)
78 * @param[in]  gamma_step_x                          (Optional) gamma_stride_x * number of elements along X processed per workitem(in bytes)
79 * @param[in]  gamma_offset_first_element_in_bytes   (Optional) The offset of the first element in the gamma source tensor
80 */
81__kernel void fuse_batchnormalization_layer(TENSOR3D_DECLARATION(w),
82#if defined(BIAS)
83                                            VECTOR_DECLARATION(b),
84#endif // defined(BIAS)
85                                            VECTOR_DECLARATION(mean),
86                                            VECTOR_DECLARATION(var)
87#ifndef IN_PLACE_W
88                                            ,
89                                            TENSOR3D_DECLARATION(w_fused)
90#endif // ifndef IN_PLACE_W
91#ifndef IN_PLACE_B
92                                            ,
93                                            VECTOR_DECLARATION(b_fused)
94#endif // ifndef IN_PLACE_B
95#if defined(BETA)
96                                            ,
97                                            VECTOR_DECLARATION(beta)
98#endif // defined(BETA)
99#if defined(GAMMA)
100                                            ,
101                                            VECTOR_DECLARATION(gamma)
102#endif // defined(GAMMA)
103                                           )
104{
105    int x = get_global_id(0);
106    int y = get_global_id(1);
107    int z = get_global_id(2);
108
109#if defined(DIM2)
110    int c0 = z % DIM2;
111    int c1 = z / DIM2;
112#else // ! defined(DIM2)
113    int c0                                                                                    = 0;
114#if defined(NHWC)
115    int c1                                                                                    = x;
116#else  // defined(NHWC)
117    int c1 = z;
118#endif // defined(NHWC)
119#endif // defined(DIM2)
120
121    int w_offset = x * sizeof(DATA_TYPE) + y * w_stride_y + z * w_stride_z;
122    int v_offset = c1 * sizeof(DATA_TYPE);
123
124    DATA_TYPE w_old = 0.0f;
125    DATA_TYPE b_old = 0.0f;
126    DATA_TYPE w_new = 0.0f;
127    DATA_TYPE b_new = 0.0f;
128    DATA_TYPE gamma = 1.0f;
129    DATA_TYPE mean  = 0.0f;
130    DATA_TYPE var   = 1.0f;
131    DATA_TYPE beta  = 0.0f;
132
133    w_old = *((__global DATA_TYPE *)(w_ptr + w_offset + w_offset_first_element_in_bytes));
134    var   = *((__global DATA_TYPE *)(var_ptr + v_offset + var_offset_first_element_in_bytes));
135    mean  = *((__global DATA_TYPE *)(mean_ptr + v_offset + mean_offset_first_element_in_bytes));
136
137#if defined(GAMMA)
138    gamma = *((__global DATA_TYPE *)(gamma_ptr + v_offset + gamma_offset_first_element_in_bytes));
139#endif // defined(GAMMA)
140
141    // Compute new weight
142    w_new = (gamma * w_old) / (sqrt(var + EPSILON));
143
144#if defined(IN_PLACE_W)
145    *((__global DATA_TYPE *)(w_ptr + w_offset + w_offset_first_element_in_bytes)) = w_new;
146#else  // defined(IN_PLACE_W)
147    *((__global DATA_TYPE *)(w_fused_ptr + w_offset + w_fused_offset_first_element_in_bytes)) = w_new;
148#endif // defined(IN_PLACE_W)
149
150    // Compute bias
151#if !defined(DIM2) && defined(NHWC)
152    if(z == 0 && y == 0)
153#else  // !defined(DIM2) && defined(NHWC)
154    if(x == 0 && y == 0 && c0 == 0)
155#endif // !defined(DIM2) && defined(NHWC)
156    {
157#if defined(BIAS)
158        b_old = *((__global DATA_TYPE *)(b_ptr + v_offset + b_offset_first_element_in_bytes));
159#endif // defined(BIAS)
160#if defined(BETA)
161        beta = *((__global DATA_TYPE *)(beta_ptr + v_offset + beta_offset_first_element_in_bytes));
162#endif // defined(BETA)
163
164        b_new = ((gamma * (b_old - mean)) / (sqrt(var + EPSILON))) + beta;
165
166#if defined(BIAS)
167
168#if defined(IN_PLACE_B)
169        *((__global DATA_TYPE *)(b_ptr + v_offset + b_offset_first_element_in_bytes)) = b_new;
170#else  // defined(IN_PLACE_B)
171        *((__global DATA_TYPE *)(b_fused_ptr + v_offset + b_fused_offset_first_element_in_bytes)) = b_new;
172#endif // defined(IN_PLACE_B)
173
174#else // defined(BIAS)
175
176#ifndef IN_PLACE_B
177        *((__global DATA_TYPE *)(b_fused_ptr + v_offset + b_fused_offset_first_element_in_bytes)) = b_new;
178#endif // ifndef IN_PLACE_B
179
180#endif // defined(BIAS)
181    }
182}
183#endif // defined(DATA_TYPE) && defined(EPSILON)