xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/sub/neon/list.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef SRC_CORE_NEON_KERNELS_SUB_LIST_H
25 #define SRC_CORE_NEON_KERNELS_SUB_LIST_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/core/utils/misc/Traits.h"
29 #include "src/core/NEON/wrapper/wrapper.h"
30 
31 namespace arm_compute
32 {
33 namespace cpu
34 {
35 #define DECLARE_SUB_KERNEL(func_name) \
36     void func_name(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
37 
38 DECLARE_SUB_KERNEL(sub_qasymm8_neon_fixedpoint);
39 DECLARE_SUB_KERNEL(sub_qasymm8_signed_neon_fixedpoint);
40 DECLARE_SUB_KERNEL(sub_qasymm8_neon);
41 DECLARE_SUB_KERNEL(sub_qasymm8_signed_neon);
42 DECLARE_SUB_KERNEL(sub_qsymm16_neon);
43 
44 #undef DECLARE_SUB_KERNEL
45 
46 template <typename T>
sub_same_neon(const ITensor * src0,const ITensor * src1,ITensor * dst,const ConvertPolicy & policy,const Window & window)47 void sub_same_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
48 {
49     /** SIMD vector tag type. */
50     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
51 
52     bool is_sat = policy == ConvertPolicy::SATURATE;
53 
54     // Create input windows
55     Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
56     Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
57 
58     // Clear X Dimension on execution window as we handle manually
59     Window win = window;
60     win.set(Window::DimX, Window::Dimension(0, 1, 1));
61 
62     constexpr int window_step_x         = 16 / sizeof(T);
63     const auto    window_start_x        = static_cast<int>(window.x().start());
64     const auto    window_end_x          = static_cast<int>(window.x().end());
65     const bool    is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();
66 
67     Iterator input1(src0, window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()));
68     Iterator input2(src1, window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()));
69     Iterator output(dst, window);
70 
71     if(is_broadcast_across_x)
72     {
73         const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
74         Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
75         Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
76         const ITensor *broadcast_tensor     = is_broadcast_input_2 ? src1 : src0;
77         const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0;
78 
79         // Clear X Dimension on execution window as we handle manually
80         non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
81 
82         Iterator broadcast_input(broadcast_tensor, broadcast_win);
83         Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
84         Iterator output(dst, win);
85 
86         execute_window_loop(
87             win, [&](const Coordinates &)
88         {
89             const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
90             const auto output_ptr              = reinterpret_cast<T *>(output.ptr());
91 
92             const T    broadcast_value     = *reinterpret_cast<const T *>(broadcast_input.ptr());
93             const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
94 
95             // Compute S elements per iteration
96             int x = window_start_x;
97             for(; x <= (window_end_x - window_step_x); x += window_step_x)
98             {
99                 const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
100                 auto       res             = is_sat ? wrapper::vqsub(broadcast_value_vec, non_broadcast_v) : wrapper::vsub(broadcast_value_vec, non_broadcast_v);
101                 if(is_broadcast_input_2)
102                 {
103                     res = wrapper::vmul(res, wrapper::vdup_n(static_cast<T>(-1), ExactTagType{}));
104                 }
105                 wrapper::vstore(output_ptr + x, res);
106             }
107 
108             // Compute left-over elements
109             for(; x < window_end_x; ++x)
110             {
111                 const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
112                 auto       res             = is_sat ? wrapper::sub_sat(broadcast_value, non_broadcast_v) : broadcast_value - non_broadcast_v;
113                 if(is_broadcast_input_2)
114                 {
115                     res = static_cast<T>(-1) * res;
116                 }
117 
118                 *(output_ptr + x) = res;
119             }
120         },
121         broadcast_input, non_broadcast_input, output);
122     }
123     else
124     {
125         // Clear X Dimension on execution window as we handle manually
126         input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
127         input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
128 
129         Iterator input1(src0, input1_win);
130         Iterator input2(src1, input2_win);
131         Iterator output(dst, win);
132 
133         execute_window_loop(
134             win, [&](const Coordinates &)
135         {
136             const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
137             const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
138             const auto output_ptr = reinterpret_cast<T *>(output.ptr());
139 
140             // Compute S elements per iteration
141             int x = window_start_x;
142             for(; x <= (window_end_x - window_step_x); x += window_step_x)
143             {
144                 const auto val1 = wrapper::vloadq(input1_ptr + x);
145                 const auto val2 = wrapper::vloadq(input2_ptr + x);
146                 const auto res  = is_sat ? wrapper::vqsub(val1, val2) : wrapper::vsub(val1, val2);
147                 wrapper::vstore(output_ptr + x, res);
148             }
149 
150             // Compute left-over elements
151             for(; x < window_end_x; ++x)
152             {
153                 const auto val1   = *(input1_ptr + x);
154                 const auto val2   = *(input2_ptr + x);
155                 *(output_ptr + x) = is_sat ? wrapper::sub_sat(val1, val2) : val1 - val2;
156             }
157         },
158         input1, input2, output);
159     }
160 }
161 } // namespace cpu
162 } // namespace arm_compute
163 #endif // SRC_CORE_NEON_KERNELS_SUB_LIST_H
164