xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/nhwc/pooling_3d_layer.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25#include "tile_helpers.h" // Needed for GET_SPATIAL_IDX()
26
27#if defined(POOL_AVG) || defined(POOL_L2)
28#define POOL_OP(x, y) ((x) + (y))
29#else /* defined(POOL_AVG) || defined(POOL_L2) */
30#define POOL_OP(x, y) (fmax((x), (y)))
31#endif /* defined(POOL_AVG) || defined(POOL_L2) */
32
33#define SQRT_OP(x) sqrt((x))
34
35#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
36
37#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)
38
39/** Performs 3d pooling layer of size equal to MxNXD. This OpenCL kernel can perform the following pooling types:
40 * -# max, -DPOOL_MAX must be passed at compile time
41 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be excluded, -DEXCLUDE_PADDING should be passed at compile time
42 * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
43 *
44 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
45 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
46 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
47 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X, -DPOOL_SIZE_Y, and -DPOOL_SIZE_Z. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4, -DPOOL_SIZE_Z=2
48 * @note Input tensor width, height and depth must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT, and -DSRC_DEPTH
49 * @note Output tensor height, channels, depth, and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS, -DDST_DEPTH, and -DDST_BATCH_SIZE
50 * @note Pool strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z which are the steps of the window along the x, y and z directions
51 * @note Pool pads must be passed at compile time using -DPAD_X, -DPAD_Y, -DPAD_Z
52 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
53 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
54 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
55 *
56 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F32/F16
57 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
58 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
59 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
60 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
61 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
62 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
63 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
64 * @param[in]  input_step_w                         input_stride_w * number of elements along W processed per workitem(in bytes)
65 * @param[in]  input_stride_v                       Stride of the source tensor in V dimension (in bytes)
66 * @param[in]  input_step_v                         input_stride_v * number of elements along V processed per workitem(in bytes)
67 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
68 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
69 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
70 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
71 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
72 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
73 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
74 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
75 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
76 * @param[in]  output_step_w                        output_stride_w * number of elements along W processed per workitem(in bytes)
77 * @param[in]  output_stride_v                      Stride of the destination tensor in V dimension (in bytes)
78 * @param[in]  output_step_v                        output_stride_v * number of elements along V processed per workitem(in bytes)
79 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
80 */
81__kernel void pooling_3d_layer_MxN_ndhwc(
82    TENSOR5D_DECLARATION(input),
83    TENSOR5D_DECLARATION(output))
84{
85    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
86    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
87    int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
88    int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
89
90    // The depth size dimension and the batch size dimension are collapsed over the height dimension
91    int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
92    int idx_out_d = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) % DST_DEPTH;
93    int idx_out_n = (GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT) / DST_DEPTH;
94
95    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_v;
96
97    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_d *
98                                           output_stride_w + idx_out_n * output_stride_v;
99
100    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
101    res0 = INITIAL_VALUE;
102
103    int idx_in_w = idx_out_w * STRIDE_X - (int)PAD_X;
104    int idx_in_h = idx_out_h * STRIDE_Y - (int)PAD_Y;
105    int idx_in_d = idx_out_d * STRIDE_Z - (int)PAD_Z;
106
107    // The start of width to consider in calculation should exclude padding
108    int pool_x_s = max((int)0, -idx_in_w);
109    // Assumed Symmetric Padding (left padding = right padding = PAD_X), the filter end should be either the pool width or what is remaining from current pos to the (src width + pad right)
110    int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH + PAD_X - idx_in_w);
111    int pool_y_s = max((int)0, -idx_in_h);
112    int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT + PAD_Y - idx_in_h);
113    int pool_z_s = max((int)0, -idx_in_d);
114    int pool_z_e = min((int)POOL_SIZE_Z, (int)SRC_DEPTH + PAD_Z - idx_in_d);
115
116    // The filter size with all padding in all directions considered.
117    int filter_size = pool_z_e * pool_y_e * pool_x_e;
118
119    // The end of width to consider in calculation should exclude PAD_X
120    pool_x_e = min(pool_x_e, SRC_WIDTH - idx_in_w);
121    pool_y_e = min(pool_y_e, SRC_HEIGHT - idx_in_h);
122    pool_z_e = min(pool_z_e, SRC_DEPTH - idx_in_d);
123
124#if defined(EXCLUDE_PADDING)
125    filter_size = (pool_z_e - pool_z_s) * (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
126#endif  // defined(EXCLUDE_PADDING)
127
128#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
129    // Global pooling path
130    for(int z = 0; z < POOL_SIZE_Z; ++z)
131    {
132        int depth_offset_src = (z + idx_in_d) * input_stride_w;
133        for(int y = 0; y < POOL_SIZE_Y; ++y)
134        {
135            int height_offset_src = (y + idx_in_h) * input_stride_z;
136#pragma unroll 8
137            for(int x = 0; x < POOL_SIZE_X; ++x)
138            {
139                int width_offset_src = (x + idx_in_w) * input_stride_y;
140#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
141    for(int z = pool_z_s; z < pool_z_e; ++z)
142    {
143        int depth_offset_src = (z + idx_in_d) * input_stride_w;
144        for(int y = pool_y_s; y < pool_y_e; ++y)
145        {
146            int height_offset_src = (y + idx_in_h) * input_stride_z;
147#pragma unroll 8
148            for(int x = pool_x_s; x < pool_x_e; ++x)
149            {
150                int width_offset_src = (x + idx_in_w) * input_stride_y;
151#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && POOL_SIZE_Z == SRC_DEPTH && PAD_X == 0 && PAD_Y == 0 && PAD_Z == 0
152                VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
153                data0;
154#if defined(FP_MIXED_PRECISION)
155                // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
156                data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src)),
157                                VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
158#else  // defined(FP_MIXED_PRECISION)
159                data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + width_offset_src + height_offset_src + depth_offset_src));
160#endif // defined(FP_MIXED_PRECISION)
161
162#if defined(POOL_L2)
163                // Raise to power of 2 for L2 Pooling
164                data0 *= data0;
165#endif // defined(POOL_L2)
166                res0 = POOL_OP(res0, data0);
167            }
168        }
169    }
170
171#if defined(POOL_AVG) || defined(POOL_L2)
172    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
173#endif // defined(POOL_AVG) || defined(POOL_L2)
174
175#if defined(POOL_L2)
176    // Take square root of the result in L2 pooling
177    res0 = SQRT_OP(res0);
178#endif // defined(POOL_L2)
179
180    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
181    out_q0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
182
183
184
185   // Store result
186#if defined(QUANTIZED)
187    STORE_VECTOR_SELECT(out_q, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
188#elif defined(FP_MIXED_PRECISION)
189    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
190    res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
191    STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
192#else  // defined(FP_MIXED_PRECISION)
193    STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
194#endif // defined(FP_MIXED_PRECISION)
195}
196#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) && defined(POOL_SIZE_Z)
197#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(SRC_DEPTH) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_DEPTH) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
198