xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/pool2d/neon/fp16.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Helpers.h"
25 #include "arm_compute/core/ITensor.h"
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/core/utils/misc/Traits.h"
28 #include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
29 #include "src/core/helpers/WindowHelpers.h"
30 #include "src/cpu/kernels/pool2d/neon/list.h"
31 
32 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
33 
34 namespace arm_compute
35 {
36 namespace cpu
37 {
38 namespace
39 {
pooling2_f16_maxpool_indices(const ITensor * src,ITensor * dst0,ITensor * dst1,PoolingLayerInfo & pool_info,const Window & window_src,const Window & window)40 void pooling2_f16_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
41 {
42     const int window_start_x = window.x().start();
43     const int window_end_x   = window.x().end();
44     const int window_step_x  = 8;
45 
46     Window window_out = window;
47     window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
48 
49     Iterator in(src, window_src);
50     Iterator out(dst0, window_out);
51     Iterator indices(dst1, window_out);
52 
53     const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
54     const int pool_pad_left = pool_info.pad_stride_info.pad_left();
55 
56     int pool_stride_x = 0;
57     int pool_stride_y = 0;
58     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
59 
60     const int pad_right      = src->info()->padding().right;
61     const int pad_left       = src->info()->padding().left;
62     const int pad_horizontal = pad_right + pad_left;
63     const int in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());
64     const int in_stride_z    = static_cast<int>(src->info()->strides_in_bytes().z());
65 
66     execute_window_loop(window_out, [&](const Coordinates & id)
67     {
68         const int idx_width    = id.y() * pool_stride_x;
69         const int idx_height   = id.z() * pool_stride_y;
70         const int pool_limit_y = pool_pad_top - idx_height;
71         const int pool_limit_x = pool_pad_left - idx_width;
72 
73         const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
74         const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
75         const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
76         const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
77                                  (src->info()->strides_in_bytes().z());
78         const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
79                                  (src->info()->strides_in_bytes().z());
80         const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
81                                  (src->info()->strides_in_bytes().z());
82 
83         int x_off = window_start_x;
84         for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
85         {
86             const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off;
87             const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off;
88             const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off;
89             const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off;
90             const auto  v_x0      = vld1q_f16(in_x0_ptr);
91             const auto  v_x1      = vld1q_f16(in_x1_ptr);
92             const auto  v_x2      = vld1q_f16(in_x2_ptr);
93             const auto  v_x3      = vld1q_f16(in_x3_ptr);
94             float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
95             // Store result
96             vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
97 
98             const uint32_t   offset_base    = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
99             const uint32_t   offset_x0      = (uint32_t)offset_base / sizeof(float16_t) + x_off;
100             const uint32_t   offset_x1      = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
101             const uint32_t   offset_x2      = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_horizontal * src->info()->tensor_shape()[1];
102             const uint32_t   offset_x3      = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
103             const uint32x4_t voffset_x0_0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
104             const uint32x4_t voffset_x0_1   = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
105             const uint16x8_t voffset_x0     = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
106             const uint32x4_t voffset_x1_0   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
107             const uint32x4_t voffset_x1_1   = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
108             const uint16x8_t voffset_x1     = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
109             const uint32x4_t voffset_x2_0   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
110             const uint32x4_t voffset_x2_1   = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
111             const uint16x8_t voffset_x2     = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
112             const uint32x4_t voffset_x3_0   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
113             const uint32x4_t voffset_x3_1   = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
114             const uint16x8_t voffset_x3     = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
115             const uint16x8_t tmp_indices0   = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
116             const uint16x8_t tmp_indices1   = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
117             const uint16x8_t tmp_indices2   = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
118             const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
119             const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
120             // Store indicies
121             vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
122             vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
123         }
124 
125         // Left-overs loop
126         for(; x_off < window_end_x; ++x_off)
127         {
128             const auto x0  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off);
129             const auto x1  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off);
130             const auto x2  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off);
131             const auto x3  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off);
132             float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));
133 
134             // Store result
135             *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
136 
137             const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NHWC);
138             const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
139             const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
140             const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_horizontal * src->info()->tensor_shape()[1];
141             const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
142             const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
143             const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
144             const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
145 
146             // Store indices
147             *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
148         }
149     },
150     in, out, indices);
151 }
152 }
153 
poolingMxN_fp16_neon_nhwc(const ITensor * src,ITensor * dst0,ITensor * dst1,PoolingLayerInfo & pool_info,const Window & window_src,const Window & window)154 void poolingMxN_fp16_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
155 {
156     if(pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1)
157     {
158         pooling2_f16_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
159     }
160     const int window_start_x = window.x().start();
161     const int window_end_x   = window.x().end();
162     const int window_step_x  = 8;
163 
164     Window window_out = window;
165     window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
166 
167     Iterator in(src, window_src);
168     Iterator out(dst0, window_out);
169 
170     const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
171     const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
172     const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
173     const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
174     const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
175     const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
176     int       pool_stride_x   = 0;
177     int       pool_stride_y   = 0;
178     std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
179     const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
180     const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
181 
182     float16x8_t vres;
183 
184     execute_window_loop(window_out, [&](const Coordinates & id)
185     {
186         const int idx_width    = id.y() * pool_stride_x;
187         const int idx_height   = id.z() * pool_stride_y;
188         const int pool_limit_y = pool_pad_top - idx_height;
189         const int pool_limit_x = pool_pad_left - idx_width;
190 
191         const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
192         const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
193         const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
194         const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
195 
196         int x_off = window_start_x;
197         for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
198         {
199             if(pool_info.pool_type != PoolingType::MAX)
200             {
201                 // Calculate scale
202                 const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
203                                                                pool_stride_y);
204                 const float16x8_t scale_v = vdupq_n_f16(scale);
205 
206                 // Perform pooling
207                 vres = vdupq_n_f16(0.0f);
208                 for(int y = pool_start_y; y < pool_end_y; ++y)
209                 {
210                     for(int x = pool_start_x; x < pool_end_x; ++x)
211                     {
212                         const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
213                                                                                                (src->info()->strides_in_bytes().z())) + x_off);
214 
215                         // Get power of 2 in case of l2 pooling and accumulate
216                         if(pool_info.pool_type == PoolingType::L2)
217                         {
218                             vres = vaddq_f16(vres, vmulq_f16(data, data));
219                         }
220                         else
221                         {
222                             vres = vaddq_f16(vres, data);
223                         }
224                     }
225                 }
226                 // Divide by scale
227                 vres = vmulq_f16(vres, scale_v);
228             }
229             else
230             {
231                 vres = vdupq_n_f16(-std::numeric_limits<float>::infinity());
232 
233                 for(int y = pool_start_y; y < pool_end_y; ++y)
234                 {
235                     for(int x = pool_start_x; x < pool_end_x; ++x)
236                     {
237                         const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
238                                                                                                (src->info()->strides_in_bytes().z())) + x_off);
239                         vres                   = vmaxq_f16(vres, data);
240                     }
241                 }
242             }
243 
244             // Calculate square-root in case of l2 pooling
245             if(pool_info.pool_type == PoolingType::L2)
246             {
247                 float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
248                 vres                        = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
249             }
250 
251             // Store result
252             vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
253         }
254 
255         // Left-overs loop
256         for(; x_off < window_end_x; ++x_off)
257         {
258             float16_t res = 0.0f;
259 
260             if(pool_info.pool_type != PoolingType::MAX)
261             {
262                 // Calculate scale
263                 const float16_t scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
264                                                                    pool_stride_y);
265 
266                 for(int y = pool_start_y; y < pool_end_y; ++y)
267                 {
268                     for(int x = pool_start_x; x < pool_end_x; ++x)
269                     {
270                         const float data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
271                                                                                  (src->info()->strides_in_bytes().z())) + x_off);
272 
273                         // Get power of 2 in case of l2 pooling and accumulate
274                         if(pool_info.pool_type == PoolingType::L2)
275                         {
276                             res += data * data;
277                         }
278                         else
279                         {
280                             res += data;
281                         }
282                     }
283                 }
284 
285                 // Divide by scale
286                 res *= scale;
287             }
288             else
289             {
290                 res = -std::numeric_limits<float>::infinity();
291                 for(int y = pool_start_y; y < pool_end_y; ++y)
292                 {
293                     for(int x = pool_start_x; x < pool_end_x; ++x)
294                     {
295                         const float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
296                                                                                      (src->info()->strides_in_bytes().z())) + x_off);
297                         res                  = std::max(res, data);
298                     }
299                 }
300             }
301 
302             // Calculate square-root in case of l2 pooling
303             if(pool_info.pool_type == PoolingType::L2)
304             {
305                 res = std::sqrt(res);
306             }
307 
308             // Store result
309             *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
310         }
311     },
312     in, out);
313 }
314 } // namespace cpu
315 } // namespace arm_compute
316 
317 #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */