1/* 2 * Copyright (c) 2018-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include "helpers.h" 25 26/** Perform a strided slice operation on a given input. 27 * 28 * @attention Supported tensor rank: up to 4 29 * 30 * @attention Data type can be passed using the -DDATA_TYPE compile flag, e.g. -DDATA_TYPE=float 31 * @attention Input and output tensor dephts should be given as a preprocessor arguments using -DSRC_DEPTH=size. and -DDST_DEPTH=size 32 * @attention Absolute start coordinates for each dimension should be given as preprocessor -DSTART_index=value e.g. -DSTART_0=2 33 * @attention Strides for each dimension should be given as preprocessor -DSTRIDE_index=value e.g. -DSTRIDE_1=1 34 * 35 * @param[in] input_ptr Pointer to the source tensor. Supported data types: All 36 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) 37 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 38 * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) 39 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 40 * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) 41 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 42 * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) 43 * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) 44 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor 45 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr 46 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) 47 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 48 * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) 49 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 50 * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) 51 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 52 * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) 53 * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) 54 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor 55 */ 56__kernel void strided_slice( 57 TENSOR4D_DECLARATION(input), 58 TENSOR4D_DECLARATION(output)) 59{ 60 // Get pixels pointer 61 Tensor4D input = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(input, SRC_DEPTH); 62 Tensor4D output = CONVERT_TO_TENSOR4D_STRUCT(output, DST_DEPTH); 63 64 int offset = 0; 65 66 // Offset X 67#if defined(SHRINK_0) 68 input.ptr += (int)START_0 * input_stride_x; 69#elif defined(START_0) && defined(STRIDE_0) && defined(VEC_SIZE) && defined(LAST_ACCESSED_X) 70 // Check if access on width gets out of bounds 71 // If it does shift access vector to access elements within bounds 72 const int xi = (int)(get_global_id(0) * VEC_SIZE); 73 offset = (int)START_0 + min(xi, (int)LAST_ACCESSED_X); 74 input.ptr += offset * input_stride_x; 75 output.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * output_stride_x; 76#elif defined(START_0) && defined(STRIDE_0) 77 offset = (int)START_0 + (int)get_global_id(0) * (int)STRIDE_0; 78 input.ptr += offset * input_stride_x; 79#endif // defined(START_0) && defined(STRIDE_0) 80 81 // Offset Y 82#if defined(SHRINK_1) 83 input.ptr += (int)START_1 * input_stride_y; 84#elif defined(START_1) && defined(STRIDE_1) 85#if defined(SHRINK_0) 86 offset = (int)START_1 + (int)get_global_id(0) * (int)STRIDE_1; 87#else // defined(SHRINK_0) 88 offset = (int)START_1 + (int)get_global_id(1) * (int)STRIDE_1; 89#endif // defined(SHRINK_0) 90 input.ptr += offset * input_stride_y; 91#endif // defined(START_1) && defined(STRIDE_1) 92 93 // Offset Z 94#if defined(SHRINK_2) 95 input.ptr += (int)START_2 * input_stride_z; 96#elif defined(START_2) && defined(STRIDE_2) 97 98#if defined(SHRINK_1) && defined(SHRINK_0) 99 offset = (int)START_2 + (int)get_global_id(0) * (int)STRIDE_2; 100#elif defined(SHRINK_1) || defined(SHRINK_0) 101 offset = (int)START_2 + (int)get_global_id(1) * (int)STRIDE_2; 102#else // defined(SHRINK_1) && defined(SHRINK_0) 103 offset = (int)START_2 + ((int)get_global_id(2) % (int)DST_DEPTH) * (int)STRIDE_2; 104#endif // defined(SHRINK_1) && defined(SHRINK_0) 105 106 input.ptr += offset * input_stride_z; 107#endif // defined(START_2) && defined(STRIDE_2) 108 109 // Offset depth 110#if defined(SHRINK_3) 111 input.ptr += (int)START_3 * input_stride_w; 112#elif defined(START_3) && defined(STRIDE_3) 113#if defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) 114 offset = (int)START_3 + (int)get_global_id(0) * (int)STRIDE_3; 115#elif !defined(SHRINK_2) && !defined(SHRINK_1) && !defined(SHRINK_0) 116 offset = (int)START_3 + ((int)get_global_id(2) / (int)DST_DEPTH) * (int)STRIDE_3; 117#elif(defined(SHRINK_0) && defined(SHRINK_1)) || (defined(SHRINK_1) && defined(SHRINK_2)) || (defined(SHRINK_0) && defined(SHRINK_2)) 118 offset = (int)START_3 + (int)get_global_id(1) * (int)STRIDE_3; 119#else // defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) 120 offset = (int)START_3 + ((int)get_global_id(2) % (int)DST_DEPTH) * (int)STRIDE_3; 121#endif // defined(SHRINK_2) && defined(SHRINK_1) && defined(SHRINK_0) 122 input.ptr += offset * input_stride_w; 123#endif // defined(START_3) && defined(STRIDE_3) 124 125 // Store result 126#if defined(VEC_SIZE) && defined(LAST_ACCESSED_X) 127 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 128 val = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input.ptr)); 129 130 VSTORE(VEC_SIZE) 131 (val, 0, (__global DATA_TYPE *)(output.ptr)); 132#else // defined(VEC_SIZE) && defined(LAST_ACCESSED_X) 133 *((__global DATA_TYPE *)(output.ptr)) = *((__global DATA_TYPE *)(input.ptr)); 134#endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X) 135} 136