1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/Window.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/NEON/NEAsymm.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 
39 #include <arm_neon.h>
40 
41 namespace arm_compute
42 {
43 namespace cpu
44 {
45 namespace kernels
46 {
47 namespace
48 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,int min,int max)49 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, int min, int max)
50 {
51     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::S32);
53     ARM_COMPUTE_RETURN_ERROR_ON(min > max);
54 
55     // Check biases if exist
56     if(bias != nullptr)
57     {
58         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias);
59         ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
60         ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != bias->dimension(0));
61     }
62 
63     if(dst->total_size() != 0)
64     {
65         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8);
66         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, src);
67     }
68 
69     return Status{};
70 }
71 } // namespace
72 
73 template <bool is_bounded_relu>
run_internal(const ITensor * src,const ITensor * bias,ITensor * dst,const Window & window)74 void CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run_internal(const ITensor *src, const ITensor *bias, ITensor *dst, const Window &window)
75 {
76     const int32x4_t  result_offset_after_shift_s32 = vdupq_n_s32(_result_offset_after_shift);
77     const uint8x16_t min_u8                        = vdupq_n_u8(static_cast<uint8_t>(_min));
78     const uint8x16_t max_u8                        = vdupq_n_u8(static_cast<uint8_t>(_max));
79 
80     ARM_COMPUTE_UNUSED(min_u8);
81     ARM_COMPUTE_UNUSED(max_u8);
82 
83     const int  window_step_x  = 16;
84     const auto window_start_x = static_cast<int>(window.x().start());
85     const auto window_end_x   = static_cast<int>(window.x().end());
86 
87     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
88     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
89 
90     Iterator in(src, win_collapsed);
91     Iterator out(dst, win_collapsed);
92     if(bias != nullptr)
93     {
94         Window win_biases;
95         win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
96         win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
97 
98         Iterator bias_i(bias, win_biases);
99         execute_window_loop(win_collapsed, [&](const Coordinates &)
100         {
101             // Compute 16 elements per iteration
102             int x = window_start_x;
103             for(; x <= (window_end_x - window_step_x); x += window_step_x)
104             {
105                 int32x4x4_t in_s32 =
106                 {
107                     {
108                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
109                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
110                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
111                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
112                     }
113                 };
114 
115                 const int32x4x4_t bias_s32 =
116                 {
117                     {
118                         vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 0),
119                         vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 4),
120                         vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 8),
121                         vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 12)
122                     }
123                 };
124 
125                 // Add the bias to GEMM's result
126                 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
127                 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
128                 in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
129                 in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
130 
131                 vst1q_u8(out.ptr() + x, finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_u8, max_u8, is_bounded_relu));
132             }
133 
134             // Compute left-over elements
135             for(; x < window_end_x; ++x)
136             {
137                 const int32_t bias_value = *(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x);
138                 int32_t       in_value   = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
139 
140                 // Add bias
141                 in_value += bias_value;
142                 // Finalize and store the result
143                 *(out.ptr() + x) = finalize_quantization(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast<uint8_t>(_min), static_cast<uint8_t>(_max), is_bounded_relu);
144             }
145         },
146         in, out, bias_i);
147     }
148     else
149     {
150         execute_window_loop(win_collapsed, [&](const Coordinates &)
151         {
152             // Compute 16 elements per iteration
153             int x = window_start_x;
154             for(; x <= (window_end_x - window_step_x); x += window_step_x)
155             {
156                 int32x4x4_t in_s32 =
157                 {
158                     {
159                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
160                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
161                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
162                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
163                     }
164                 };
165 
166                 vst1q_u8(out.ptr() + x, finalize_quantization(in_s32, _result_fixedpoint_multiplier, _result_shift, result_offset_after_shift_s32, min_u8, max_u8, is_bounded_relu));
167             }
168 
169             // Compute left-over elements
170             for(; x < window_end_x; ++x)
171             {
172                 const int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
173 
174                 // Finalize and store the result
175                 *(out.ptr() + x) = finalize_quantization(in_value, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, static_cast<uint8_t>(_min), static_cast<uint8_t>(_max), is_bounded_relu);
176             }
177         },
178         in, out);
179     }
180 }
181 
configure(ITensorInfo * src,ITensorInfo * bias,ITensorInfo * dst,int result_fixedpoint_multiplier,int result_shift,int result_offset_after_shift,int min,int max)182 void CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::configure(ITensorInfo *src, ITensorInfo *bias, ITensorInfo *dst, int result_fixedpoint_multiplier, int result_shift,
183                                                                            int result_offset_after_shift, int min, int max)
184 {
185     ARM_COMPUTE_UNUSED(bias);
186     // Perform validate step
187     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
188     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, min, max));
189 
190     _result_fixedpoint_multiplier = result_fixedpoint_multiplier;
191     _result_shift                 = result_shift;
192     _result_offset_after_shift    = result_offset_after_shift;
193     _min                          = min;
194     _max                          = max;
195 
196     // Output auto inizialitation if not yet initialized
197     auto_init_if_empty(*dst, src->clone()->set_data_type(DataType::QASYMM8));
198 
199     // Configure kernel window
200     auto win_config = calculate_max_window(*src, Steps());
201     ICpuKernel::configure(win_config);
202 
203     // Check if we need to clamp the result using min and max
204     const bool is_bounded_relu = !(min <= 0 && max >= 255);
205     _func                      = is_bounded_relu ? &CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run_internal<true> :
206                                  &CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run_internal<false>;
207 }
208 
validate(const ITensorInfo * src,const ITensorInfo * bias,const ITensorInfo * dst,int min,int max)209 Status CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, int min, int max)
210 {
211     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
212     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, bias, dst, min, max));
213     return Status{};
214 }
215 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)216 void CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
217 {
218     ARM_COMPUTE_UNUSED(info);
219     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
220     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
221     ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
222 
223     auto src  = tensors.get_const_tensor(TensorType::ACL_SRC);
224     auto bias = tensors.get_const_tensor(TensorType::ACL_BIAS);
225     auto dst  = tensors.get_tensor(TensorType::ACL_DST);
226 
227     (this->*_func)(src, bias, dst, window);
228 }
229 
name() const230 const char *CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::name() const
231 {
232     return "CpuGemmLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel";
233 }
234 } // namespace kernels
235 } // namespace cpu
236 } // namespace arm_compute