xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/kernels/CLNormalizationLayerKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLNormalizationLayerKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/Helpers.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Window.h"
33 #include "src/core/AccessWindowStatic.h"
34 #include "src/core/CL/CLValidate.h"
35 #include "src/core/helpers/AutoConfiguration.h"
36 #include "src/core/helpers/NormalizationHelpers.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 #include "support/StringSupport.h"
39 
40 namespace arm_compute
41 {
42 namespace
43 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,NormalizationLayerInfo norm_info)44 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, NormalizationLayerInfo norm_info)
45 {
46     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
47     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
48     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NCHW, DataLayout::NHWC);
49     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
50 
51     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd");
52 
53     // Checks performed when output is configured
54     if(output->total_size() != 0)
55     {
56         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
57         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
58         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
59     }
60 
61     return Status{};
62 }
63 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output,NormalizationLayerInfo norm_info)64 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, NormalizationLayerInfo norm_info)
65 {
66     // Output tensor auto initialization if not yet initialized
67     auto_init_if_empty(*output, *input->clone());
68 
69     bool             window_changed = false;
70     Window           win;
71     const DataLayout data_layout = input->data_layout();
72     if(data_layout == DataLayout::NCHW)
73     {
74         const unsigned int vec_size_x           = adjust_vec_size(max_cl_vector_width / input->element_size(), input->dimension(0));
75         const unsigned int norm_idx             = get_normalization_dimension_index(input->data_layout(), norm_info);
76         const bool         is_norm_across_width = norm_idx == 0;
77 
78         const unsigned int norm_radius = norm_info.norm_size() / 2;
79         // Border / padding calculation:
80         // For NCHW no border handling is impelmeneted in the kernel in the x axis.
81         // This means the x axis is fully-padded depending on vec_size_x and norm_size
82         // E.G. for input x dimension = 3, norm_size = 3 (radius = 1), vec_size_x = 2 ('#' is element 'p' is padding):
83         // In : |p|#|#|#|p|p|
84         // Out:   |#|#|#|p|
85         // The output has 1 right padding because of the vec_size_x.
86         // The input has 1 left padding because radius = 1.
87         // The input has 2 right padding because of radius = 1 AND because of the extra output padding
88         const unsigned int border_width_left  = is_norm_across_width ? norm_radius : 0;
89         const unsigned int border_width_right = is_norm_across_width ? norm_radius + (vec_size_x - input->dimension(0) % vec_size_x) : 0;
90         const BorderSize   border_size        = BorderSize(0, border_width_right, 0, border_width_left);
91 
92         win = calculate_max_window(*input, Steps(vec_size_x));
93 
94         // We do not use a Rectangle window for IN_MAP_2D as we clamp the top and bottom accesses inside the kernel, avoiding padding
95         // Reads can occur within the valid region of the input
96         if(is_norm_across_width)
97         {
98             AccessWindowStatic input_access(input, -border_size.left, 0, input->dimension(0) + border_size.right, 0);
99             window_changed = window_changed || update_window_and_padding(win, input_access);
100         }
101         else
102         {
103             AccessWindowHorizontal input_access(input, -border_size.left, vec_size_x);
104             window_changed = window_changed || update_window_and_padding(win, input_access);
105         }
106 
107         AccessWindowHorizontal output_access(output, 0, vec_size_x);
108         window_changed = window_changed || update_window_and_padding(win, output_access);
109     }
110     else
111     {
112         unsigned int vec_size_x = adjust_vec_size(max_cl_vector_width / input->element_size(), input->dimension(0));
113         if(norm_info.is_cross_map())
114         {
115             vec_size_x = 1;
116         }
117         win = calculate_max_window(*input, Steps(vec_size_x));
118     }
119     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
120     return std::make_pair(err, win);
121 }
122 } // namespace
123 
CLNormalizationLayerKernel()124 CLNormalizationLayerKernel::CLNormalizationLayerKernel()
125     : _input(nullptr), _output(nullptr), _border_size(0), _is_norm_across_width(false)
126 {
127     _type = CLKernelType::ELEMENTWISE;
128 }
129 
border_size() const130 BorderSize CLNormalizationLayerKernel::border_size() const
131 {
132     return _border_size;
133 }
134 
configure(const ICLTensor * input,ICLTensor * output,NormalizationLayerInfo norm_info)135 void CLNormalizationLayerKernel::configure(const ICLTensor *input, ICLTensor *output, NormalizationLayerInfo norm_info)
136 {
137     configure(CLKernelLibrary::get().get_compile_context(), input, output, norm_info);
138 }
139 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * output,NormalizationLayerInfo norm_info)140 void CLNormalizationLayerKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, NormalizationLayerInfo norm_info)
141 {
142     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
143     auto padding_info = get_padding_info({ input, output });
144 
145     // Perform validation step
146     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), norm_info));
147     auto win_config = validate_and_configure_window(input->info(), output->info(), norm_info);
148     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
149 
150     _input  = input;
151     _output = output;
152 
153     const DataLayout data_layout          = input->info()->data_layout();
154     unsigned int     vec_size_x           = adjust_vec_size(max_cl_vector_width / input->info()->element_size(), input->info()->dimension(0));
155     int              vec_size_x_leftovers = input->info()->dimension(0) % vec_size_x;
156     if(norm_info.is_cross_map() && data_layout == DataLayout::NHWC)
157     {
158         vec_size_x           = 1;
159         vec_size_x_leftovers = 0;
160     }
161 
162     if(data_layout == DataLayout::NCHW)
163     {
164         const unsigned int norm_idx    = get_normalization_dimension_index(data_layout, norm_info);
165         _is_norm_across_width          = norm_idx == 0;
166         const unsigned int norm_radius = norm_info.norm_size() / 2;
167         // Border / padding calculation:
168         // For NCHW no border handling is impelmeneted in the kernel in the x axis.
169         // This means the x axis is fully-padded depending on vec_size_x and norm_size
170         // E.G. for input x dimension = 3, norm_size = 3 (radius = 1), vec_size_x = 2 ('#' is element 'p' is padding):
171         // In : |p|#|#|#|p|p|
172         // Out:   |#|#|#|p|
173         // The output has 1 right padding because of the vec_size_x.
174         // The input has 1 left padding because radius = 1.
175         // The input has 2 right padding because of radius = 1 AND the extra output padding
176         const unsigned int border_width_left  = _is_norm_across_width ? norm_radius : 0;
177         const unsigned int border_width_right = _is_norm_across_width ? norm_radius + (vec_size_x - input->info()->dimension(0) % vec_size_x) : 0;
178         _border_size                          = BorderSize(0, border_width_right, 0, border_width_left);
179     }
180 
181     const bool is_in_map_2D = (norm_info.type() == NormType::IN_MAP_2D);
182 
183     // Set build options
184     CLBuildOptions build_opts;
185     build_opts.add_option(("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type())));
186     build_opts.add_option(("-DCOEFF=" + float_to_string_with_full_precision(norm_info.scale_coeff())));
187     build_opts.add_option(("-DBETA=" + float_to_string_with_full_precision(norm_info.beta())));
188     build_opts.add_option(("-DKAPPA=" + float_to_string_with_full_precision(norm_info.kappa())));
189     build_opts.add_option(("-DVEC_SIZE=" + support::cpp11::to_string(vec_size_x)));
190     build_opts.add_option(("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(vec_size_x_leftovers)));
191     build_opts.add_option(("-DRADIUS=" + support::cpp11::to_string(norm_info.norm_size() / 2)));
192     build_opts.add_option(("-DNUM_SLICES=" + support::cpp11::to_string(input->info()->dimension(2))));
193     build_opts.add_option_if(is_in_map_2D, "-DIN_MAP_2D");
194     build_opts.add_option_if(norm_info.is_in_map() || (data_layout == DataLayout::NHWC && norm_info.is_cross_map()), "-DWIDTH_SIZE=" + support::cpp11::to_string(input->info()->dimension(0)));
195     build_opts.add_option_if(norm_info.is_in_map() && data_layout == DataLayout::NHWC, "-DDIM1_SIZE=" + support::cpp11::to_string(input->info()->dimension(1)));
196 
197     // Create kernel
198     std::string kernel_name;
199     if(norm_info.is_in_map())
200     {
201         kernel_name = "normalization_layer_in_map_" + lower_string(string_from_data_layout(data_layout));
202     }
203     else
204     {
205         kernel_name = "normalization_layer_cross_map_" + lower_string(string_from_data_layout(data_layout));
206     }
207     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
208 
209     // Configure kernel window
210     ICLKernel::configure_internal(win_config.second);
211 
212     // Set config_id for enabling LWS tuning
213     _config_id = "normalization_layer_";
214     _config_id += lower_string(string_from_data_type(input->info()->data_type()));
215     _config_id += "_";
216     _config_id += support::cpp11::to_string(static_cast<std::underlying_type<NormType>::type>(norm_info.type()));
217     _config_id += "_";
218     _config_id += support::cpp11::to_string(norm_info.norm_size());
219     _config_id += "_";
220     _config_id += support::cpp11::to_string(input->info()->dimension(0));
221     _config_id += "_";
222     _config_id += support::cpp11::to_string(input->info()->dimension(1));
223     if(data_layout == DataLayout::NHWC)
224     {
225         ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
226     }
227 }
228 
validate(const ITensorInfo * input,const ITensorInfo * output,NormalizationLayerInfo norm_info)229 Status CLNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, NormalizationLayerInfo norm_info)
230 {
231     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, norm_info));
232     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), norm_info).first);
233 
234     return Status{};
235 }
236 
run(const Window & window,cl::CommandQueue & queue)237 void CLNormalizationLayerKernel::run(const Window &window, cl::CommandQueue &queue)
238 {
239     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
240     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
241 
242     const int collapsed_dimension = _is_norm_across_width ? Window::DimZ : 4;
243     Window    window_collapsed    = window.collapse_if_possible(ICLKernel::window(), collapsed_dimension);
244     Window    slice               = window_collapsed.first_slice_window_3D();
245 
246     do
247     {
248         unsigned int idx = 0;
249         add_3D_tensor_argument(idx, _input, slice);
250         add_3D_tensor_argument(idx, _output, slice);
251         enqueue(queue, *this, slice, lws_hint());
252     }
253     while(window_collapsed.slide_window_slice_3D(slice));
254 }
255 } // namespace arm_compute