1 /*
2  * Copyright (c) 2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef __aarch64__
26 
27 #include <arm_neon.h>
28 #include <cstddef>
29 
30 namespace arm_conv {
31 namespace winograd {
32 namespace input_transform {
33 
arm_fp32_6x6(unsigned int n_channels,const float * const input_base,const size_t input_row_stride,const size_t input_col_stride,float * outptr,const size_t matrix_stride)34 void arm_fp32_6x6(
35   unsigned int n_channels,
36   const float* const input_base,
37   const size_t input_row_stride,
38   const size_t input_col_stride,
39   float* outptr,
40   const size_t matrix_stride
41 )
42 {
43   constexpr int inner_tile_rows = 6;
44   constexpr int inner_tile_cols = 6;
45 
46   // Get pointers into the input tile
47   const float *x_ptrs[inner_tile_rows][inner_tile_cols];
48   for (int i = 0, xi = 0; i < inner_tile_rows; i++, xi++)
49   {
50     // Get a pointer into the row
51     const float* const row_ptr = input_base + xi*input_row_stride;
52 
53     for (int j = 0, xj = 0; j < inner_tile_cols; j++, xj++)
54     {
55       x_ptrs[i][j] = row_ptr + xj*input_col_stride;
56     }
57   }
58 
59   // Matrices used/computed in this kernel.
60   float x[inner_tile_rows][inner_tile_cols];
61   float XTx[inner_tile_rows][inner_tile_cols];
62   float U[inner_tile_rows][inner_tile_cols];
63   for (int i = 0; i < inner_tile_rows; i++)
64   {
65     for (int j = 0; j < inner_tile_cols; j++)
66     {
67       x[i][j] = XTx[i][j] = 0.0f;
68     }
69   }
70 
71   // Perform the Winograd input transformation for each channel in the input
72   // tensor.
73   int channels_remaining = n_channels;
74   for (; channels_remaining >= 2; channels_remaining -= 2)
75   {
76     // Matrices used/computed in this kernel
77     float32x2_t x[inner_tile_rows][inner_tile_cols];
78     float32x2_t XTx[inner_tile_rows][inner_tile_cols];
79     float32x2_t U[inner_tile_rows][inner_tile_cols];
80     for (int i = 0; i < inner_tile_rows; i++)
81     {
82       for (int j = 0; j < inner_tile_cols; j++)
83       {
84         x[i][j] = vdup_n_f32(0.0f);
85         XTx[i][j] = vdup_n_f32(0.0f);
86       }
87     }
88 
89     // Read a 6x6 tile in the Winograd domain
90     for (int i = 0; i < inner_tile_rows; i++)
91     {
92       for (int j = 0; j < inner_tile_cols; j++)
93       {
94         x[i][j] = vld1_f32(x_ptrs[i][j]);
95         x_ptrs[i][j] += 2;
96       }
97     }
98 
99     // Compute XT . x
100     for (int j = 0; j < inner_tile_cols; j++)
101     {
102       // XTx[0][j] =  4*x[0][j] + -5*x[2][j] +  1*x[4][j];
103       XTx[0][j] = vmls_n_f32(vmla_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f);
104 
105       // XTx[1][j] = -4*x[1][j] + -4*x[2][j] +  1*x[3][j] +  1*x[4][j];
106       XTx[1][j] = vmls_n_f32(vadd_f32(x[3][j], x[4][j]), vadd_f32(x[1][j], x[2][j]), 4.0f);
107 
108       // XTx[2][j] =  4*x[1][j] + -4*x[2][j] + -1*x[3][j] +  1*x[4][j];
109       XTx[2][j] = vmla_n_f32(vsub_f32(x[4][j], x[3][j]), vsub_f32(x[1][j], x[2][j]), 4.0f);
110 
111       // XTx[3][j] = -2*x[1][j] + -1*x[2][j] +  2*x[3][j] +  1*x[4][j];
112       XTx[3][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[3][j], x[1][j]), 2.0f);
113 
114       // XTx[4][j] =  2*x[1][j] + -1*x[2][j] + -2*x[3][j] +  1*x[4][j];
115       XTx[4][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[1][j], x[3][j]), 2.0f);
116 
117       // XTx[5][j] =  4*x[1][j] + -5*x[3][j] +  1*x[5][j];
118       XTx[5][j] = vmls_n_f32(vmla_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f);
119     }
120 
121     // Compute U = XT . x . X
122     for (int i = 0; i < inner_tile_rows; i++)
123     {
124       // U[i][0] =  4*XTx[i][0] + -5*XTx[i][2] +  1*XTx[i][4];
125       U[i][0] = vmls_n_f32(vmla_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f);
126 
127       // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] +  1*XTx[i][3] +  1*XTx[i][4];
128       U[i][1] = vmls_n_f32(vadd_f32(XTx[i][3], XTx[i][4]), vadd_f32(XTx[i][1], XTx[i][2]), 4.0f);
129 
130       // U[i][2] =  4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] +  1*XTx[i][4];
131       U[i][2] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][3]), vsub_f32(XTx[i][1], XTx[i][2]), 4.0f);
132 
133       // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] +  2*XTx[i][3] +  1*XTx[i][4];
134       U[i][3] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][3], XTx[i][1]), 2.0f);
135 
136       // U[i][4] =  2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] +  1*XTx[i][4];
137       U[i][4] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][1], XTx[i][3]), 2.0f);
138 
139       // U[i][5] =  4*XTx[i][1] + -5*XTx[i][3] +  1*XTx[i][5];
140       U[i][5] = vmls_n_f32(vmla_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f);
141     }
142 
143     // Store the transformed matrix
144     for (int i = 0, m = 0; i < inner_tile_rows; i++)
145     {
146       for (int j = 0; j < inner_tile_cols; j++, m++)
147       {
148         vst1_f32(outptr + m*matrix_stride, U[i][j]);
149       }
150     }
151     outptr += 2;
152   }
153   for (; channels_remaining; channels_remaining--)
154   {
155     // Load x
156     for (int i = 0; i < inner_tile_rows; i++)
157     {
158       for (int j = 0; j < inner_tile_cols; j++)
159       {
160         x[i][j] = *(x_ptrs[i][j]++);
161       }
162     }
163 
164     // Compute XT . x
165     for (int j = 0; j < inner_tile_cols; j++)
166     {
167       XTx[0][j] =  4*x[0][j] + -5*x[2][j] +  1*x[4][j];
168       XTx[1][j] = -4*x[1][j] + -4*x[2][j] +  1*x[3][j] +  1*x[4][j];
169       XTx[2][j] =  4*x[1][j] + -4*x[2][j] + -1*x[3][j] +  1*x[4][j];
170       XTx[3][j] = -2*x[1][j] + -1*x[2][j] +  2*x[3][j] +  1*x[4][j];
171       XTx[4][j] =  2*x[1][j] + -1*x[2][j] + -2*x[3][j] +  1*x[4][j];
172       XTx[5][j] =  4*x[1][j] + -5*x[3][j] +  1*x[5][j];
173     }
174 
175     // Compute U = XT . x . X
176     for (int i = 0; i < inner_tile_rows; i++)
177     {
178       U[i][0] =  4*XTx[i][0] + -5*XTx[i][2] +  1*XTx[i][4];
179       U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] +  1*XTx[i][3] +  1*XTx[i][4];
180       U[i][2] =  4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] +  1*XTx[i][4];
181       U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] +  2*XTx[i][3] +  1*XTx[i][4];
182       U[i][4] =  2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] +  1*XTx[i][4];
183       U[i][5] =  4*XTx[i][1] + -5*XTx[i][3] +  1*XTx[i][5];
184     }
185 
186     // Store the transformed matrix
187     for (int i = 0, m = 0; i < inner_tile_rows; i++)
188     {
189       for (int j = 0; j < inner_tile_cols; j++, m++)
190       {
191         *(outptr + m*matrix_stride) = U[i][j];
192       }
193     }
194     outptr++;
195   }
196 }
197 
198 }  // namespace input_transform
199 }  // namespace winograd
200 }  // namespace arm_conv
201 
202 #endif // ! __aarch64__
203