xref: /aosp_15_r20/external/ComputeLibrary/src/core/CPP/kernels/CPPNonMaximumSuppressionKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/CPP/kernels/CPPNonMaximumSuppressionKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Validate.h"
28 
29 #include "src/core/helpers/AutoConfiguration.h"
30 #include "src/core/helpers/WindowHelpers.h"
31 
32 #include <algorithm>
33 
34 namespace arm_compute
35 {
36 namespace
37 {
validate_arguments(const ITensorInfo * bboxes,const ITensorInfo * scores,const ITensorInfo * output_indices,unsigned int max_output_size,const float score_threshold,const float iou_threshold)38 Status validate_arguments(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices, unsigned int max_output_size,
39                           const float score_threshold, const float iou_threshold)
40 {
41     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(bboxes, scores, output_indices);
42     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bboxes, 1, DataType::F32);
43     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_indices, 1, DataType::S32);
44     ARM_COMPUTE_RETURN_ERROR_ON_MSG(bboxes->num_dimensions() > 2, "The bboxes tensor must be a 2-D float tensor of shape [4, num_boxes].");
45     ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "The scores tensor must be a 1-D float tensor of shape [num_boxes].");
46     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->num_dimensions() > 1, "The indices must be 1-D integer tensor of shape [M], where max_output_size <= M");
47     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bboxes, scores);
48     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->dimension(0) == 0, "Indices tensor must be bigger than 0");
49     ARM_COMPUTE_RETURN_ERROR_ON_MSG(max_output_size == 0, "Max size cannot be 0");
50     ARM_COMPUTE_RETURN_ERROR_ON_MSG(iou_threshold < 0.f || iou_threshold > 1.f, "IOU threshold must be in [0,1]");
51     ARM_COMPUTE_RETURN_ERROR_ON_MSG(score_threshold < 0.f || score_threshold > 1.f, "Score threshold must be in [0,1]");
52 
53     return Status{};
54 }
55 } // namespace
56 
CPPNonMaximumSuppressionKernel()57 CPPNonMaximumSuppressionKernel::CPPNonMaximumSuppressionKernel()
58     : _input_bboxes(nullptr), _input_scores(nullptr), _output_indices(nullptr), _max_output_size(0), _score_threshold(0.f), _iou_threshold(0.f), _num_boxes(0)
59 {
60 }
61 
configure(const ITensor * input_bboxes,const ITensor * input_scores,ITensor * output_indices,unsigned int max_output_size,const float score_threshold,const float iou_threshold)62 void CPPNonMaximumSuppressionKernel::configure(const ITensor *input_bboxes, const ITensor *input_scores, ITensor *output_indices,
63                                                unsigned int max_output_size, const float score_threshold, const float iou_threshold)
64 {
65     ARM_COMPUTE_ERROR_ON_NULLPTR(input_bboxes, input_scores, output_indices);
66     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_bboxes->info(), input_scores->info(), output_indices->info(), max_output_size, score_threshold, iou_threshold));
67 
68     auto_init_if_empty(*output_indices->info(), TensorShape(max_output_size), 1, DataType::U8, QuantizationInfo());
69 
70     _input_bboxes    = input_bboxes;
71     _input_scores    = input_scores;
72     _output_indices  = output_indices;
73     _score_threshold = score_threshold;
74     _iou_threshold   = iou_threshold;
75     _max_output_size = max_output_size;
76     _num_boxes       = input_scores->info()->dimension(0);
77 
78     // Configure kernel window
79     Window win = calculate_max_window(*output_indices->info(), Steps());
80 
81     // The CPPNonMaximumSuppressionKernel doesn't need padding so update_window_and_padding() can be skipped
82     ICPPKernel::configure(win);
83 }
84 
validate(const ITensorInfo * bboxes,const ITensorInfo * scores,const ITensorInfo * output_indices,unsigned int max_output_size,const float score_threshold,const float iou_threshold)85 Status CPPNonMaximumSuppressionKernel::validate(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices,
86                                                 unsigned int max_output_size, const float score_threshold, const float iou_threshold)
87 {
88     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(bboxes, scores, output_indices, max_output_size, score_threshold, iou_threshold));
89     return Status{};
90 }
91 
run(const Window & window,const ThreadInfo & info)92 void CPPNonMaximumSuppressionKernel::run(const Window &window, const ThreadInfo &info)
93 {
94     ARM_COMPUTE_UNUSED(info);
95     ARM_COMPUTE_UNUSED(window);
96     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
97     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);
98 
99     // Auxiliary tensors
100     std::vector<int>   indices_above_thd;
101     std::vector<float> scores_above_thd;
102     for(unsigned int i = 0; i < _num_boxes; ++i)
103     {
104         const float score_i = *(reinterpret_cast<float *>(_input_scores->ptr_to_element(Coordinates(i))));
105         if(score_i >= _score_threshold)
106         {
107             scores_above_thd.emplace_back(score_i);
108             indices_above_thd.emplace_back(i);
109         }
110     }
111 
112     // Sort selected indices based on scores
113     const unsigned int        num_above_thd = indices_above_thd.size();
114     std::vector<unsigned int> sorted_indices;
115     sorted_indices.resize(num_above_thd);
116     std::iota(sorted_indices.data(), sorted_indices.data() + num_above_thd, 0);
117     std::sort(std::begin(sorted_indices),
118               std::end(sorted_indices),
119               [&](unsigned int first, unsigned int second)
120     {
121         return scores_above_thd[first] > scores_above_thd[second];
122     });
123 
124     // Number of output is the minimum between max_detection and the scores above the threshold
125     const unsigned int num_output = std::min(_max_output_size, num_above_thd);
126     unsigned int       output_idx = 0;
127     std::vector<bool>  visited(num_above_thd, false);
128 
129     // Keep only boxes with small IoU
130     for(unsigned int i = 0; i < num_above_thd; ++i)
131     {
132         // Check if the output is full
133         if(output_idx >= num_output)
134         {
135             break;
136         }
137 
138         // Check if it was already visited, if not add it to the output and update the indices counter
139         if(!visited[sorted_indices[i]])
140         {
141             *(reinterpret_cast<int *>(_output_indices->ptr_to_element(Coordinates(output_idx)))) = indices_above_thd[sorted_indices[i]];
142             visited[sorted_indices[i]]                                                           = true;
143             ++output_idx;
144         }
145         else
146         {
147             continue;
148         }
149 
150         // Once added one element at the output check if the next ones overlap and can be skipped
151         for(unsigned int j = i + 1; j < num_above_thd; ++j)
152         {
153             if(!visited[sorted_indices[j]])
154             {
155                 // Calculate IoU
156                 const unsigned int i_index = indices_above_thd[sorted_indices[i]];
157                 const unsigned int j_index = indices_above_thd[sorted_indices[j]];
158                 // Box-corner format: xmin, ymin, xmax, ymax
159                 const auto box_i_xmin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(0, i_index))));
160                 const auto box_i_ymin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(1, i_index))));
161                 const auto box_i_xmax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(2, i_index))));
162                 const auto box_i_ymax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(3, i_index))));
163 
164                 const auto box_j_xmin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(0, j_index))));
165                 const auto box_j_ymin = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(1, j_index))));
166                 const auto box_j_xmax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(2, j_index))));
167                 const auto box_j_ymax = *(reinterpret_cast<float *>(_input_bboxes->ptr_to_element(Coordinates(3, j_index))));
168 
169                 const float area_i = (box_i_xmax - box_i_xmin) * (box_i_ymax - box_i_ymin);
170                 const float area_j = (box_j_xmax - box_j_xmin) * (box_j_ymax - box_j_ymin);
171                 float       overlap;
172                 if(area_i <= 0 || area_j <= 0)
173                 {
174                     overlap = 0.0f;
175                 }
176                 else
177                 {
178                     const auto y_min_intersection = std::max<float>(box_i_ymin, box_j_ymin);
179                     const auto x_min_intersection = std::max<float>(box_i_xmin, box_j_xmin);
180                     const auto y_max_intersection = std::min<float>(box_i_ymax, box_j_ymax);
181                     const auto x_max_intersection = std::min<float>(box_i_xmax, box_j_xmax);
182                     const auto area_intersection  = std::max<float>(y_max_intersection - y_min_intersection, 0.0f) * std::max<float>(x_max_intersection - x_min_intersection, 0.0f);
183                     overlap                       = area_intersection / (area_i + area_j - area_intersection);
184                 }
185 
186                 if(overlap > _iou_threshold)
187                 {
188                     visited[sorted_indices[j]] = true;
189                 }
190             }
191         }
192     }
193     // The output could be full but not the output indices tensor
194     // Instead return values not valid we put -1
195     for(; output_idx < _max_output_size; ++output_idx)
196     {
197         *(reinterpret_cast<int *>(_output_indices->ptr_to_element(Coordinates(output_idx)))) = -1;
198     }
199 }
200 } // namespace arm_compute
201