1/* 2 * Copyright (c) 2017-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include "helpers.h" 25#include "tile_helpers.h" 26 27#define MUL_OP(x, y) ((x) * (y)) 28#define ADD_OP(x, y) ((x) + (y)) 29#define DIV_OP(x, y) ((x) / (y)) 30#define POW_OP(x, y) pow((x), (y)) 31#define SQCVT_SAT(a) (a) 32 33#if defined(WIDTH_SIZE) 34/** Apply cross-map normalization. 35 * 36 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short 37 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16 38 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5 39 * @note The number of slices should be given as a preprocessor argument using -DNUM_SLICES=size. e.g. -DNUM_SLICES=192 40 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA 41 * 42 * @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32 43 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes) 44 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 45 * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes) 46 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 47 * @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes) 48 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 49 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor 50 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr 51 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) 52 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 53 * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) 54 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 55 * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) 56 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 57 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor 58 */ 59__kernel void normalization_layer_cross_map_nhwc(TENSOR3D_DECLARATION(input), 60 TENSOR3D_DECLARATION(output)) 61{ 62 // Offset computation 63 const uint x_offs = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); 64 65 // Address computation 66 __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z; 67 __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z; 68 69 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 70 acc = 0; 71 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 72 coeff_v = SQCVT_SAT(COEFF); 73 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 74 beta_v = SQCVT_SAT(BETA); 75 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 76 kappa_v = SQCVT_SAT(KAPPA); 77 78 const int left_slice = max((int)0, (int)x_offs - (int)RADIUS); 79 const int right_slice = min((int)WIDTH_SIZE - 1, (int)x_offs + (int)RADIUS); 80 81 for(int i = left_slice; i <= right_slice; ++i) 82 { 83 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 84 values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + i * sizeof(DATA_TYPE))); 85 acc = ADD_OP(acc, MUL_OP(values, values)); 86 } 87 88 acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v); 89 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 90 normalized = POW_OP(acc, beta_v); 91 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 92 normalized_pixel0 = DIV_OP(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + x_offs * sizeof(DATA_TYPE))), normalized); 93 94 STORE_VECTOR_SELECT(normalized_pixel, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); 95} 96#endif // defined(WIDTH_SIZE) 97 98#if defined(NUM_SLICES) && defined(DIM1_SIZE) 99/** Apply in-map normalization when tensors are in the NHWC data layout format. 100 * 101 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short 102 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16 103 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5 104 * @note The number of slices should be given as a preprocessor argument using -DNUM_SLICES=size. e.g. -DNUM_SLICES=192 105 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA 106 * 107 * @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32 108 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes) 109 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 110 * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes) 111 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 112 * @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes) 113 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 114 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor 115 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr 116 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) 117 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 118 * @param[in] output_stride_y Stride of the first destination tensor in Y dimension (in bytes) 119 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 120 * @param[in] output_stride_z Stride of the first source tensor in Z dimension (in bytes) 121 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 122 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor 123 */ 124__kernel void normalization_layer_in_map_nhwc(TENSOR3D_DECLARATION(input), 125 TENSOR3D_DECLARATION(output)) 126{ 127 // Offset computation 128 const uint x_offs = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); 129 const int current_cols = get_global_id(1); 130 const int current_rows = get_global_id(2); 131 132 // Address computation 133 __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE); 134 __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + current_cols * output_stride_y + current_rows * output_stride_z; 135 136 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 137 acc = 0; 138 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 139 coeff_v = SQCVT_SAT(COEFF); 140 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 141 beta_v = SQCVT_SAT(BETA); 142 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 143 kappa_v = SQCVT_SAT(KAPPA); 144 145 const int first_col = max(0, current_cols - (int)RADIUS); 146 const int last_col = min((int)DIM1_SIZE - 1, current_cols + (int)RADIUS); 147 148#if defined(IN_MAP_2D) 149 const int first_row = max(0, current_rows - (int)RADIUS); 150 const int last_row = min((int)NUM_SLICES - 1, current_rows + (int)RADIUS); 151#endif /* defined(IN_MAP_2D) */ 152 153#if defined(IN_MAP_2D) 154 for(int j = first_row; j <= last_row; ++j) 155 { 156#else // defined(IN_MAP_2D) 157 const int j = current_rows; 158#endif /* defined(IN_MAP_2D) */ 159 for(int i = first_col; i <= last_col; ++i) 160 { 161 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 162 values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + i * input_stride_y + j * input_stride_z)); 163 acc = ADD_OP(acc, MUL_OP(values, values)); 164 } 165#if defined(IN_MAP_2D) 166 } 167#endif /* defined(IN_MAP_2D) */ 168 169 acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v); 170 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 171 normalized = POW_OP(acc, beta_v); 172 const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 173 normalized_pixel0 = DIV_OP(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + current_cols * output_stride_y + current_rows *output_stride_z)), normalized); 174 175 STORE_VECTOR_SELECT(normalized_pixel, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); 176} 177#endif // defined(NUM_SLICES) && defined(DIM1_SIZE)