xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuDirectConv2dKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuDirectConv2dKernel.h"
25 #include "src/cpu/kernels/directconv2d/list.h"
26 
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
29 #include "src/core/CPP/Validate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 
33 using namespace arm_compute::detail;
34 
35 namespace arm_compute
36 {
37 namespace cpu
38 {
39 namespace kernels
40 {
41 static const std::vector<CpuDirectConv2dKernel::DirectConv2dKernel> available_kernels =
42 {
43     {
44         "neon_fp32_nhwc_directconv2d",
__anon2216963a0102() 45         [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F32 && data.dl == DataLayout::NHWC; },
46         REGISTER_FP32_NEON(arm_compute::cpu::kernels::neon_fp32_nhwc_directconv2d)
47     },
48     {
49         "neon_fp32_nchw_directconv2d",
__anon2216963a0202() 50         [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F32 && data.dl == DataLayout::NCHW; },
51         REGISTER_FP32_NEON(arm_compute::cpu::kernels::neon_fp32_nchw_directconv2d)
52     },
53     {
54         "neon_fp16_nchw_directconv2d",
__anon2216963a0302() 55         [](const DataTypeDataLayoutISASelectorData & data) { return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16; },
56         REGISTER_FP16_NEON(arm_compute::cpu::kernels::neon_fp16_nchw_directconv2d)
57     },
58 };
59 
validate_arguments(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * dst,const PadStrideInfo & conv_info)60 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
61 {
62     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
63     ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
64     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
65     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
66     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
67 
68     const DataLayout data_layout = src->data_layout();
69     const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
70     const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
71     const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
72 
73     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(channel_idx) != src->dimension(channel_idx));
74     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
75     ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
76     ARM_COMPUTE_RETURN_ERROR_ON(data_layout == DataLayout::NHWC && src->data_type() != DataType::F32);
77     ARM_COMPUTE_UNUSED(width_idx);
78     // Checks performed when output is configured
79     if(dst->total_size() != 0)
80     {
81         TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
82 
83         DataType data_type = src->data_type();
84 
85         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
86         ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type);
87     }
88 
89     return Status{};
90 }
91 
validate_and_configure_window(ITensorInfo * src,ITensorInfo * dst)92 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst)
93 {
94     ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
95     ARM_COMPUTE_UNUSED(src);
96 
97     Window win{};
98     bool   window_changed = false;
99 
100     // Configure window without any padding
101     win = calculate_max_window(*dst, Steps());
102 
103     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
104     return std::make_pair(err, win);
105 }
106 
configure(ITensorInfo * src,ITensorInfo * weights,ITensorInfo * dst,const PadStrideInfo & conv_info)107 void CpuDirectConv2dKernel::configure(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info)
108 {
109     ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
110 
111     _conv_info   = conv_info;
112     _data_layout = src->data_layout();
113     _kernel_size = weights->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
114 
115     // Get convolved dimensions
116     TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
117 
118     DataType data_type = src->data_type();
119 
120     // Output auto inizialitation if not yet initialized
121     auto_init_if_empty(*dst, output_shape, 1, data_type);
122 
123     // Perform validation step
124     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, dst, conv_info));
125 
126     // Configure kernel window
127     auto win_config = validate_and_configure_window(src, dst);
128     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
129     ICpuKernel::configure(win_config.second);
130 }
131 
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * dst,const PadStrideInfo & conv_info)132 Status CpuDirectConv2dKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
133 {
134     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, dst, conv_info));
135     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(),
136                                                               dst->clone().get())
137                                 .first);
138 
139     return Status{};
140 }
141 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)142 void CpuDirectConv2dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
143 {
144     ARM_COMPUTE_UNUSED(info);
145     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
146     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
147 
148     auto src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
149     auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
150     auto dst     = tensors.get_tensor(TensorType::ACL_DST);
151 
152     const auto *uk = CpuDirectConv2dKernel::get_implementation(DataTypeDataLayoutISASelectorData{ src->info()->data_type(), _data_layout, CPUInfo::get().get_isa() });
153     ARM_COMPUTE_ERROR_ON(uk == nullptr);
154 
155     uk->ukernel(window, src, weights, dst, _conv_info);
156 }
name() const157 const char *CpuDirectConv2dKernel::name() const
158 {
159     return "CpuDirectConvolutionLayerKernel";
160 }
161 
get_available_kernels()162 const std::vector<CpuDirectConv2dKernel::DirectConv2dKernel> &CpuDirectConv2dKernel::get_available_kernels()
163 {
164     return available_kernels;
165 }
166 
167 } // namespace kernels
168 } // namespace cpu
169 } // namespace arm_compute
170