1 /*
2 * Copyright (c) 2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
25
26 #include <algorithm>
27 #include <arm_neon.h>
28 #include <cstddef>
29
30 namespace arm_conv {
31 namespace winograd {
32 namespace output_transform {
33
a64_fp16_4x4_3x3(unsigned int n_channels,const __fp16 * inptr,const size_t matrix_stride,const __fp16 * bptr,__fp16 * const output,const size_t output_row_stride,const size_t output_col_stride,const __fp16 output_min,const __fp16 output_max)34 void a64_fp16_4x4_3x3(
35 unsigned int n_channels,
36 const __fp16* inptr,
37 const size_t matrix_stride,
38 const __fp16* bptr,
39 __fp16* const output,
40 const size_t output_row_stride,
41 const size_t output_col_stride,
42 const __fp16 output_min,
43 const __fp16 output_max
44 )
45 {
46 constexpr int output_tile_rows = 4, output_tile_cols = 4;
47
48 // Construct a map to the output cells
49 __fp16 *outptrs[output_tile_rows][output_tile_cols];
50 for (int i = 0; i < output_tile_rows; i++)
51 {
52 for (int j = 0; j < output_tile_cols; j++)
53 {
54 outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
55 }
56 }
57
58 // For each channel of the output
59 int channels_remaining = n_channels;
60
61 #ifdef __aarch64__
62 for (; channels_remaining >= 8; channels_remaining -= 8)
63 {
64 // Matrices used and computed during this transform
65 float16x8_t F[6][6], FZ[6][4], f[4][4], b;
66
67 // Read a 6x6 tile in the Winograd domain
68 for (int i = 0, m = 0; i < 6; i++)
69 {
70 for (int j = 0; j < 6; j++, m++)
71 {
72 F[i][j] = vld1q_f16(inptr + m*matrix_stride);
73 }
74 }
75 inptr += 8;
76
77 // Compute the matrix F Z
78 for (int i = 0; i < 6; i++)
79 {
80 // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
81 FZ[i][0] = vaddq_f16(vaddq_f16(vaddq_f16(F[i][0], F[i][1]), vaddq_f16(F[i][2], F[i][3])), F[i][4]);
82
83 // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
84 FZ[i][1] = vaddq_f16(vsubq_f16(F[i][1], F[i][2]), vmulq_f16(vsubq_f16(F[i][3], F[i][4]), vdupq_n_f16(2.0f)));
85
86 // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
87 FZ[i][2] = vaddq_f16(vaddq_f16(F[i][1], F[i][2]), vmulq_f16(vaddq_f16(F[i][3], F[i][4]), vdupq_n_f16(4.0f)));
88
89 // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
90 FZ[i][3] = vaddq_f16(vaddq_f16(vsubq_f16(F[i][1], F[i][2]), vmulq_f16(vsubq_f16(F[i][3], F[i][4]), vdupq_n_f16(8.0f))), F[i][5]);
91 }
92
93 // Compute the output tile f = ZT F Z
94 for (int j = 0; j < 4; j++)
95 {
96 // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
97 f[0][j] = vaddq_f16(vaddq_f16(vaddq_f16(FZ[0][j], FZ[1][j]), vaddq_f16(FZ[2][j], FZ[3][j])), FZ[4][j]);
98
99 // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
100 f[1][j] = vaddq_f16(vsubq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vsubq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(2.0f)));
101
102 // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
103 f[2][j] = vaddq_f16(vaddq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vaddq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(4.0f)));
104
105 // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
106 f[3][j] = vaddq_f16(vaddq_f16(vsubq_f16(FZ[1][j], FZ[2][j]), vmulq_f16(vsubq_f16(FZ[3][j], FZ[4][j]), vdupq_n_f16(8.0f))), FZ[5][j]);
107 }
108
109 // Write out the output tile
110 if (bptr != nullptr)
111 {
112 b = vld1q_f16(bptr);
113 bptr += 8;
114 }
115 else
116 {
117 b = vdupq_n_f16(0.0f);
118 }
119 for (int i = 0; i < output_tile_rows; i++)
120 {
121 for (int j = 0; j < output_tile_cols; j++)
122 {
123 const auto y =
124 vmaxq_f16(vminq_f16(vaddq_f16(f[i][j], b), vdupq_n_f16(output_max)),
125 vdupq_n_f16(output_min));
126 vst1q_f16(outptrs[i][j], y);
127 outptrs[i][j] += 8;
128 }
129 }
130 }
131 #endif // __aarch64__
132 #ifdef __arm_any__
133 for (; channels_remaining >= 4; channels_remaining -= 4)
134 {
135 // Matrices used and computed during this transform
136 float16x4_t F[6][6], FZ[6][4], f[4][4], b;
137
138 // Read a 6x6 tile in the Winograd domain
139 for (int i = 0, m = 0; i < 6; i++)
140 {
141 for (int j = 0; j < 6; j++, m++)
142 {
143 F[i][j] = vld1_f16(inptr + m*matrix_stride);
144 }
145 }
146 inptr += 4;
147
148 // Compute the matrix F Z
149 for (int i = 0; i < 6; i++)
150 {
151 // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
152 FZ[i][0] = vadd_f16(vadd_f16(vadd_f16(F[i][0], F[i][1]), vadd_f16(F[i][2], F[i][3])), F[i][4]);
153
154 // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
155 FZ[i][1] = vadd_f16(vsub_f16(F[i][1], F[i][2]), vmul_f16(vsub_f16(F[i][3], F[i][4]), vdup_n_f16(2.0f)));
156
157 // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
158 FZ[i][2] = vadd_f16(vadd_f16(F[i][1], F[i][2]), vmul_f16(vadd_f16(F[i][3], F[i][4]), vdup_n_f16(4.0f)));
159
160 // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
161 FZ[i][3] = vadd_f16(vadd_f16(vsub_f16(F[i][1], F[i][2]), vmul_f16(vsub_f16(F[i][3], F[i][4]), vdup_n_f16(8.0f))), F[i][5]);
162 }
163
164 // Compute the output tile f = ZT F Z
165 for (int j = 0; j < 4; j++)
166 {
167 // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
168 f[0][j] = vadd_f16(vadd_f16(vadd_f16(FZ[0][j], FZ[1][j]), vadd_f16(FZ[2][j], FZ[3][j])), FZ[4][j]);
169
170 // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
171 f[1][j] = vadd_f16(vsub_f16(FZ[1][j], FZ[2][j]), vmul_f16(vsub_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(2.0f)));
172
173 // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
174 f[2][j] = vadd_f16(vadd_f16(FZ[1][j], FZ[2][j]), vmul_f16(vadd_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(4.0f)));
175
176 // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
177 f[3][j] = vadd_f16(vadd_f16(vsub_f16(FZ[1][j], FZ[2][j]), vmul_f16(vsub_f16(FZ[3][j], FZ[4][j]), vdup_n_f16(8.0f))), FZ[5][j]);
178 }
179
180 // Write out the output tile
181 if (bptr != nullptr)
182 {
183 b = vld1_f16(bptr);
184 bptr += 4;
185 }
186 else
187 {
188 b = vdup_n_f16(0.0f);
189 }
190 for (int i = 0; i < output_tile_rows; i++)
191 {
192 for (int j = 0; j < output_tile_cols; j++)
193 {
194 const auto y =
195 vmax_f16(vmin_f16(vadd_f16(f[i][j], b), vdup_n_f16(output_max)),
196 vdup_n_f16(output_min));
197 vst1_f16(outptrs[i][j], y);
198 outptrs[i][j] += 4;
199 }
200 }
201 }
202 #endif // __arm_any__
203 for (; channels_remaining; channels_remaining--)
204 {
205 // Matrices used and computed during this transform
206 __fp16 F[6][6], FZ[6][4], f[4][4], b;
207
208 // Read a 6x6 tile in the Winograd domain
209 for (int i = 0, m = 0; i < 6; i++)
210 {
211 for (int j = 0; j < 6; j++, m++)
212 {
213 F[i][j] = *(inptr + m*matrix_stride);
214 }
215 }
216 inptr++;
217
218 // Compute the matrix F Z
219 for (int i = 0; i < 6; i++)
220 {
221 FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
222 FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
223 FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
224 FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
225 }
226
227 // Compute the output tile f = ZT F Z
228 for (int j = 0; j < 4; j++)
229 {
230 f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
231 f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
232 f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
233 f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
234 }
235
236 // Write out the output tile
237 if (bptr != nullptr)
238 {
239 b = *(bptr++);
240 }
241 else
242 {
243 b = 0.0f;
244 }
245 for (int i = 0; i < output_tile_rows; i++)
246 {
247 for (int j = 0; j < output_tile_cols; j++)
248 {
249 const auto y = std::max(std::min<__fp16>(f[i][j] + b, output_max), output_min);
250 *(outptrs[i][j]++) = y;
251 }
252 }
253 }
254 }
255
256 } // namespace output_transform
257 } // namespace winograd
258 } // namespace arm_conv
259
260 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
261