xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/kernels/CLArgMinMaxLayerKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLArgMinMaxLayerKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/Helpers.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "src/core/CL/CLValidate.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/core/helpers/WindowHelpers.h"
36 
37 #include "support/StringSupport.h"
38 
39 namespace arm_compute
40 {
41 namespace
42 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * prev_output,const ITensorInfo * output,unsigned int axis,ReductionOperation op)43 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *prev_output, const ITensorInfo *output, unsigned int axis, ReductionOperation op)
44 {
45     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
46     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
47     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S32, DataType::F16, DataType::F32);
48     ARM_COMPUTE_RETURN_ERROR_ON_MSG(op != ReductionOperation::ARG_IDX_MAX && op != ReductionOperation::ARG_IDX_MIN, "Only ARG_IDX_MAX and ARG_IDX_MIN are supported");
49     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions");
50     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
51 
52     if(output->total_size() != 0)
53     {
54         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U32, DataType::S32);
55     }
56     if(prev_output != nullptr && prev_output->total_size() != 0)
57     {
58         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(prev_output, 1, DataType::U32, DataType::S32);
59         if(output->total_size() != 0)
60         {
61             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(prev_output, output);
62         }
63     }
64 
65     return Status{};
66 }
67 } // namespace
68 
CLArgMinMaxLayerKernel()69 CLArgMinMaxLayerKernel::CLArgMinMaxLayerKernel()
70     : _input(nullptr), _prev_output(nullptr), _output(nullptr), _reduction_axis(0), _op(ReductionOperation::ARG_IDX_MAX)
71 {
72     _type = CLKernelType::ELEMENTWISE;
73 }
74 
configure(const ICLTensor * input,const ICLTensor * prev_output,ICLTensor * output,unsigned int axis,ReductionOperation op)75 void CLArgMinMaxLayerKernel::configure(const ICLTensor *input, const ICLTensor *prev_output, ICLTensor *output, unsigned int axis, ReductionOperation op)
76 {
77     configure(CLKernelLibrary::get().get_compile_context(), input, prev_output, output, axis, op);
78 }
79 
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * prev_output,ICLTensor * output,unsigned int axis,ReductionOperation op)80 void CLArgMinMaxLayerKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *prev_output, ICLTensor *output, unsigned int axis, ReductionOperation op)
81 {
82     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
83 
84     TensorShape output_shape{ input->info()->tensor_shape() };
85     output_shape.set(axis, 1);
86     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(DataType::S32).reset_padding().set_is_resizable(true));
87 
88     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (prev_output != nullptr) ? prev_output->info() : nullptr, output->info(), axis, op));
89 
90     auto padding_info = get_padding_info({ input, prev_output, output });
91 
92     _input          = input;
93     _prev_output    = prev_output;
94     _output         = output;
95     _reduction_axis = axis;
96     _op             = op;
97 
98     // Set build options
99     const auto vector_size = (axis == 0) ? 16U : adjust_vec_size(16U, input->info()->dimension(0));
100 
101     CLBuildOptions build_opts;
102     build_opts.add_option_if(_prev_output != nullptr, "-DPREV_OUTPUT");
103     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
104     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(input->info()->dimension(0) % vector_size));
105     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(vector_size));
106     build_opts.add_option_if(is_data_type_float(input->info()->data_type()), "-DFLOAT_DATA_TYPE");
107     build_opts.add_option_if_else(op == ReductionOperation::ARG_IDX_MAX, "-DARG_MAX", "-DARG_MIN");
108     build_opts.add_option("-DDATA_TYPE_OUTPUT=" + get_cl_type_from_data_type(output->info()->data_type()));
109 
110     // Create kernel
111     cl::NDRange lws_hint = CLKernelLibrary::get().default_ndrange();
112     std::string kernel_axis_name;
113     switch(axis)
114     {
115         case 0:
116         {
117             const ICLTensor *input_for_width = prev_output != nullptr ? _prev_output : _input;
118             build_opts.add_option("-DWIDTH=" + support::cpp11::to_string(input_for_width->info()->dimension(0)));
119 
120             kernel_axis_name = "x";
121             lws_hint         = create_lws_hint_parallel_implementations(input_for_width->info()->dimension(0), vector_size);
122         }
123         break;
124         case 1:
125             build_opts.add_option("-DHEIGHT=" + support::cpp11::to_string(input->info()->dimension(1)));
126             kernel_axis_name = "y";
127             break;
128         case 2:
129             build_opts.add_option("-DDEPTH=" + support::cpp11::to_string(input->info()->dimension(2)));
130             kernel_axis_name = "z";
131             break;
132         case 3:
133             build_opts.add_option("-DDEPTH=" + support::cpp11::to_string(input->info()->dimension(2)));
134             build_opts.add_option("-DBATCH=" + support::cpp11::to_string(input->info()->dimension(3)));
135             kernel_axis_name = "w";
136             break;
137         default:
138             ARM_COMPUTE_ERROR("Not supported");
139     }
140     _kernel = create_kernel(compile_context, "arg_min_max_" + kernel_axis_name, build_opts.options());
141 
142     // Configure kernel window
143     Window win = calculate_max_window((prev_output != nullptr) ? (*prev_output->info()) : (*input->info()), Steps(vector_size));
144     ICLKernel::configure_internal(win, lws_hint);
145 
146     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
147 }
148 
validate(const ITensorInfo * input,const ITensorInfo * prev_output,const ITensorInfo * output,unsigned int axis,ReductionOperation op)149 Status CLArgMinMaxLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *prev_output, const ITensorInfo *output, unsigned int axis, ReductionOperation op)
150 {
151     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, prev_output, output, axis, op));
152     return Status{};
153 }
154 
run(const Window & window,cl::CommandQueue & queue)155 void CLArgMinMaxLayerKernel::run(const Window &window, cl::CommandQueue &queue)
156 {
157     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
158     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
159 
160     switch(_reduction_axis)
161     {
162         case 0:
163         {
164             // Set out window
165             Window out_window(window);
166             out_window.set(Window::DimX, Window::Dimension(0, 0, 0));
167 
168             // Get first input and output slices
169             Window in_slice  = window.first_slice_window_2D();
170             Window out_slice = out_window.first_slice_window_2D();
171 
172             // Reshape window
173             const unsigned int num_tensors = _prev_output != nullptr ? 3 : 2;
174 
175             // Set local sums buffer
176             unsigned int local_res_size = lws_hint()[0] * _output->info()->element_size();
177             _kernel.setArg(num_arguments_per_2D_tensor() * num_tensors, local_res_size, nullptr);
178             do
179             {
180                 unsigned int idx = 0;
181                 add_2D_tensor_argument(idx, _input, in_slice);
182                 if(_prev_output != nullptr)
183                 {
184                     add_2D_tensor_argument(idx, _prev_output, in_slice);
185                 }
186                 add_2D_tensor_argument(idx, _output, out_slice);
187                 enqueue(queue, *this, in_slice, lws_hint());
188             }
189             while(window.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(out_slice));
190         }
191         break;
192         case 1:
193         {
194             // Get first input and output slices
195             Window window_in{ window };
196             window_in.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), _input->info()->dimension(1)));
197             Window in_slice  = window_in.first_slice_window_2D();
198             Window out_slice = window.first_slice_window_2D();
199 
200             do
201             {
202                 unsigned int idx = 0;
203                 add_2D_tensor_argument(idx, _input, in_slice);
204                 add_2D_tensor_argument(idx, _output, out_slice);
205                 enqueue(queue, *this, in_slice, lws_hint());
206             }
207             while(window_in.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(out_slice));
208         }
209         break;
210         case 2:
211         {
212             // Get first input and output slices
213             Window window_in{ window };
214             window_in.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), _input->info()->dimension(2)));
215             Window in_slice  = window_in.first_slice_window_3D();
216             Window out_slice = window.first_slice_window_3D();
217 
218             do
219             {
220                 unsigned int idx = 0;
221                 add_3D_tensor_argument(idx, _input, in_slice);
222                 add_3D_tensor_argument(idx, _output, out_slice);
223                 enqueue(queue, *this, in_slice, lws_hint());
224             }
225             while(window_in.slide_window_slice_3D(in_slice) && window.slide_window_slice_3D(out_slice));
226         }
227         break;
228         case 3:
229         {
230             // Get first input and output slices
231             Window window_in{ window };
232             window_in.set(3, Window::Dimension(0, 1, 1));
233             Window in_slice  = window_in.first_slice_window_4D();
234             Window out_slice = window.first_slice_window_4D();
235 
236             do
237             {
238                 unsigned int idx = 0;
239                 add_4D_tensor_argument(idx, _input, in_slice);
240                 add_4D_tensor_argument(idx, _output, out_slice);
241                 enqueue(queue, *this, in_slice, lws_hint());
242             }
243             while(window_in.slide_window_slice_4D(in_slice) && window.slide_window_slice_4D(out_slice));
244         }
245         break;
246         default:
247             ARM_COMPUTE_ERROR("Not supported");
248     }
249 }
250 } // namespace arm_compute
251