xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nhwc/direct_convolution3d.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2021-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "helpers.h"
26#include "tile_helpers.h"
27
28//! @cond Doxygen_Suppress
29/** OpenCL kernel to compute the direct convolution 3d.
30 *
31 * @note Data layout supported: NDHWC
32 * @note Data type supported: F32/F16/QASYMM8/QASYMM8_SIGNED
33 * @note The accumulation data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE_PROMOTED=half)
34 * @note The convolution padding (left, top and front) must be passed at compile time using -DPAD_LEFT, -DPAD_TOP and -DPAD_FRONT (e.g. -DPAD_LEFT=2, -DPAD_TOP=2, -DPAD_FRONT=2)
35 * @note The convolution strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z (e.g. -DSTRIDE_X=2, -DSTRIDE_Y=2, -DSTRIDE_Z=2)
36 * @note The spatial dimensions of the weights must be passed at compile time using -DWEI_WIDTH, -DWEI_HEIGHT and -DWEI_DEPTH (e.g. -DWEI_WIDTH=9, -DWEI_HEIGHT=9, -DWEI_DEPTH=9)
37 * @note The spatial dimensions of the source tensor must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT and -DSRC_DEPTH (e.g. -DSRC_WIDTH=96, -DSRC_HEIGHT=64, -DSRC_DEPTH=32)
38 * @note The spatial dimensions of the destination tensor must be passed at compile time using -DDST_WIDTH, -DDST_HEIGHT and -DDST_DEPTH (e.g. -DDST_WIDTH=96, -DDST_HEIGHT=64, -DDST_DEPTH=32)
39 * @note The channels of the source tensor must be passed at compile time using -DSRC_CHANNELS (e.g. -DSRC_CHANNELS=64)
40 * @note The channels of the destination tensor must be passed at compile time using -DDST_CHANNELS (e.g. -DDST_CHANNELS=64)
41 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=half)
42 * @note The data type of the accumulators must be passed at compile time using -DACC_DATA_TYPE (e.g. -DACC_DATA_TYPE=float)
43 * @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2)
44 * @note The number of N0 output channels to process must be passed at compile time using -DN0 (e.g. -DN0=2)
45 * @note The number of K0 inner accumulations must be passed at compile time using -DK0 (e.g. -DK0=2)
46 * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_N0 (e.g. -DPARTIAL_N0=1)
47 * @note The zero value must be passed at compile time using -DZERO_VALUE (e.g. -DZERO_VALUE=0)
48 * @note Only the following configurations of M0, N0 and K0 are currently supported:
49 *  - M0 = 1, 2, 3, 4, 5, .... n
50 *  - N0 = 2, 3, 4, 8, 16
51 *  - K0 = 2, 3, 4, 8, 16
52 *
53 * @note In case of QASYMM8/QASYMM8_SIGNED, the following extra information must be passed at compile time:
54 *  - -DIS_QUANTIZED
55 *  - The destination quantization multiplier e.g. -DDST_MULTIPLIER=1234
56 *  - The destination quantization shift e.g. -DDST_SHIFT=4
57 *  - The destination offset e.g. -DDST_OFFSET=4
58 *  - The source offset e.g. -DSRC_OFFSET=4
59 *  - The weights offset e.g. -DWEI_OFFSET=4
60 *  - The quantized zero value e.g. -DZERO_VALUE=4
61 *
62 * @note If biases are used then -DHAS_BIAS has to be passed at compile time along with its tensor type by using -DBIA_DATA_TYPE (e.g. -DBIA_DATA_TYPE=int).
63 *
64 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data type: F16/F32
65 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
66 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
67 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
68 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
69 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
70 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
71 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes)
72 * @param[in]  src_step_w                        src_stride_w * number of elements along W processed per workitem(in bytes)
73 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
74 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data type: same as @p src_ptr
75 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
76 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
77 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
78 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
79 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
80 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
81 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes)
82 * @param[in]  dst_step_w                        dst_stride_w * number of elements along W processed per workitem(in bytes)
83 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
84 * @param[in]  wei_ptr                           Pointer to the weights tensor. Supported data type: same as @p src_ptr
85 * @param[in]  wei_stride_x                      Stride of the weights tensor in X dimension (in bytes)
86 * @param[in]  wei_step_x                        wei_stride_x * number of elements along X processed per workitem(in bytes)
87 * @param[in]  wei_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
88 * @param[in]  wei_step_y                        wei_stride_y * number of elements along Y processed per workitem(in bytes)
89 * @param[in]  wei_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
90 * @param[in]  wei_step_z                        wei_stride_z * number of elements along Z processed per workitem(in bytes)
91 * @param[in]  wei_stride_w                      Stride of the weights tensor in W dimension (in bytes)
92 * @param[in]  wei_step_w                        wei_stride_w * number of elements along W processed per workitem(in bytes)
93 * @param[in]  wei_offset_first_element_in_bytes The offset of the first element in the weights matrix
94 * @param[in]  bia_ptr                           (Optional) Pointer to the bias tensor Supported data type: same as @p src_ptr
95 * @param[in]  bia_stride_x                      (Optional) Stride of the bias tensor in X dimension (in bytes)
96 * @param[in]  bia_step_x                        (Optional) bia_stride_x * number of elements along X processed per workitem(in bytes)
97 * @param[in]  bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
98 */
99//! @endcond
100__kernel void direct_convolution3d_ndhwc(
101    TENSOR4D(src, BUFFER),
102    TENSOR4D(dst, BUFFER),
103    TENSOR4D(wei, BUFFER)
104#if defined(HAS_BIAS)
105    ,
106    VECTOR_DECLARATION(bia)
107#endif // defined(HAS_BIAS)
108)
109{
110#define _IWEI_WIDTH WEI_WIDTH
111#define _IWEI_HEIGHT WEI_HEIGHT
112#define _IWEI_DEPTH WEI_DEPTH
113#define _ISRC_WIDTH SRC_WIDTH
114#define _ISRC_HEIGHT SRC_HEIGHT
115#define _ISRC_DEPTH SRC_DEPTH
116#define _ISRC_CHANNELS SRC_CHANNELS
117#define _IDST_WIDTH DST_WIDTH
118#define _IDST_HEIGHT DST_HEIGHT
119#define _IDST_DEPTH DST_DEPTH
120#define _IDST_CHANNELS DST_CHANNELS
121#define _IY_MULTIPLIER (_IWEI_WIDTH * _IWEI_HEIGHT * _IWEI_DEPTH)
122
123    // If quantized, the output tile has to be quantized first before being stored to global memory
124#if defined(IS_QUANTIZED)
125#define _IOUTPUT_TILE cq
126#else // defined(IS_QUANTIZED)
127#define _IOUTPUT_TILE c
128#endif // defined(IS_QUANTIZED)
129
130    const int cout = GET_SPATIAL_IDX(0, N0, PARTIAL_N0); // OFM
131    const int mout = GET_SPATIAL_IDX(1, M0, 0);          // WIDTH x HEIGHT x DEPTH
132    const int bout = GET_SPATIAL_IDX(2, 1, 0);           // BATCH SIZE IDX
133
134    TILE(int, M0, 1, xi);
135    TILE(int, M0, 1, yi);
136    TILE(int, M0, 1, zi);
137
138    // Convert the linear index to coordinate
139    LOOP_UNROLLING(int, i, 0, 1, M0,
140    {
141        xi[i].v = ((mout + i) % _IDST_WIDTH) * STRIDE_X;
142        yi[i].v = (((mout + i) / _IDST_WIDTH) % _IDST_HEIGHT) * STRIDE_Y;
143        zi[i].v = (((mout + i) / (_IDST_WIDTH * _IDST_HEIGHT)) % _IDST_DEPTH) * STRIDE_Z;
144
145        xi[i].v -= PAD_LEFT;
146        yi[i].v -= PAD_TOP;
147        zi[i].v -= PAD_FRONT;
148    })
149
150    // Initialize the accumulators
151    TILE(ACC_DATA_TYPE, M0, N0, c);
152
153    LOOP_UNROLLING(int, i, 0, 1, M0,
154    {
155        c[i].v = (ACC_DATA_TYPE)0;
156    })
157
158    for(int i = 0; i < _IY_MULTIPLIER; ++i)
159    {
160        int ck = 0;
161        int xk = i % _IWEI_WIDTH;
162        int yk = (i / _IWEI_WIDTH) % _IWEI_HEIGHT;
163        int zk = i / (_IWEI_WIDTH * _IWEI_HEIGHT);
164
165        int k = 0;
166        for(; k <= (_ISRC_CHANNELS - K0); k += K0)
167        {
168            TILE(DATA_TYPE, M0, K0, a);
169            TILE(DATA_TYPE, N0, K0, b);
170
171            LOOP_UNROLLING(int, i, 0, 1, M0,
172            {
173                a[i].v = ZERO_VALUE;
174            })
175
176            // Load tile from the src tensor
177            T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, K0, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a);
178
179            // Load tile from the weights tensor
180            const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT);
181            LOOP_UNROLLING(int, i, 0, 1, N0,
182            {
183                if((cout + i) < _IDST_CHANNELS)
184                {
185                    LOOP_UNROLLING(int, j, 0, 1, K0,
186                    {
187                        b[i].s[j] = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + j * wei_stride_y + b_offs * wei_stride_y);
188                    })
189                }
190            })
191
192            // Compute the matrix multiplication between two tiles
193            T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, K0, NT, T, a, b, c);
194
195            // Apply the offset correction (correction usually needed for asymmetric quantized computation)
196            // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
197            T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, K0, SRC_OFFSET, WEI_OFFSET, a, b, c);
198
199            ck += K0;
200        }
201
202#if((_ISRC_CHANNELS % K0) != 0)
203        // Left-over accumulations
204        for(; k < _ISRC_CHANNELS; ++k)
205        {
206            TILE(DATA_TYPE, M0, 1, a);
207            TILE(DATA_TYPE, N0, 1, b);
208
209            LOOP_UNROLLING(int, i, 0, 1, M0,
210            {
211                a[i].v = ZERO_VALUE;
212            })
213
214            // Load tile from the src tensor
215            T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, 1, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a);
216
217            // Load tile from the weights tensor
218            const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT);
219            LOOP_UNROLLING(int, i, 0, 1, N0,
220            {
221                if((cout + i) < _IDST_CHANNELS)
222                {
223                    b[i].v = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + b_offs * wei_stride_y);
224                }
225            })
226
227            // // Compute the matrix multiplication between two tiles
228            T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, 1, NT, T, a, b, c);
229
230            // Apply the offset correction (operation usually needed for asymmetric quantized computation)
231            // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
232            T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, 1, SRC_OFFSET, WEI_OFFSET, a, b, c);
233
234            ++ck;
235        }
236#endif // ((_ISRC_CHANNELS % K0) != 0)
237    }
238
239    // Offset correction required for the quantized asymmetric computation
240    // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
241    T_ADD_CONSTANT(ACC_DATA_TYPE, M0, N0, c, (_IWEI_WIDTH * _IWEI_HEIGHT * _IWEI_DEPTH * _ISRC_CHANNELS * SRC_OFFSET * WEI_OFFSET), c);
242
243#if defined(HAS_BIAS)
244    TILE(BIA_DATA_TYPE, 1, N0, bias0);
245
246    if((cout + N0) <= _IDST_CHANNELS)
247    {
248        bias0[0].v = VLOAD(N0)(0, (__global BIA_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(BIA_DATA_TYPE)));
249    }
250    else
251    {
252        VLOAD_PARTIAL(N0, PARTIAL_N0)
253        (bias0[0].v, 0, (__global BIA_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(BIA_DATA_TYPE)));
254    }
255
256    // c = c + bias[broadcasted]
257    T_ELTWISE_BROADCAST_ADD_X(ACC_DATA_TYPE, M0, N0, c, bias0, c);
258
259#endif // HAS_BIAS
260
261    TILE(uint, M0, 1, dst_indirect_y);
262
263    // Calculate the destination indirect Y
264    LOOP_UNROLLING(int, i, 0, 1, M0,
265    {
266        dst_indirect_y[i].v = (uint)min(mout + i, (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH) - 1);
267        dst_indirect_y[i].v += bout * (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH);
268    })
269
270#if defined(IS_QUANTIZED)
271    TILE(DATA_TYPE, M0, N0, cq);
272
273    // Quantize the tile
274    T_QUANTIZE8_ASYMMETRIC(ACC_DATA_TYPE, DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, c, cq);
275#endif // defined(IS_QUANTIZED)
276
277    bool x_cond = PARTIAL_N0 != 0 && get_global_id(0) == 0;
278
279    // Store the tile in reverse order so the invalid values are overwritten with the valid ones
280    T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_N0, BUFFER, dst, cout, dst_stride_y, x_cond, _IOUTPUT_TILE, dst_indirect_y);
281}