xref: /aosp_15_r20/external/webp/src/dsp/dec_sse2.c (revision b2055c353e87c8814eb2b6b1b11112a1562253bd)
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: [email protected] (Somnath Banerjee)
13 //         [email protected] (Christian Duvivier)
14 
15 #include "src/dsp/dsp.h"
16 
17 #if defined(WEBP_USE_SSE2)
18 
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 #if !defined(USE_TRANSFORM_AC3)
22 #define USE_TRANSFORM_AC3 0   // ALTERNATE_CODE
23 #endif
24 
25 #include <emmintrin.h>
26 #include "src/dsp/common_sse2.h"
27 #include "src/dec/vp8i_dec.h"
28 #include "src/utils/utils.h"
29 
30 //------------------------------------------------------------------------------
31 // Transforms (Paragraph 14.4)
32 
Transform_SSE2(const int16_t * in,uint8_t * dst,int do_two)33 static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) {
34   // This implementation makes use of 16-bit fixed point versions of two
35   // multiply constants:
36   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
37   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
38   //
39   // To be able to use signed 16-bit integers, we use the following trick to
40   // have constants within range:
41   // - Associated constants are obtained by subtracting the 16-bit fixed point
42   //   version of one:
43   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
44   //      K1 = 85267  =>  k1 =  20091
45   //      K2 = 35468  =>  k2 = -30068
46   // - The multiplication of a variable by a constant become the sum of the
47   //   variable and the multiplication of that variable by the associated
48   //   constant:
49   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
50   const __m128i k1 = _mm_set1_epi16(20091);
51   const __m128i k2 = _mm_set1_epi16(-30068);
52   __m128i T0, T1, T2, T3;
53 
54   // Load and concatenate the transform coefficients (we'll do two transforms
55   // in parallel). In the case of only one transform, the second half of the
56   // vectors will just contain random value we'll never use nor store.
57   __m128i in0, in1, in2, in3;
58   {
59     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
60     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
61     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
62     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
63     // a00 a10 a20 a30   x x x x
64     // a01 a11 a21 a31   x x x x
65     // a02 a12 a22 a32   x x x x
66     // a03 a13 a23 a33   x x x x
67     if (do_two) {
68       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
69       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
70       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
71       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
72       in0 = _mm_unpacklo_epi64(in0, inB0);
73       in1 = _mm_unpacklo_epi64(in1, inB1);
74       in2 = _mm_unpacklo_epi64(in2, inB2);
75       in3 = _mm_unpacklo_epi64(in3, inB3);
76       // a00 a10 a20 a30   b00 b10 b20 b30
77       // a01 a11 a21 a31   b01 b11 b21 b31
78       // a02 a12 a22 a32   b02 b12 b22 b32
79       // a03 a13 a23 a33   b03 b13 b23 b33
80     }
81   }
82 
83   // Vertical pass and subsequent transpose.
84   {
85     // First pass, c and d calculations are longer because of the "trick"
86     // multiplications.
87     const __m128i a = _mm_add_epi16(in0, in2);
88     const __m128i b = _mm_sub_epi16(in0, in2);
89     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
90     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
91     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
92     const __m128i c3 = _mm_sub_epi16(in1, in3);
93     const __m128i c4 = _mm_sub_epi16(c1, c2);
94     const __m128i c = _mm_add_epi16(c3, c4);
95     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
96     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
97     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
98     const __m128i d3 = _mm_add_epi16(in1, in3);
99     const __m128i d4 = _mm_add_epi16(d1, d2);
100     const __m128i d = _mm_add_epi16(d3, d4);
101 
102     // Second pass.
103     const __m128i tmp0 = _mm_add_epi16(a, d);
104     const __m128i tmp1 = _mm_add_epi16(b, c);
105     const __m128i tmp2 = _mm_sub_epi16(b, c);
106     const __m128i tmp3 = _mm_sub_epi16(a, d);
107 
108     // Transpose the two 4x4.
109     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
110   }
111 
112   // Horizontal pass and subsequent transpose.
113   {
114     // First pass, c and d calculations are longer because of the "trick"
115     // multiplications.
116     const __m128i four = _mm_set1_epi16(4);
117     const __m128i dc = _mm_add_epi16(T0, four);
118     const __m128i a =  _mm_add_epi16(dc, T2);
119     const __m128i b =  _mm_sub_epi16(dc, T2);
120     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
121     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
122     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
123     const __m128i c3 = _mm_sub_epi16(T1, T3);
124     const __m128i c4 = _mm_sub_epi16(c1, c2);
125     const __m128i c = _mm_add_epi16(c3, c4);
126     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
127     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
128     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
129     const __m128i d3 = _mm_add_epi16(T1, T3);
130     const __m128i d4 = _mm_add_epi16(d1, d2);
131     const __m128i d = _mm_add_epi16(d3, d4);
132 
133     // Second pass.
134     const __m128i tmp0 = _mm_add_epi16(a, d);
135     const __m128i tmp1 = _mm_add_epi16(b, c);
136     const __m128i tmp2 = _mm_sub_epi16(b, c);
137     const __m128i tmp3 = _mm_sub_epi16(a, d);
138     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
139     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
140     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
141     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
142 
143     // Transpose the two 4x4.
144     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
145                            &T2, &T3);
146   }
147 
148   // Add inverse transform to 'dst' and store.
149   {
150     const __m128i zero = _mm_setzero_si128();
151     // Load the reference(s).
152     __m128i dst0, dst1, dst2, dst3;
153     if (do_two) {
154       // Load eight bytes/pixels per line.
155       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
156       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
157       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
158       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
159     } else {
160       // Load four bytes/pixels per line.
161       dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
162       dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
163       dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
164       dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
165     }
166     // Convert to 16b.
167     dst0 = _mm_unpacklo_epi8(dst0, zero);
168     dst1 = _mm_unpacklo_epi8(dst1, zero);
169     dst2 = _mm_unpacklo_epi8(dst2, zero);
170     dst3 = _mm_unpacklo_epi8(dst3, zero);
171     // Add the inverse transform(s).
172     dst0 = _mm_add_epi16(dst0, T0);
173     dst1 = _mm_add_epi16(dst1, T1);
174     dst2 = _mm_add_epi16(dst2, T2);
175     dst3 = _mm_add_epi16(dst3, T3);
176     // Unsigned saturate to 8b.
177     dst0 = _mm_packus_epi16(dst0, dst0);
178     dst1 = _mm_packus_epi16(dst1, dst1);
179     dst2 = _mm_packus_epi16(dst2, dst2);
180     dst3 = _mm_packus_epi16(dst3, dst3);
181     // Store the results.
182     if (do_two) {
183       // Store eight bytes/pixels per line.
184       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
185       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
186       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
187       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
188     } else {
189       // Store four bytes/pixels per line.
190       WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
191       WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
192       WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
193       WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
194     }
195   }
196 }
197 
198 #if (USE_TRANSFORM_AC3 == 1)
199 
TransformAC3(const int16_t * in,uint8_t * dst)200 static void TransformAC3(const int16_t* in, uint8_t* dst) {
201   const __m128i A = _mm_set1_epi16(in[0] + 4);
202   const __m128i c4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL2(in[4]));
203   const __m128i d4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL1(in[4]));
204   const int c1 = WEBP_TRANSFORM_AC3_MUL2(in[1]);
205   const int d1 = WEBP_TRANSFORM_AC3_MUL1(in[1]);
206   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
207   const __m128i B = _mm_adds_epi16(A, CD);
208   const __m128i m0 = _mm_adds_epi16(B, d4);
209   const __m128i m1 = _mm_adds_epi16(B, c4);
210   const __m128i m2 = _mm_subs_epi16(B, c4);
211   const __m128i m3 = _mm_subs_epi16(B, d4);
212   const __m128i zero = _mm_setzero_si128();
213   // Load the source pixels.
214   __m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
215   __m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
216   __m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
217   __m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
218   // Convert to 16b.
219   dst0 = _mm_unpacklo_epi8(dst0, zero);
220   dst1 = _mm_unpacklo_epi8(dst1, zero);
221   dst2 = _mm_unpacklo_epi8(dst2, zero);
222   dst3 = _mm_unpacklo_epi8(dst3, zero);
223   // Add the inverse transform.
224   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
225   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
226   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
227   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
228   // Unsigned saturate to 8b.
229   dst0 = _mm_packus_epi16(dst0, dst0);
230   dst1 = _mm_packus_epi16(dst1, dst1);
231   dst2 = _mm_packus_epi16(dst2, dst2);
232   dst3 = _mm_packus_epi16(dst3, dst3);
233   // Store the results.
234   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
235   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
236   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
237   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
238 }
239 
240 #endif   // USE_TRANSFORM_AC3
241 
242 //------------------------------------------------------------------------------
243 // Loop Filter (Paragraph 15)
244 
245 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
246 #define MM_ABS(p, q)  _mm_or_si128(                                            \
247     _mm_subs_epu8((q), (p)),                                                   \
248     _mm_subs_epu8((p), (q)))
249 
250 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b_SSE2(__m128i * const x)251 static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
252   const __m128i zero = _mm_setzero_si128();
253   const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
254   const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
255   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
256   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
257   *x = _mm_packs_epi16(lo_1, hi_1);
258 }
259 
260 #define FLIP_SIGN_BIT2(a, b) do {                                              \
261   (a) = _mm_xor_si128(a, sign_bit);                                            \
262   (b) = _mm_xor_si128(b, sign_bit);                                            \
263 } while (0)
264 
265 #define FLIP_SIGN_BIT4(a, b, c, d) do {                                        \
266   FLIP_SIGN_BIT2(a, b);                                                        \
267   FLIP_SIGN_BIT2(c, d);                                                        \
268 } while (0)
269 
270 // input/output is uint8_t
GetNotHEV_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)271 static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
272                                        const __m128i* const p0,
273                                        const __m128i* const q0,
274                                        const __m128i* const q1,
275                                        int hev_thresh, __m128i* const not_hev) {
276   const __m128i zero = _mm_setzero_si128();
277   const __m128i t_1 = MM_ABS(*p1, *p0);
278   const __m128i t_2 = MM_ABS(*q1, *q0);
279 
280   const __m128i h = _mm_set1_epi8(hev_thresh);
281   const __m128i t_max = _mm_max_epu8(t_1, t_2);
282 
283   const __m128i t_max_h = _mm_subs_epu8(t_max, h);
284   *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
285 }
286 
287 // input pixels are int8_t
GetBaseDelta_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)288 static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
289                                           const __m128i* const p0,
290                                           const __m128i* const q0,
291                                           const __m128i* const q1,
292                                           __m128i* const delta) {
293   // beware of addition order, for saturation!
294   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
295   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
296   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
297   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
298   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
299   *delta = s3;
300 }
301 
302 // input and output are int8_t
DoSimpleFilter_SSE2(__m128i * const p0,__m128i * const q0,const __m128i * const fl)303 static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
304                                             __m128i* const q0,
305                                             const __m128i* const fl) {
306   const __m128i k3 = _mm_set1_epi8(3);
307   const __m128i k4 = _mm_set1_epi8(4);
308   __m128i v3 = _mm_adds_epi8(*fl, k3);
309   __m128i v4 = _mm_adds_epi8(*fl, k4);
310 
311   SignedShift8b_SSE2(&v4);             // v4 >> 3
312   SignedShift8b_SSE2(&v3);             // v3 >> 3
313   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
314   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
315 }
316 
317 // Updates values of 2 pixels at MB edge during complex filtering.
318 // Update operations:
319 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
320 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels_SSE2(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)321 static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
322                                            const __m128i* const a0_lo,
323                                            const __m128i* const a0_hi) {
324   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
325   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
326   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
327   const __m128i sign_bit = _mm_set1_epi8((char)0x80);
328   *pi = _mm_adds_epi8(*pi, delta);
329   *qi = _mm_subs_epi8(*qi, delta);
330   FLIP_SIGN_BIT2(*pi, *qi);
331 }
332 
333 // input pixels are uint8_t
NeedsFilter_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)334 static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
335                                          const __m128i* const p0,
336                                          const __m128i* const q0,
337                                          const __m128i* const q1,
338                                          int thresh, __m128i* const mask) {
339   const __m128i m_thresh = _mm_set1_epi8((char)thresh);
340   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
341   const __m128i kFE = _mm_set1_epi8((char)0xFE);
342   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
343   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
344 
345   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
346   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
347   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
348 
349   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
350   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
351 }
352 
353 //------------------------------------------------------------------------------
354 // Edge filtering functions
355 
356 // Applies filter on 2 pixels (p0 and q0)
DoFilter2_SSE2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)357 static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
358                                        __m128i* const q0, __m128i* const q1,
359                                        int thresh) {
360   __m128i a, mask;
361   const __m128i sign_bit = _mm_set1_epi8((char)0x80);
362   // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
363   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
364   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
365 
366   NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
367 
368   FLIP_SIGN_BIT2(*p0, *q0);
369   GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
370   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
371   DoSimpleFilter_SSE2(p0, q0, &a);
372   FLIP_SIGN_BIT2(*p0, *q0);
373 }
374 
375 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4_SSE2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)376 static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
377                                        __m128i* const q0, __m128i* const q1,
378                                        const __m128i* const mask,
379                                        int hev_thresh) {
380   const __m128i zero = _mm_setzero_si128();
381   const __m128i sign_bit = _mm_set1_epi8((char)0x80);
382   const __m128i k64 = _mm_set1_epi8(64);
383   const __m128i k3 = _mm_set1_epi8(3);
384   const __m128i k4 = _mm_set1_epi8(4);
385   __m128i not_hev;
386   __m128i t1, t2, t3;
387 
388   // compute hev mask
389   GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
390 
391   // convert to signed values
392   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
393 
394   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
395   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
396   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
397   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
398   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
399   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
400   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
401 
402   t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
403   t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
404   SignedShift8b_SSE2(&t2);           // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
405   SignedShift8b_SSE2(&t3);           // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
406   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
407   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
408   FLIP_SIGN_BIT2(*p0, *q0);
409 
410   // this is equivalent to signed (a + 1) >> 1 calculation
411   t2 = _mm_add_epi8(t3, sign_bit);
412   t3 = _mm_avg_epu8(t2, zero);
413   t3 = _mm_sub_epi8(t3, k64);
414 
415   t3 = _mm_and_si128(not_hev, t3);   // if !hev
416   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
417   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
418   FLIP_SIGN_BIT2(*p1, *q1);
419 }
420 
421 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6_SSE2(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)422 static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
423                                        __m128i* const p0, __m128i* const q0,
424                                        __m128i* const q1, __m128i* const q2,
425                                        const __m128i* const mask,
426                                        int hev_thresh) {
427   const __m128i zero = _mm_setzero_si128();
428   const __m128i sign_bit = _mm_set1_epi8((char)0x80);
429   __m128i a, not_hev;
430 
431   // compute hev mask
432   GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
433 
434   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
435   FLIP_SIGN_BIT2(*p2, *q2);
436   GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
437 
438   { // do simple filter on pixels with hev
439     const __m128i m = _mm_andnot_si128(not_hev, *mask);
440     const __m128i f = _mm_and_si128(a, m);
441     DoSimpleFilter_SSE2(p0, q0, &f);
442   }
443 
444   { // do strong filter on pixels with not hev
445     const __m128i k9 = _mm_set1_epi16(0x0900);
446     const __m128i k63 = _mm_set1_epi16(63);
447 
448     const __m128i m = _mm_and_si128(not_hev, *mask);
449     const __m128i f = _mm_and_si128(a, m);
450 
451     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
452     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
453 
454     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
455     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
456 
457     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
458     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
459 
460     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
461     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
462 
463     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
464     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
465 
466     Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
467     Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
468     Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
469   }
470 }
471 
472 // reads 8 rows across a vertical edge.
Load8x4_SSE2(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)473 static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
474                                      __m128i* const p, __m128i* const q) {
475   // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
476   // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
477   const __m128i A0 = _mm_set_epi32(
478       WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]),
479       WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride]));
480   const __m128i A1 = _mm_set_epi32(
481       WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]),
482       WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride]));
483 
484   // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
485   // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
486   const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
487   const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
488 
489   // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
490   // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
491   const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
492   const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
493 
494   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
495   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
496   *p = _mm_unpacklo_epi32(C0, C1);
497   *q = _mm_unpackhi_epi32(C0, C1);
498 }
499 
Load16x4_SSE2(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)500 static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
501                                       const uint8_t* const r8,
502                                       int stride,
503                                       __m128i* const p1, __m128i* const p0,
504                                       __m128i* const q0, __m128i* const q1) {
505   // Assume the pixels around the edge (|) are numbered as follows
506   //                00 01 | 02 03
507   //                10 11 | 12 13
508   //                 ...  |  ...
509   //                e0 e1 | e2 e3
510   //                f0 f1 | f2 f3
511   //
512   // r0 is pointing to the 0th row (00)
513   // r8 is pointing to the 8th row (80)
514 
515   // Load
516   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
517   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
518   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
519   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
520   Load8x4_SSE2(r0, stride, p1, q0);
521   Load8x4_SSE2(r8, stride, p0, q1);
522 
523   {
524     // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
525     // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
526     // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
527     // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
528     const __m128i t1 = *p1;
529     const __m128i t2 = *q0;
530     *p1 = _mm_unpacklo_epi64(t1, *p0);
531     *p0 = _mm_unpackhi_epi64(t1, *p0);
532     *q0 = _mm_unpacklo_epi64(t2, *q1);
533     *q1 = _mm_unpackhi_epi64(t2, *q1);
534   }
535 }
536 
Store4x4_SSE2(__m128i * const x,uint8_t * dst,int stride)537 static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
538                                       uint8_t* dst, int stride) {
539   int i;
540   for (i = 0; i < 4; ++i, dst += stride) {
541     WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x));
542     *x = _mm_srli_si128(*x, 4);
543   }
544 }
545 
546 // Transpose back and store
Store16x4_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)547 static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
548                                        const __m128i* const p0,
549                                        const __m128i* const q0,
550                                        const __m128i* const q1,
551                                        uint8_t* r0, uint8_t* r8,
552                                        int stride) {
553   __m128i t1, p1_s, p0_s, q0_s, q1_s;
554 
555   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
556   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
557   t1 = *p0;
558   p0_s = _mm_unpacklo_epi8(*p1, t1);
559   p1_s = _mm_unpackhi_epi8(*p1, t1);
560 
561   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
562   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
563   t1 = *q0;
564   q0_s = _mm_unpacklo_epi8(t1, *q1);
565   q1_s = _mm_unpackhi_epi8(t1, *q1);
566 
567   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
568   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
569   t1 = p0_s;
570   p0_s = _mm_unpacklo_epi16(t1, q0_s);
571   q0_s = _mm_unpackhi_epi16(t1, q0_s);
572 
573   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
574   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
575   t1 = p1_s;
576   p1_s = _mm_unpacklo_epi16(t1, q1_s);
577   q1_s = _mm_unpackhi_epi16(t1, q1_s);
578 
579   Store4x4_SSE2(&p0_s, r0, stride);
580   r0 += 4 * stride;
581   Store4x4_SSE2(&q0_s, r0, stride);
582 
583   Store4x4_SSE2(&p1_s, r8, stride);
584   r8 += 4 * stride;
585   Store4x4_SSE2(&q1_s, r8, stride);
586 }
587 
588 //------------------------------------------------------------------------------
589 // Simple In-loop filtering (Paragraph 15.2)
590 
SimpleVFilter16_SSE2(uint8_t * p,int stride,int thresh)591 static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
592   // Load
593   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
594   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
595   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
596   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
597 
598   DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
599 
600   // Store
601   _mm_storeu_si128((__m128i*)&p[-stride], p0);
602   _mm_storeu_si128((__m128i*)&p[0], q0);
603 }
604 
SimpleHFilter16_SSE2(uint8_t * p,int stride,int thresh)605 static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
606   __m128i p1, p0, q0, q1;
607 
608   p -= 2;  // beginning of p1
609 
610   Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
611   DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
612   Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
613 }
614 
SimpleVFilter16i_SSE2(uint8_t * p,int stride,int thresh)615 static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
616   int k;
617   for (k = 3; k > 0; --k) {
618     p += 4 * stride;
619     SimpleVFilter16_SSE2(p, stride, thresh);
620   }
621 }
622 
SimpleHFilter16i_SSE2(uint8_t * p,int stride,int thresh)623 static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
624   int k;
625   for (k = 3; k > 0; --k) {
626     p += 4;
627     SimpleHFilter16_SSE2(p, stride, thresh);
628   }
629 }
630 
631 //------------------------------------------------------------------------------
632 // Complex In-loop filtering (Paragraph 15.3)
633 
634 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
635   (m) = MM_ABS(p1, p0);                                                        \
636   (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
637   (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
638 } while (0)
639 
640 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
641   (m) = _mm_max_epu8(m, MM_ABS(p1, p0));                                       \
642   (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
643   (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
644 } while (0)
645 
646 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) do {                          \
647   (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]);                        \
648   (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]);                        \
649   (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]);                        \
650   (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]);                        \
651 } while (0)
652 
653 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
654   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
655   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
656   (p) = _mm_unpacklo_epi64(U, V);                                              \
657 } while (0)
658 
659 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) do {                     \
660   LOADUV_H_EDGE(e1, u, v, 0 * (stride));                                       \
661   LOADUV_H_EDGE(e2, u, v, 1 * (stride));                                       \
662   LOADUV_H_EDGE(e3, u, v, 2 * (stride));                                       \
663   LOADUV_H_EDGE(e4, u, v, 3 * (stride));                                       \
664 } while (0)
665 
666 #define STOREUV(p, u, v, stride) do {                                          \
667   _mm_storel_epi64((__m128i*)&(u)[(stride)], p);                               \
668   (p) = _mm_srli_si128(p, 8);                                                  \
669   _mm_storel_epi64((__m128i*)&(v)[(stride)], p);                               \
670 } while (0)
671 
ComplexMask_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)672 static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
673                                          const __m128i* const p0,
674                                          const __m128i* const q0,
675                                          const __m128i* const q1,
676                                          int thresh, int ithresh,
677                                          __m128i* const mask) {
678   const __m128i it = _mm_set1_epi8(ithresh);
679   const __m128i diff = _mm_subs_epu8(*mask, it);
680   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
681   __m128i filter_mask;
682   NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
683   *mask = _mm_and_si128(thresh_mask, filter_mask);
684 }
685 
686 // on macroblock edges
VFilter16_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)687 static void VFilter16_SSE2(uint8_t* p, int stride,
688                            int thresh, int ithresh, int hev_thresh) {
689   __m128i t1;
690   __m128i mask;
691   __m128i p2, p1, p0, q0, q1, q2;
692 
693   // Load p3, p2, p1, p0
694   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
695   MAX_DIFF1(t1, p2, p1, p0, mask);
696 
697   // Load q0, q1, q2, q3
698   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
699   MAX_DIFF2(t1, q2, q1, q0, mask);
700 
701   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
702   DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
703 
704   // Store
705   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
706   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
707   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
708   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
709   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
710   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
711 }
712 
HFilter16_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)713 static void HFilter16_SSE2(uint8_t* p, int stride,
714                            int thresh, int ithresh, int hev_thresh) {
715   __m128i mask;
716   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
717 
718   uint8_t* const b = p - 4;
719   Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
720   MAX_DIFF1(p3, p2, p1, p0, mask);
721 
722   Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
723   MAX_DIFF2(q3, q2, q1, q0, mask);
724 
725   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
726   DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
727 
728   Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
729   Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
730 }
731 
732 // on three inner edges
VFilter16i_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)733 static void VFilter16i_SSE2(uint8_t* p, int stride,
734                             int thresh, int ithresh, int hev_thresh) {
735   int k;
736   __m128i p3, p2, p1, p0;   // loop invariants
737 
738   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
739 
740   for (k = 3; k > 0; --k) {
741     __m128i mask, tmp1, tmp2;
742     uint8_t* const b = p + 2 * stride;   // beginning of p1
743     p += 4 * stride;
744 
745     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
746     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
747     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
748 
749     // p3 and p2 are not just temporary variables here: they will be
750     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
751     ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
752     DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
753 
754     // Store
755     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
756     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
757     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
758     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
759 
760     // rotate samples
761     p1 = tmp1;
762     p0 = tmp2;
763   }
764 }
765 
HFilter16i_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)766 static void HFilter16i_SSE2(uint8_t* p, int stride,
767                             int thresh, int ithresh, int hev_thresh) {
768   int k;
769   __m128i p3, p2, p1, p0;   // loop invariants
770 
771   Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
772 
773   for (k = 3; k > 0; --k) {
774     __m128i mask, tmp1, tmp2;
775     uint8_t* const b = p + 2;   // beginning of p1
776 
777     p += 4;  // beginning of q0 (and next span)
778 
779     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
780     Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
781     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
782 
783     ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
784     DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
785 
786     Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
787 
788     // rotate samples
789     p1 = tmp1;
790     p0 = tmp2;
791   }
792 }
793 
794 // 8-pixels wide variant, for chroma filtering
VFilter8_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)795 static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
796                           int thresh, int ithresh, int hev_thresh) {
797   __m128i mask;
798   __m128i t1, p2, p1, p0, q0, q1, q2;
799 
800   // Load p3, p2, p1, p0
801   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
802   MAX_DIFF1(t1, p2, p1, p0, mask);
803 
804   // Load q0, q1, q2, q3
805   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
806   MAX_DIFF2(t1, q2, q1, q0, mask);
807 
808   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
809   DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
810 
811   // Store
812   STOREUV(p2, u, v, -3 * stride);
813   STOREUV(p1, u, v, -2 * stride);
814   STOREUV(p0, u, v, -1 * stride);
815   STOREUV(q0, u, v, 0 * stride);
816   STOREUV(q1, u, v, 1 * stride);
817   STOREUV(q2, u, v, 2 * stride);
818 }
819 
HFilter8_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)820 static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
821                           int thresh, int ithresh, int hev_thresh) {
822   __m128i mask;
823   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
824 
825   uint8_t* const tu = u - 4;
826   uint8_t* const tv = v - 4;
827   Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
828   MAX_DIFF1(p3, p2, p1, p0, mask);
829 
830   Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
831   MAX_DIFF2(q3, q2, q1, q0, mask);
832 
833   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
834   DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
835 
836   Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
837   Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
838 }
839 
VFilter8i_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)840 static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
841                            int thresh, int ithresh, int hev_thresh) {
842   __m128i mask;
843   __m128i t1, t2, p1, p0, q0, q1;
844 
845   // Load p3, p2, p1, p0
846   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
847   MAX_DIFF1(t2, t1, p1, p0, mask);
848 
849   u += 4 * stride;
850   v += 4 * stride;
851 
852   // Load q0, q1, q2, q3
853   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
854   MAX_DIFF2(t2, t1, q1, q0, mask);
855 
856   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
857   DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
858 
859   // Store
860   STOREUV(p1, u, v, -2 * stride);
861   STOREUV(p0, u, v, -1 * stride);
862   STOREUV(q0, u, v, 0 * stride);
863   STOREUV(q1, u, v, 1 * stride);
864 }
865 
HFilter8i_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)866 static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
867                            int thresh, int ithresh, int hev_thresh) {
868   __m128i mask;
869   __m128i t1, t2, p1, p0, q0, q1;
870   Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
871   MAX_DIFF1(t2, t1, p1, p0, mask);
872 
873   u += 4;  // beginning of q0
874   v += 4;
875   Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
876   MAX_DIFF2(t2, t1, q1, q0, mask);
877 
878   ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
879   DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
880 
881   u -= 2;  // beginning of p1
882   v -= 2;
883   Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
884 }
885 
886 //------------------------------------------------------------------------------
887 // 4x4 predictions
888 
889 #define DST(x, y) dst[(x) + (y) * BPS]
890 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
891 
892 // We use the following 8b-arithmetic tricks:
893 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
894 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
895 // and:
896 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
897 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
898 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
899 
VE4_SSE2(uint8_t * dst)900 static void VE4_SSE2(uint8_t* dst) {    // vertical
901   const __m128i one = _mm_set1_epi8(1);
902   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
903   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
904   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
905   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
906   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
907   const __m128i b = _mm_subs_epu8(a, lsb);
908   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
909   const int vals = _mm_cvtsi128_si32(avg);
910   int i;
911   for (i = 0; i < 4; ++i) {
912     WebPInt32ToMem(dst + i * BPS, vals);
913   }
914 }
915 
LD4_SSE2(uint8_t * dst)916 static void LD4_SSE2(uint8_t* dst) {   // Down-Left
917   const __m128i one = _mm_set1_epi8(1);
918   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
919   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
920   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
921   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
922   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
923   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
924   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
925   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
926   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
927   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
928   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
929   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
930 }
931 
VR4_SSE2(uint8_t * dst)932 static void VR4_SSE2(uint8_t* dst) {   // Vertical-Right
933   const __m128i one = _mm_set1_epi8(1);
934   const int I = dst[-1 + 0 * BPS];
935   const int J = dst[-1 + 1 * BPS];
936   const int K = dst[-1 + 2 * BPS];
937   const int X = dst[-1 - BPS];
938   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
939   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
940   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
941   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
942   const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
943   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
944   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
945   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
946   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
947   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
948   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
949   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
950   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
951 
952   // these two are hard to implement in SSE2, so we keep the C-version:
953   DST(0, 2) = AVG3(J, I, X);
954   DST(0, 3) = AVG3(K, J, I);
955 }
956 
VL4_SSE2(uint8_t * dst)957 static void VL4_SSE2(uint8_t* dst) {   // Vertical-Left
958   const __m128i one = _mm_set1_epi8(1);
959   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
960   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
961   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
962   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
963   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
964   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
965   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
966   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
967   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
968   const __m128i abbc = _mm_or_si128(ab, bc);
969   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
970   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
971   const uint32_t extra_out =
972       (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
973   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
974   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
975   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
976   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
977 
978   // these two are hard to get and irregular
979   DST(3, 2) = (extra_out >> 0) & 0xff;
980   DST(3, 3) = (extra_out >> 8) & 0xff;
981 }
982 
RD4_SSE2(uint8_t * dst)983 static void RD4_SSE2(uint8_t* dst) {   // Down-right
984   const __m128i one = _mm_set1_epi8(1);
985   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
986   const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
987   const uint32_t I = dst[-1 + 0 * BPS];
988   const uint32_t J = dst[-1 + 1 * BPS];
989   const uint32_t K = dst[-1 + 2 * BPS];
990   const uint32_t L = dst[-1 + 3 * BPS];
991   const __m128i LKJI_____ =
992       _mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24)));
993   const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
994   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
995   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
996   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
997   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
998   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
999   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1000   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
1001   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1002   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1003   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1004 }
1005 
1006 #undef DST
1007 #undef AVG3
1008 
1009 //------------------------------------------------------------------------------
1010 // Luma 16x16
1011 
TrueMotion_SSE2(uint8_t * dst,int size)1012 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1013   const uint8_t* top = dst - BPS;
1014   const __m128i zero = _mm_setzero_si128();
1015   int y;
1016   if (size == 4) {
1017     const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1018     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1019     for (y = 0; y < 4; ++y, dst += BPS) {
1020       const int val = dst[-1] - top[-1];
1021       const __m128i base = _mm_set1_epi16(val);
1022       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1023       WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1024     }
1025   } else if (size == 8) {
1026     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1027     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1028     for (y = 0; y < 8; ++y, dst += BPS) {
1029       const int val = dst[-1] - top[-1];
1030       const __m128i base = _mm_set1_epi16(val);
1031       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1032       _mm_storel_epi64((__m128i*)dst, out);
1033     }
1034   } else {
1035     const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1036     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1037     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1038     for (y = 0; y < 16; ++y, dst += BPS) {
1039       const int val = dst[-1] - top[-1];
1040       const __m128i base = _mm_set1_epi16(val);
1041       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1042       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1043       const __m128i out = _mm_packus_epi16(out_0, out_1);
1044       _mm_storeu_si128((__m128i*)dst, out);
1045     }
1046   }
1047 }
1048 
TM4_SSE2(uint8_t * dst)1049 static void TM4_SSE2(uint8_t* dst)   { TrueMotion_SSE2(dst, 4); }
TM8uv_SSE2(uint8_t * dst)1050 static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
TM16_SSE2(uint8_t * dst)1051 static void TM16_SSE2(uint8_t* dst)  { TrueMotion_SSE2(dst, 16); }
1052 
VE16_SSE2(uint8_t * dst)1053 static void VE16_SSE2(uint8_t* dst) {
1054   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1055   int j;
1056   for (j = 0; j < 16; ++j) {
1057     _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1058   }
1059 }
1060 
HE16_SSE2(uint8_t * dst)1061 static void HE16_SSE2(uint8_t* dst) {     // horizontal
1062   int j;
1063   for (j = 16; j > 0; --j) {
1064     const __m128i values = _mm_set1_epi8((char)dst[-1]);
1065     _mm_storeu_si128((__m128i*)dst, values);
1066     dst += BPS;
1067   }
1068 }
1069 
Put16_SSE2(uint8_t v,uint8_t * dst)1070 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1071   int j;
1072   const __m128i values = _mm_set1_epi8((char)v);
1073   for (j = 0; j < 16; ++j) {
1074     _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1075   }
1076 }
1077 
DC16_SSE2(uint8_t * dst)1078 static void DC16_SSE2(uint8_t* dst) {  // DC
1079   const __m128i zero = _mm_setzero_si128();
1080   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1081   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1082   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1083   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1084   int left = 0;
1085   int j;
1086   for (j = 0; j < 16; ++j) {
1087     left += dst[-1 + j * BPS];
1088   }
1089   {
1090     const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1091     Put16_SSE2(DC >> 5, dst);
1092   }
1093 }
1094 
DC16NoTop_SSE2(uint8_t * dst)1095 static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
1096   int DC = 8;
1097   int j;
1098   for (j = 0; j < 16; ++j) {
1099     DC += dst[-1 + j * BPS];
1100   }
1101   Put16_SSE2(DC >> 4, dst);
1102 }
1103 
DC16NoLeft_SSE2(uint8_t * dst)1104 static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
1105   const __m128i zero = _mm_setzero_si128();
1106   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1107   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1108   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1109   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1110   const int DC = _mm_cvtsi128_si32(sum) + 8;
1111   Put16_SSE2(DC >> 4, dst);
1112 }
1113 
DC16NoTopLeft_SSE2(uint8_t * dst)1114 static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
1115   Put16_SSE2(0x80, dst);
1116 }
1117 
1118 //------------------------------------------------------------------------------
1119 // Chroma
1120 
VE8uv_SSE2(uint8_t * dst)1121 static void VE8uv_SSE2(uint8_t* dst) {    // vertical
1122   int j;
1123   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1124   for (j = 0; j < 8; ++j) {
1125     _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1126   }
1127 }
1128 
1129 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)1130 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1131   int j;
1132   const __m128i values = _mm_set1_epi8((char)v);
1133   for (j = 0; j < 8; ++j) {
1134     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1135   }
1136 }
1137 
DC8uv_SSE2(uint8_t * dst)1138 static void DC8uv_SSE2(uint8_t* dst) {     // DC
1139   const __m128i zero = _mm_setzero_si128();
1140   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1141   const __m128i sum = _mm_sad_epu8(top, zero);
1142   int left = 0;
1143   int j;
1144   for (j = 0; j < 8; ++j) {
1145     left += dst[-1 + j * BPS];
1146   }
1147   {
1148     const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1149     Put8x8uv_SSE2(DC >> 4, dst);
1150   }
1151 }
1152 
DC8uvNoLeft_SSE2(uint8_t * dst)1153 static void DC8uvNoLeft_SSE2(uint8_t* dst) {   // DC with no left samples
1154   const __m128i zero = _mm_setzero_si128();
1155   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1156   const __m128i sum = _mm_sad_epu8(top, zero);
1157   const int DC = _mm_cvtsi128_si32(sum) + 4;
1158   Put8x8uv_SSE2(DC >> 3, dst);
1159 }
1160 
DC8uvNoTop_SSE2(uint8_t * dst)1161 static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
1162   int dc0 = 4;
1163   int i;
1164   for (i = 0; i < 8; ++i) {
1165     dc0 += dst[-1 + i * BPS];
1166   }
1167   Put8x8uv_SSE2(dc0 >> 3, dst);
1168 }
1169 
DC8uvNoTopLeft_SSE2(uint8_t * dst)1170 static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {    // DC with nothing
1171   Put8x8uv_SSE2(0x80, dst);
1172 }
1173 
1174 //------------------------------------------------------------------------------
1175 // Entry point
1176 
1177 extern void VP8DspInitSSE2(void);
1178 
VP8DspInitSSE2(void)1179 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1180   VP8Transform = Transform_SSE2;
1181 #if (USE_TRANSFORM_AC3 == 1)
1182   VP8TransformAC3 = TransformAC3_SSE2;
1183 #endif
1184 
1185   VP8VFilter16 = VFilter16_SSE2;
1186   VP8HFilter16 = HFilter16_SSE2;
1187   VP8VFilter8 = VFilter8_SSE2;
1188   VP8HFilter8 = HFilter8_SSE2;
1189   VP8VFilter16i = VFilter16i_SSE2;
1190   VP8HFilter16i = HFilter16i_SSE2;
1191   VP8VFilter8i = VFilter8i_SSE2;
1192   VP8HFilter8i = HFilter8i_SSE2;
1193 
1194   VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1195   VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1196   VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1197   VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1198 
1199   VP8PredLuma4[1] = TM4_SSE2;
1200   VP8PredLuma4[2] = VE4_SSE2;
1201   VP8PredLuma4[4] = RD4_SSE2;
1202   VP8PredLuma4[5] = VR4_SSE2;
1203   VP8PredLuma4[6] = LD4_SSE2;
1204   VP8PredLuma4[7] = VL4_SSE2;
1205 
1206   VP8PredLuma16[0] = DC16_SSE2;
1207   VP8PredLuma16[1] = TM16_SSE2;
1208   VP8PredLuma16[2] = VE16_SSE2;
1209   VP8PredLuma16[3] = HE16_SSE2;
1210   VP8PredLuma16[4] = DC16NoTop_SSE2;
1211   VP8PredLuma16[5] = DC16NoLeft_SSE2;
1212   VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1213 
1214   VP8PredChroma8[0] = DC8uv_SSE2;
1215   VP8PredChroma8[1] = TM8uv_SSE2;
1216   VP8PredChroma8[2] = VE8uv_SSE2;
1217   VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1218   VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1219   VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1220 }
1221 
1222 #else  // !WEBP_USE_SSE2
1223 
1224 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1225 
1226 #endif  // WEBP_USE_SSE2
1227