1 /*
2 * Copyright (c) 2022-2023 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include <algorithm>
26 #include <cstddef>
27 #include <arm_neon.h>
28
29 namespace arm_conv {
30 namespace winograd {
31 namespace output_transform {
32
arm_fp32_1x4_1x5(unsigned int n_channels,const float * inptr,size_t matrix_stride,const float * bptr,float * outptr,size_t,size_t output_col_stride,float output_min,float output_max)33 void arm_fp32_1x4_1x5(
34 unsigned int n_channels,
35 const float* inptr,
36 size_t matrix_stride,
37 const float* bptr,
38 float *outptr,
39 size_t, // No need to stride across rows
40 size_t output_col_stride,
41 float output_min,
42 float output_max
43 )
44 {
45 constexpr auto inner_tile_cols = 8u, output_tile_cols = 4u;
46
47 // For each channel of the output
48 for (; n_channels >= 4; n_channels -= 4)
49 {
50 // Matrices used and computed during this transform
51 float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f);
52
53 // Read a 1x8 tile in the Winograd domain
54 for (auto j = 0u; j < inner_tile_cols; j++)
55 {
56 F[j] = vld1q_f32(inptr + j*matrix_stride);
57 }
58 inptr += 4;
59
60 f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
61 f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
62 f[2] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
63 f[3] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
64
65 // Write out the output tile
66 if (bptr != 0)
67 {
68 b = vld1q_f32(bptr);
69 bptr += 4;
70 }
71 for (auto j = 0u; j < output_tile_cols; j++)
72 {
73 const auto y =
74 vmaxq_f32(vminq_f32(vaddq_f32(f[j], b), vdupq_n_f32(output_max)),
75 vdupq_n_f32(output_min));
76 vst1q_f32(outptr + j*output_col_stride, y);
77 }
78 outptr += 4;
79 }
80 for (; n_channels >= 2; n_channels -= 2)
81 {
82 // Matrices used and computed during this transform
83 float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f);
84
85 // Read a 1x8 tile in the Winograd domain
86 for (auto j = 0u; j < inner_tile_cols; j++)
87 {
88 F[j] = vld1_f32(inptr + j*matrix_stride);
89 }
90 inptr += 2;
91
92 f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
93 f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
94 f[2] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
95 f[3] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
96
97 // Write out the output tile
98 if (bptr != 0)
99 {
100 b = vld1_f32(bptr);
101 bptr += 2;
102 }
103 for (auto j = 0u; j < output_tile_cols; j++)
104 {
105 const auto y =
106 vmax_f32(vmin_f32(vadd_f32(f[j], b), vdup_n_f32(output_max)),
107 vdup_n_f32(output_min));
108 vst1_f32(outptr + j*output_col_stride, y);
109 }
110 outptr += 2;
111 }
112 for (; n_channels; n_channels--)
113 {
114 // Matrices used and computed during this transform
115 float F[inner_tile_cols], f[output_tile_cols], b = 0.0f;
116
117 // Read a 1x8 tile in the Winograd domain
118 for (auto j = 0u; j < inner_tile_cols; j++)
119 {
120 F[j] = *(inptr + j*matrix_stride);
121 }
122 inptr++;
123
124 f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1;
125 f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1;
126 f[2] = F[3]*4 + F[4]*4 + F[5]*9 + F[6]*9 + F[1]*1 + F[2]*1;
127 f[3] = F[1]*-1 + F[5]*-27 + F[3]*-8 + F[4]*8 + F[6]*27 + F[2]*1 + F[7]*1;
128
129 // Write out the output tile
130 if (bptr != 0)
131 {
132 b = *(bptr++);
133 }
134 for (auto j = 0u; j < output_tile_cols; j++)
135 {
136 const auto y = std::max(std::min(f[j] + b, output_max), output_min);
137 *(outptr + j*output_col_stride) = y;
138 }
139 outptr++;
140 }
141 }
142
143 } // namespace output_transform
144 } // namespace winograd
145 } // namespace arm_conv
146