1 /*
2  * Copyright (c) 2022-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include <algorithm>
26 #include <cstddef>
27 #include <arm_neon.h>
28 
29 namespace arm_conv {
30 namespace winograd {
31 namespace output_transform {
32 
arm_fp32_1x2_1x7(unsigned int n_channels,const float * inptr,size_t matrix_stride,const float * bptr,float * outptr,size_t,size_t output_col_stride,float output_min,float output_max)33 void arm_fp32_1x2_1x7(
34   unsigned int n_channels,
35   const float* inptr,
36   size_t matrix_stride,
37   const float* bptr,
38   float *outptr,
39   size_t,  // No need to stride across rows
40   size_t output_col_stride,
41   float output_min,
42   float output_max
43 )
44 {
45   constexpr auto inner_tile_cols = 8u, output_tile_cols = 2u;
46 
47   // For each channel of the output
48   for (; n_channels >= 4; n_channels -= 4)
49   {
50     // Matrices used and computed during this transform
51     float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f);
52 
53     // Read a 1x8 tile in the Winograd domain
54     for (auto j = 0u; j < inner_tile_cols; j++)
55     {
56       F[j] = vld1q_f32(inptr + j*matrix_stride);
57     }
58     inptr += 4;
59 
60     f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
61     f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
62 
63     // Write out the output tile
64     if (bptr != 0)
65     {
66       b = vld1q_f32(bptr);
67       bptr += 4;
68     }
69     for (auto j = 0u; j < output_tile_cols; j++)
70     {
71       const auto y = vminq_f32(vmaxq_f32(f[j] + b, vdupq_n_f32(output_min)),
72                                vdupq_n_f32(output_max));
73       vst1q_f32(outptr + j*output_col_stride, y);
74     }
75     outptr += 4;
76   }
77   for (; n_channels >= 2; n_channels -= 2)
78   {
79     // Matrices used and computed during this transform
80     float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f);
81 
82     // Read a 1x8 tile in the Winograd domain
83     for (auto j = 0u; j < inner_tile_cols; j++)
84     {
85       F[j] = vld1_f32(inptr + j*matrix_stride);
86     }
87     inptr += 2;
88 
89     f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
90     f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
91 
92     // Write out the output tile
93     if (bptr != 0)
94     {
95       b = vld1_f32(bptr);
96       bptr += 2;
97     }
98     for (auto j = 0u; j < output_tile_cols; j++)
99     {
100       const auto y = vmin_f32(vmax_f32(f[j] + b, vdup_n_f32(output_min)),
101                               vdup_n_f32(output_max));
102       vst1_f32(outptr + j*output_col_stride, y);
103     }
104     outptr += 2;
105   }
106   if (n_channels)
107   {
108     // Matrices used and computed during this transform
109     float F[inner_tile_cols], f[output_tile_cols], b = 0.0f;
110 
111     // Read a 1x8 tile in the Winograd domain
112     for (auto j = 0u; j < inner_tile_cols; j++)
113     {
114       F[j] = *(inptr + j*matrix_stride);
115     }
116 
117     f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1;
118     f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1 + F[7]*1;
119 
120     // Write out the output tile
121     if (bptr != 0)
122     {
123       b = *(bptr++);
124     }
125     for (auto j = 0u; j < output_tile_cols; j++)
126     {
127       *(outptr + j*output_col_stride) = std::max(std::min(f[j] + b, output_max), output_min);
128     }
129   }
130 }
131 
132 }  // namespace output_transform
133 }  // namespace winograd
134 }  // namespace arm_conv
135