xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/NESpaceToDepthLayerKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NESpaceToDepthLayerKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/ITensor.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "src/core/NEON/wrapper/wrapper.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 
35 #include <arm_neon.h>
36 #include <cstdint>
37 
38 using namespace arm_compute::misc::shape_calculator;
39 
40 namespace arm_compute
41 {
42 namespace
43 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,int32_t block_shape)44 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, int32_t block_shape)
45 {
46     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
47     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
48     ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
49 
50     ARM_COMPUTE_RETURN_ERROR_ON(block_shape < 1);
51 
52     // Validate output if initialized
53     if(output->total_size() != 0)
54     {
55         const DataLayout data_layout = input->data_layout();
56         const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
57         const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
58         const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
59         const int        idx_batch   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
60         ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_width] % block_shape != 0);
61         ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_height] % block_shape != 0);
62         ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_batch] != output->tensor_shape()[idx_batch]);
63         ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_channel] % (block_shape * block_shape) != 0);
64         ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().total_size() != output->tensor_shape().total_size());
65         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
66     }
67 
68     return Status{};
69 }
70 } // namespace
71 
NESpaceToDepthLayerKernel()72 NESpaceToDepthLayerKernel::NESpaceToDepthLayerKernel()
73     : _input(nullptr), _output(nullptr), _block_shape(), _data_layout(DataLayout::UNKNOWN)
74 {
75 }
76 
configure(const ITensor * input,ITensor * output,int32_t block_shape)77 void NESpaceToDepthLayerKernel::configure(const ITensor *input, ITensor *output, int32_t block_shape)
78 {
79     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
80 
81     TensorShape output_shape = misc::shape_calculator::compute_space_to_depth_shape(input->info(), block_shape);
82     auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type());
83 
84     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), block_shape));
85 
86     _input       = input;
87     _block_shape = block_shape;
88     _output      = output;
89     _data_layout = input->info()->data_layout();
90 
91     // Configure kernel window
92     Window win = calculate_max_window(*output->info(), Steps());
93     INEKernel::configure(win);
94 }
95 
validate(const ITensorInfo * input,const ITensorInfo * output,int32_t block_shape)96 Status NESpaceToDepthLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, int32_t block_shape)
97 {
98     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, block_shape));
99     return Status{};
100 }
101 
run(const Window & window,const ThreadInfo & info)102 void NESpaceToDepthLayerKernel::run(const Window &window, const ThreadInfo &info)
103 {
104     ARM_COMPUTE_UNUSED(info);
105     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
106     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);
107 
108     const int channel_idx  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
109     const int element_size = _input->info()->element_size();
110 
111     const size_t channel_size = _input->info()->dimension(channel_idx);
112 
113     Window slice_out = window.first_slice_window_3D();
114 
115     int batch_id = 0;
116 
117     // Main loop for NCHW and NHWC
118     if(_data_layout == DataLayout::NCHW)
119     {
120         do
121         {
122             Iterator out(_output, slice_out);
123             execute_window_loop(slice_out, [&](const Coordinates & id)
124             {
125                 const size_t channel_id = id.z();
126                 const size_t in_x       = id.x() * _block_shape + (channel_id / channel_size) % _block_shape;
127                 const size_t in_y       = id.y() * _block_shape + (channel_id / channel_size) / _block_shape;
128                 const int    z          = channel_id % channel_size;
129                 Coordinates  input_coords{ in_x, in_y, z, batch_id };
130                 memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size);
131             },
132             out);
133             ++batch_id;
134         }
135         while(window.slide_window_slice_3D(slice_out));
136     }
137     else
138     {
139         do
140         {
141             Iterator out(_output, slice_out);
142             execute_window_loop(slice_out, [&](const Coordinates & id)
143             {
144                 const size_t channel_id = id.x();
145                 const size_t in_x       = id.y() * _block_shape + (channel_id / channel_size) % _block_shape;
146                 const size_t in_y       = id.z() * _block_shape + (channel_id / channel_size) / _block_shape;
147                 const int    z          = channel_id % channel_size;
148                 Coordinates  input_coords{ z, in_x, in_y, batch_id };
149                 memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size);
150             },
151             out);
152             ++batch_id;
153         }
154         while(window.slide_window_slice_3D(slice_out));
155     }
156 }
157 } // namespace arm_compute
158