xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nhwc/batch_to_space.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2018-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26#if defined(DATA_TYPE) && defined(BATCH_SIZE)
27/** Batch to space transformation. (NHWC)
28 *
29 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
30 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
31 * @note The input tensor batch size must be passed at compile time using -DBATCH_SIZE. e.g. -DBATCH_SIZE=2
32 *
33 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: All
34 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
35 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
36 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
37 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
38 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
39 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
40 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
41 * @param[in]  batch_id                             The input tensor batch id
42 * @param[in]  block_shape_ptr                      Pointer to the source tensor. Supported data types: S32
43 * @param[in]  block_shape_stride_x                 Stride of the source tensor in X dimension (in bytes)
44 * @param[in]  block_shape_step_x                   block_shape_stride_x * number of elements along X processed per workitem(in bytes)
45 * @param[in]  block_shape_stride_y                 Stride of the source tensor in Y dimension (in bytes)
46 * @param[in]  block_shape_step_y                   block_shape_stride_y * number of elements along Y processed per workitem(in bytes)
47 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
48 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
49 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
50 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
51 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
52 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
53 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
54 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
55 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
56 */
57__kernel void batch_to_space_nhwc(
58    TENSOR3D_DECLARATION(input),
59    const int batch_id,
60    VECTOR_DECLARATION(block_shape),
61    TENSOR4D_DECLARATION(output))
62{
63    Tensor3D in    = CONVERT_TO_TENSOR3D_STRUCT(input);
64    Tensor4D out   = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(output, 0);
65    Vector   block = CONVERT_TO_VECTOR_STRUCT_NO_STEP(block_shape);
66
67    const int block_x = *((__global int *)vector_offset(&block, 0));
68    const int block_y = *((__global int *)vector_offset(&block, 1));
69
70    const int r = (BATCH_SIZE / (block_x * block_y));
71    const int x = get_global_id(1);
72    const int y = get_global_id(2);
73    const int z = get_global_id(0);
74    const int w = batch_id % r;
75
76    const int out_x = x * block_x + (batch_id / r) % block_x;
77    const int out_y = y * block_y + (batch_id / r) / block_x;
78
79    *((__global DATA_TYPE *)tensor4D_offset(&out, z, out_x, out_y, w)) = *((__global DATA_TYPE *)in.ptr);
80}
81#endif // defined(DATA_TYPE) && defined(BATCH_SIZE)
82
83#if defined(DATA_TYPE) && defined(BATCH_SIZE) && defined(BLOCK_SHAPE_X) && defined(BLOCK_SHAPE_Y)
84/** Batch to space transformation. (NHWC)
85 *
86 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
87 * @note The input tensor batch size must be passed at compile time using -DBATCH_SIZE. e.g. -DBATCH_SIZE=2
88 * @note The block shape x must be passed at compile time using -DBLOCK_SHAPE_X. e.g. -DBLOCK_SHAPE_X=2
89 * @note The block shape y must be passed at compile time using -DBLOCK_SHAPE_Y. e.g. -DBLOCK_SHAPE_Y=2
90 *
91 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: All
92 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
93 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
94 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
95 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
96 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
97 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
98 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
99 * @param[in]  batch_id                             The input tensor batch id
100 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
101 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
102 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
103 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
104 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
105 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
106 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
107 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
108 */
109__kernel void batch_to_space_static_nhwc(
110    TENSOR3D_DECLARATION(input),
111    const int batch_id,
112    TENSOR4D_DECLARATION(output))
113{
114    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
115    Tensor4D out = CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(output, 0);
116
117    const int block_x = BLOCK_SHAPE_X;
118    const int block_y = BLOCK_SHAPE_Y;
119
120    const int r = (BATCH_SIZE / (block_x * block_y));
121    const int x = get_global_id(1);
122    const int y = get_global_id(2);
123    const int z = get_global_id(0);
124    const int w = batch_id % r;
125
126    const int out_x = x * block_x + (batch_id / r) % block_x;
127    const int out_y = y * block_y + (batch_id / r) / block_x;
128
129    *((__global DATA_TYPE *)tensor4D_offset(&out, z, out_x, out_y, w)) = *((__global DATA_TYPE *)in.ptr);
130}
131#endif // defined(DATA_TYPE) && defined(BATCH_SIZE) && defined(BLOCK_SHAPE_X) && defined(BLOCK_SHAPE_Y)