xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuWeightsReshapeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Validate.h"
28 #include "src/core/helpers/AutoConfiguration.h"
29 #include "src/core/helpers/WindowHelpers.h"
30 
31 namespace arm_compute
32 {
33 namespace cpu
34 {
35 namespace kernels
36 {
37 namespace
38 {
get_output_shape(const ITensorInfo * src,bool has_bias)39 TensorShape get_output_shape(const ITensorInfo *src, bool has_bias)
40 {
41     TensorShape output_shape{ src->tensor_shape() };
42 
43     output_shape.collapse(3);
44     const size_t tmp_dim = output_shape[0];
45     output_shape.set(0, output_shape[1]);
46     output_shape.set(1, tmp_dim + (has_bias ? 1 : 0));
47 
48     return output_shape;
49 }
50 
validate_arguments(const ITensorInfo * src,const ITensorInfo * biases,const ITensorInfo * dst)51 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *biases, const ITensorInfo *dst)
52 {
53     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
54     //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src) is not needed here as this kernel doesn't use CPU FP16 instructions.
55     ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
56 
57     if(biases != nullptr)
58     {
59         ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(src->data_type()));
60         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
61         ARM_COMPUTE_RETURN_ERROR_ON((src->num_dimensions() == 4) && (biases->num_dimensions() != 1));
62         ARM_COMPUTE_RETURN_ERROR_ON((src->num_dimensions() == 5) && (biases->num_dimensions() != 2));
63         ARM_COMPUTE_RETURN_ERROR_ON((src->num_dimensions() == 4) && (biases->dimension(0) != src->tensor_shape()[3]));
64         ARM_COMPUTE_RETURN_ERROR_ON((src->num_dimensions() == 5) && (biases->dimension(0) != src->tensor_shape()[3] || biases->dimension(1) != src->tensor_shape()[4]));
65     }
66 
67     // Checks performed when output is configured
68     if(dst->total_size() != 0)
69     {
70         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), get_output_shape(src, biases != nullptr));
71         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
72         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst);
73     }
74 
75     return Status{};
76 }
77 } // namespace
78 
configure(const ITensorInfo * src,const ITensorInfo * biases,ITensorInfo * dst)79 void CpuWeightsReshapeKernel::configure(const ITensorInfo *src, const ITensorInfo *biases, ITensorInfo *dst)
80 {
81     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
82 
83     // Output tensor auto inizialitation if not yet initialized
84     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(get_output_shape(src, (biases != nullptr))));
85 
86     // Perform validation step
87     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src,
88                                                   biases,
89                                                   dst));
90 
91     // Configure kernel
92     Window window = calculate_max_window(*src, Steps());
93     window.set(Window::DimX, Window::Dimension(0, src->dimension(0), src->dimension(0)));
94     window.set(Window::DimY, Window::Dimension(0, src->dimension(1), src->dimension(1)));
95     window.set(Window::DimZ, Window::Dimension(0, src->dimension(2), src->dimension(2)));
96     ICpuKernel::configure(window);
97 }
98 
validate(const ITensorInfo * src,const ITensorInfo * biases,const ITensorInfo * dst)99 Status CpuWeightsReshapeKernel::validate(const ITensorInfo *src, const ITensorInfo *biases, const ITensorInfo *dst)
100 {
101     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, biases, dst));
102     return Status{};
103 }
104 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)105 void CpuWeightsReshapeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
106 {
107     ARM_COMPUTE_UNUSED(info);
108     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
109     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
110 
111     auto src    = tensors.get_const_tensor(TensorType::ACL_SRC);
112     auto biases = tensors.get_const_tensor(TensorType::ACL_BIAS);
113     auto dst    = tensors.get_tensor(TensorType::ACL_DST);
114 
115     const unsigned int kernel_size_x   = src->info()->dimension(0);
116     const unsigned int kernel_size_y   = src->info()->dimension(1);
117     const unsigned int kernel_depth    = src->info()->dimension(2);
118     const unsigned int input_stride_x  = src->info()->strides_in_bytes().x();
119     const unsigned int input_stride_y  = src->info()->strides_in_bytes().y();
120     const unsigned int input_stride_z  = src->info()->strides_in_bytes().z();
121     const unsigned int output_stride_y = dst->info()->strides_in_bytes().y();
122 
123     // Create iterators
124     Iterator in(src, window);
125     execute_window_loop(window, [&](const Coordinates & id)
126     {
127         // Get column index
128         const int kernel_idx = id[3];
129         const int kernel_idz = id[4];
130 
131         // Setup pointers
132         const uint8_t *tmp_input_ptr        = in.ptr();
133         uint8_t       *tmp_output_ptr       = dst->ptr_to_element(Coordinates(kernel_idx, 0, kernel_idz));
134         const uint8_t *curr_input_row_ptr   = tmp_input_ptr;
135         const uint8_t *curr_input_depth_ptr = tmp_input_ptr;
136 
137         // Linearize volume
138         for(unsigned int d = 0; d < kernel_depth; ++d)
139         {
140             for(unsigned int j = 0; j < kernel_size_y; ++j)
141             {
142                 for(unsigned int i = 0; i < kernel_size_x; ++i)
143                 {
144                     std::memcpy(tmp_output_ptr, tmp_input_ptr, src->info()->element_size());
145                     tmp_input_ptr += input_stride_x;
146                     tmp_output_ptr += output_stride_y;
147                 }
148                 curr_input_row_ptr += input_stride_y;
149                 tmp_input_ptr = curr_input_row_ptr;
150             }
151             curr_input_depth_ptr += input_stride_z;
152             curr_input_row_ptr = curr_input_depth_ptr;
153             tmp_input_ptr      = curr_input_depth_ptr;
154         }
155 
156         // Add bias
157         if(biases != nullptr)
158         {
159             std::memcpy(tmp_output_ptr, biases->ptr_to_element(Coordinates(kernel_idx, kernel_idz)), src->info()->element_size());
160         }
161     },
162     in);
163 }
name() const164 const char *CpuWeightsReshapeKernel::name() const
165 {
166     return "CpuWeightsReshapeKernel";
167 }
168 } // namespace kernels
169 } // namespace cpu
170 } // namespace arm_compute