1 /*
2 * Copyright (c) 2021-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/CpuAddKernel.h"
25
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/Validate.h"
29 #include "src/core/CPP/Validate.h"
30 #include "src/core/common/Registrars.h"
31 #include "src/core/helpers/AutoConfiguration.h"
32 #include "src/core/helpers/WindowHelpers.h"
33 #include "src/cpu/kernels/add/list.h"
34 #include <array>
35
36 #if defined(ENABLE_FP32_KERNELS)
37 namespace
38 {
39 static constexpr size_t default_mws_N1_fp32_neon = 24536;
40 static constexpr size_t default_mws_V1_fp32_neon = 40510;
41 }
42 #endif /* ENABLE_FP32_KERNELS */
43
44 namespace arm_compute
45 {
46 namespace cpu
47 {
48 namespace kernels
49 {
50 namespace
51 {
52 static const std::vector<CpuAddKernel::AddKernel> available_kernels =
53 {
54 {
55 "neon_qu8_add_fixedpoint",
56 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0302() 57 {
58 return (data.dt == DataType::QASYMM8) && data.can_use_fixedpoint;
59 },
60 REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint<uint8_t>)
61 },
62 {
63 "neon_qs8_add_fixedpoint",
64 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0402() 65 {
66 return (data.dt == DataType::QASYMM8_SIGNED) && data.can_use_fixedpoint;
67 },
68 REGISTER_FP32_NEON(arm_compute::cpu::add_q8_neon_fixedpoint<int8_t>)
69 },
70 {
71 "sve2_qu8_add",
72 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0502() 73 {
74 return (data.dt == DataType::QASYMM8) && data.isa.sve2;
75 },
76 REGISTER_QASYMM8_SVE2(arm_compute::cpu::add_qasymm8_sve2)
77 },
78 {
79 "sve2_qs8_add",
80 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0602() 81 {
82 return (data.dt == DataType::QASYMM8_SIGNED) && data.isa.sve2;
83 },
84 REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::add_qasymm8_signed_sve2)
85 },
86 {
87 "sve2_qs16_add",
88 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0702() 89 {
90 return (data.dt == DataType::QSYMM16) && data.isa.sve2;
91 },
92 REGISTER_QSYMM16_SVE2(arm_compute::cpu::add_qsymm16_sve2)
93 },
94 {
95 "sve_fp32_add",
96 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0802() 97 {
98 return (data.dt == DataType::F32) && data.isa.sve;
99 },
100 REGISTER_FP32_SVE(arm_compute::cpu::add_fp32_sve)
101 },
102 {
103 "sve_fp16_add",
104 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0902() 105 {
106 return (data.dt == DataType::F16) && data.isa.sve && data.isa.fp16;
107 },
108 REGISTER_FP16_SVE(arm_compute::cpu::add_fp16_sve)
109 },
110 {
111 "sve_u8_add",
112 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0a02() 113 {
114 return (data.dt == DataType::U8) && data.isa.sve;
115 },
116 REGISTER_INTEGER_SVE(arm_compute::cpu::add_u8_sve)
117 },
118 {
119 "sve_s16_add",
120 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0b02() 121 {
122 return (data.dt == DataType::S16) && data.isa.sve;
123 },
124 REGISTER_INTEGER_SVE(arm_compute::cpu::add_s16_sve)
125 },
126 {
127 "sve_s32_add",
128 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0c02() 129 {
130 return (data.dt == DataType::S32) && data.isa.sve;
131 },
132 REGISTER_INTEGER_SVE(arm_compute::cpu::add_s32_sve)
133 },
134 {
135 "neon_fp32_add",
__anon86e7f2dc0d02() 136 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::F32); },
137 REGISTER_FP32_NEON(arm_compute::cpu::add_fp32_neon)
138 },
139 {
140 "neon_fp16_add",
141 [](const CpuAddKernelDataTypeISASelectorData & data)
__anon86e7f2dc0e02() 142 {
143 return (data.dt == DataType::F16) && data.isa.fp16;
144 },
145 REGISTER_FP16_NEON(arm_compute::cpu::add_fp16_neon)
146 },
147 {
148 "neon_u8_add",
__anon86e7f2dc0f02() 149 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::U8); },
150 REGISTER_INTEGER_NEON(arm_compute::cpu::add_u8_neon)
151 },
152 {
153 "neon_s16_add",
__anon86e7f2dc1002() 154 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::S16); },
155 REGISTER_INTEGER_NEON(arm_compute::cpu::add_s16_neon)
156 },
157 {
158 "neon_s32_add",
__anon86e7f2dc1102() 159 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::S32); },
160 REGISTER_INTEGER_NEON(arm_compute::cpu::add_s32_neon)
161 },
162 {
163 "neon_qu8_add",
__anon86e7f2dc1202() 164 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8); },
165 REGISTER_QASYMM8_NEON(arm_compute::cpu::add_qasymm8_neon)
166 },
167 {
168 "neon_qs8_add",
__anon86e7f2dc1302() 169 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
170 REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::add_qasymm8_signed_neon)
171 },
172 {
173 "neon_qs16_add",
__anon86e7f2dc1402() 174 [](const CpuAddKernelDataTypeISASelectorData & data) { return (data.dt == DataType::QSYMM16); },
175 REGISTER_QSYMM16_NEON(arm_compute::cpu::add_qsymm16_neon)
176 }
177 };
178
validate_arguments(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst,ConvertPolicy policy)179 Status validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst, ConvertPolicy policy)
180 {
181 ARM_COMPUTE_UNUSED(policy);
182
183 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
184 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
185 DataType::S16, DataType::QSYMM16, DataType::F16,
186 DataType::S32, DataType::F32);
187 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);
188
189 const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());
190
191 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
192 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src0.tensor_shape().x() != src1.tensor_shape().x()) && ((src0.data_type() != src1.data_type()) || (src0.data_type() != dst.data_type())
193 || (src1.data_type() != dst.data_type())),
194 "Broadcasting across width is supported on configurations where all tensors have the same data type");
195
196 // Validate in case of configured dst
197 if(dst.total_size() > 0)
198 {
199 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
200 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
201 "Wrong shape for dst");
202 }
203
204 const auto can_use_fixedpoint = add_q8_neon_fixedpoint_possible(&src0, &src1, &dst);
205 const auto uk = CpuAddKernel::get_implementation<CpuAddKernelDataTypeISASelectorData>(CpuAddKernelDataTypeISASelectorData{ src0.data_type(),
206 CPUInfo::get().get_isa(), can_use_fixedpoint });
207 ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
208
209 return Status{};
210 }
211 } // namespace
212
configure(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst,ConvertPolicy policy)213 void CpuAddKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, ConvertPolicy policy)
214 {
215 ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
216 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst, policy));
217
218 const auto can_use_fixedpoint = add_q8_neon_fixedpoint_possible(src0, src1, dst);
219 const auto uk = CpuAddKernel::get_implementation<CpuAddKernelDataTypeISASelectorData>(CpuAddKernelDataTypeISASelectorData{ src0->data_type(),
220 CPUInfo::get().get_isa(), can_use_fixedpoint });
221
222 ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
223
224 _policy = policy;
225 _run_method = uk->ukernel;
226 _name = std::string("CpuAddKernel").append("/").append(uk->name);
227
228 // Auto initialize dst if not initialized
229 const TensorShape &out_shape = TensorShape::broadcast_shape(src0->tensor_shape(), src1->tensor_shape());
230 set_shape_if_empty(*dst, out_shape);
231 set_data_type_if_unknown(*dst, src0->data_type());
232
233 // Configure kernel window
234 Window win;
235 std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src0, *src1);
236
237 ICpuKernel::configure(win);
238 }
239
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,ConvertPolicy policy)240 Status CpuAddKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, ConvertPolicy policy)
241 {
242 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
243
244 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst, policy));
245
246 return Status{};
247 }
248
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)249 void CpuAddKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
250 {
251 ARM_COMPUTE_UNUSED(info);
252 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
253 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
254
255 ARM_COMPUTE_ERROR_ON(tensors.empty());
256 ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
257
258 const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
259 const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
260 ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
261
262 _run_method(src0, src1, dst, _policy, window);
263 }
264
name() const265 const char *CpuAddKernel::name() const
266 {
267 return _name.c_str();
268 }
269
get_available_kernels()270 const std::vector<CpuAddKernel::AddKernel> &CpuAddKernel::get_available_kernels()
271 {
272 return available_kernels;
273 }
274
get_mws(const CPUInfo & platform,size_t thread_count) const275 size_t CpuAddKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
276 {
277 ARM_COMPUTE_UNUSED(thread_count);
278
279 #if defined(ENABLE_FP32_KERNELS)
280 if(this->_run_method == &add_fp32_neon)
281 {
282 size_t mws = ICPPKernel::default_mws;
283 if(platform.get_cpu_model() == CPUModel::N1)
284 {
285 mws = default_mws_N1_fp32_neon;
286 }
287 else if(platform.get_cpu_model() == CPUModel::V1)
288 {
289 mws = default_mws_V1_fp32_neon;
290 }
291 else
292 {
293 return ICPPKernel::default_mws;
294 }
295
296 // tensor is 1D or was re-interpreted as 1D
297 if(this->window().shape().num_dimensions() == 1)
298 {
299 return mws;
300 }
301 else
302 {
303 // scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
304 // that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
305 // but the other sizes are large, which boosts performance.
306 mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
307 return std::max(static_cast<size_t>(1), mws);
308 }
309 }
310 #else /* ENABLE_FP32_KERNELS */
311 ARM_COMPUTE_UNUSED(platform);
312 #endif /* ENABLE_FP32_KERNELS */
313 return ICPPKernel::default_mws;
314 }
315
316 } // namespace kernels
317 } // namespace cpu
318 } // namespace arm_compute
319